1
|
Wang C, Dong D, Zhao N, Liu Y, Bai C, Hua J, Cui R, Wei X, Zhao T, Ji N, Yang S, Zhao J, Li H, Li Y. Tumor-derived CCL15 regulates RNA m 6A methylation in cancer-associated fibroblasts to promote hepatocellular carcinoma growth. Cancer Lett 2024; 611:217420. [PMID: 39734010 DOI: 10.1016/j.canlet.2024.217420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy characterized by rapid growth. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) significantly influences HCC progression. CCL15, a CC chemokine family member, is predominantly expressed in HCC and strongly correlates with tumor size, indicating its critical role in HCC growth. However, previous studies suggest that CCL15 does not directly stimulate cancer cell proliferation. The specific role and mechanism of CCL15 in HCC proliferation remain unknown. Here, we identified that CCL15 was predominantly overexpressed by HCC cells through single-cell RNA sequencing data and immunofluorescence. We discovered that CCL15 promotes HCC growth by stimulating the crosstalk between HCC cells and CAFs via CCR1 signaling, as evidenced by co-culture assays, organoid models, and allograft models. Mechanistically, CCL15 induced the expression of FTO in CAFs through the STAT3 pathway. By m6A sequencing and RNA sequencing, we found that CEBPA mRNA, a transcription factor regulating CXCL5 expression, was a target of FTO. CXCL5, secreted by CAFs, activated the CXCR2 receptor on HCC cells and enhanced their proliferation. Notably, we found that interfering with CCL15 signaling using a neutralizing antibody attenuated HCC growth in heterotypic co-injection and patient-derived xenograft murine models. Finally, CXCL5 also upregulated CCL15 expression in HCC cells by modulating P53 expression through MDM2, forming a positive feedback loop. Our study unveiled CCL15 as a key mediator in HCC progression, facilitating communication between HCC cells and CAFs. This highlights a novel regulatory axis in HCC and suggests that targeting CCL15 could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chaomin Wang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Na Zhao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China; Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, PR China
| | - Changsen Bai
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jialei Hua
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Ranliang Cui
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Ting Zhao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Ning Ji
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Shuaini Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jie Zhao
- Department of Kidney Transplantation, Tianjin First Central Hospital, Tianjin, 300110, PR China.
| | - Huikai Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China; Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, PR China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| |
Collapse
|
2
|
Lu Y, Gu Y, Chan ASL, Yung Y, Wong YH. Activation of Bradykinin B 2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling. Int J Mol Sci 2024; 25:13079. [PMID: 39684791 DOI: 10.3390/ijms252313079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF.
Collapse
Affiliation(s)
- Ying Lu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Public Health, Nantong University, Nantong City 226019, China
| | - Yishan Gu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, China
| |
Collapse
|
3
|
Tan Y, Lai T, Li Y, Tang Q, Zhang W, Liu Q, Wu S, Peng X, Sui X, Reggiori F, Jiang X, Chen Q, Wang C. An oil-in-gel type of organohydrogel loaded with methylprednisolone for the treatment of secondary injuries following spinal cord traumas. J Control Release 2024; 374:505-524. [PMID: 39182693 DOI: 10.1016/j.jconrel.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The secondary injuries following traumatic spinal cord injury (SCI) is a multiphasic and complex process that is difficult to treat. Although methylprednisolone (MP) is the only available pharmacological regime for SCI treatment, its efficacy remains controversial due to its very narrow therapeutic time window and safety concerns associated with high dosage. In this study, we have developed an oil-in-gel type of organohydrogel (OHG) in which the binary oleic-water phases coexist, for the local delivery of MP. This new OHG is fabricated by a glycol chitosan/oxidized hyaluronic acid hydrophilic network that is uniformly embedded with a biocompatible oil phase, and it can be effectively loaded with MP or other hydrophobic compounds. In addition to spatiotemporally control MP release, this biodegradable OHG also provides a brain tissue-mimicking scaffold that can promote tissue regeneration. OHG remarkably decreases the therapeutic dose of MP in animals and extends its treatment course over 21 d, thereby timely manipulating microglia/macrophages and their associated with signaling molecules to restore immune homeostasis, leading to a long-term functional improvement in a complete transection SCI rat model. Thus, this OHG represents a new type of gel for clinical treatment of secondary injuries in SCI.
Collapse
Affiliation(s)
- Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ting Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Sihan Wu
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaofeng Sui
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
4
|
Du H, You L, Wu A, Wang F, Yu J, Chen C. Resolvin D1 Inhibits IL-6-Induced Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Targeting IL-6/STAT3 Signaling. Cell Biochem Biophys 2024; 82:1453-1461. [PMID: 38740668 DOI: 10.1007/s12013-024-01299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) has emerged as a prevalent malignancy worldwide, exhibiting the high morbidity and mortality rates. Resolvin D1 (RvD1) can exert anti-inflammation and anti-cancer effects on various diseases. This study is aimed to explore the role of RvD1 in CRC cells. HCT15 and SW480 cells were stimulated with IL-6 in our study. A series of assays such as CCK-8, colony formation, wound healing, Transwell, Western blotting, and immunofluorescence staining were designed and conducted to figure out the role of RvD1 in CRC cells. RvD1 suppressed IL-6-induced SW480 and HCT15 cell proliferation. In addition, RvD1 inhibited IL-6-induced SW480 and HCT15 cell migration, invasion, and EMT process. In mechanism, RvD1 inhibited the activation of IL-6/STAT3 signaling in SW480 and HCT15 cells. Angoline strengthened the inhibitive effect of RvD1 on cell malignancy. RvD1 inhibited cell growth, migration, invasion and EMT process by inactivating IL-6/STAT3 signaling in CRC.
Collapse
Affiliation(s)
- Heng Du
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Lijuan You
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Anding Wu
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Fei Wang
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Jie Yu
- Department of Gestrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Changsha, 438000, China
| | - Chaowu Chen
- Department of Gestrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 438000, China.
| |
Collapse
|
5
|
Goldman O, Adler LN, Hajaj E, Croese T, Darzi N, Galai S, Tishler H, Ariav Y, Lavie D, Fellus-Alyagor L, Oren R, Kuznetsov Y, David E, Jaschek R, Stossel C, Singer O, Malitsky S, Barak R, Seger R, Erez N, Amit I, Tanay A, Saada A, Golan T, Rubinek T, Sang Lee J, Ben-Shachar S, Wolf I, Erez A. Early Infiltration of Innate Immune Cells to the Liver Depletes HNF4α and Promotes Extrahepatic Carcinogenesis. Cancer Discov 2023; 13:1616-1635. [PMID: 36972357 PMCID: PMC10326600 DOI: 10.1158/2159-8290.cd-22-1062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Omer Goldman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital N Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Science, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Darzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Tishler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Ariav
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Lavie
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Rami Jaschek
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Oded Singer
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Renana Barak
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Amit
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Hebrew University and Faculty of Medicine, Jerusalem, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Rubinek
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Joo Sang Lee
- Department of Precision Medicine, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shay Ben-Shachar
- Clalit Research Institute, Innovation Division, Clalit Health Services, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Wolf
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Wacker M, Ball A, Beer HD, Schmitz I, Borucki K, Azizzadeh F, Scherner M, Awad G, Wippermann J, Veluswamy P. Immunophenotyping of Monocyte Migration Markers and Therapeutic Effects of Selenium on IL-6 and IL-1β Cytokine Axes of Blood Mononuclear Cells in Preoperative and Postoperative Coronary Artery Disease Patients. Int J Mol Sci 2023; 24:7198. [PMID: 37108367 PMCID: PMC10139122 DOI: 10.3390/ijms24087198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Multivessel coronary artery disease (CAD) is characterized by underlying chronic vascular inflammation and occlusion in the coronary arteries, where these patients undergo coronary artery bypass grafting (CABG). Since post-cardiotomy inflammation is a well known phenomenon after CABG, attenuation of this inflammation is required to reduce perioperative morbidity and mortality. In this study, we aimed to phenotype circulating frequencies and intensities of monocyte subsets and monocyte migration markers, respectively, and to investigate the plasma level of inflammatory cytokines and chemokines between preoperative and postoperative CAD patients and later, to intervene the inflammation with sodium selenite. We found a higher amplitude of inflammation, postoperatively, in terms of CCR1high monocytes and significantly increased pro-inflammatory cytokines, IL-6, IL-8, and IL-1RA. Further, in vitro intervention with selenium displayed mitigating effects on the IL-6/STAT-3 axis of mononuclear cells derived from postoperative CAD patients. In addition, in vitro selenium intervention significantly reduced IL-1β production as well as decreased cleaved caspase-1 (p20) activity by preoperative (when stimulated) as well as postoperative CAD mononuclear cells. Though TNF-α exhibited a positive correlation with blood troponin levels in postoperative CAD patients, there was no obvious effect of selenium on the TNF-α/NF-κB axis. In conclusion, anti-inflammatory selenium might be utilized to impede systemic inflammatory cytokine axes to circumvent aggravating atherosclerosis and further damage to the autologous bypass grafts during the post-surgical period.
Collapse
Affiliation(s)
- Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Anna Ball
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland;
| | - Ingo Schmitz
- Department of Molecular Immunology, Medical Faculty of Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Faranak Azizzadeh
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - George Awad
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| |
Collapse
|
7
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
8
|
Luo MY, Zhou Y, Gu WM, Wang C, Shen NX, Dong JK, Lei HM, Tang YB, Liang Q, Zou JH, Xu L, Ma P, Zhuang G, Bi L, Xu L, Zhu L, Chen HZ, Shen Y. Metabolic and Nonmetabolic Functions of PSAT1 Coordinate Signaling Cascades to Confer EGFR Inhibitor Resistance and Drive Progression in Lung Adenocarcinoma. Cancer Res 2022; 82:3516-3531. [PMID: 36193649 DOI: 10.1158/0008-5472.can-21-4074] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Emerging evidence demonstrates that the dysregulated metabolic enzymes can accelerate tumorigenesis and progression via both metabolic and nonmetabolic functions. Further elucidation of the role of metabolic enzymes in EGFR inhibitor resistance and metastasis, two of the leading causes of death in lung adenocarcinoma, could help improve patient outcomes. Here, we found that aberrant upregulation of phosphoserine aminotransferase 1 (PSAT1) confers erlotinib resistance and tumor metastasis in lung adenocarcinoma. Depletion of PSAT1 restored sensitivity to erlotinib and synergistically augmented the tumoricidal effect. Mechanistically, inhibition of PSAT1 activated the ROS-dependent JNK/c-Jun pathway to induce cell apoptosis. In addition, PSAT1 interacted with IQGAP1, subsequently activating STAT3-mediated cell migration independent of its metabolic activity. Clinical analyses showed that PSAT1 expression positively correlated with the progression of human lung adenocarcinoma. Collectively, these findings reveal the multifunctionality of PSAT1 in promoting tumor malignancy through its metabolic and nonmetabolic activities. SIGNIFICANCE Metabolic and nonmetabolic functions of PSAT1 confer EGFR inhibitor resistance and promote metastasis in lung adenocarcinoma, suggesting therapeutic targeting of PSAT1 may attenuate the malignant features of lung cancer.
Collapse
Affiliation(s)
- Ming-Yu Luo
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Ye Zhou
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Wei-Ming Gu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Cheng Wang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Ning-Xiang Shen
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Jiang-Kai Dong
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Qian Liang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Jing-Hua Zou
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Pengfei Ma
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, China
| |
Collapse
|
9
|
Zilio S, Bicciato S, Weed D, Serafini P. CCR1 and CCR5 mediate cancer-induced myelopoiesis and differentiation of myeloid cells in the tumor. J Immunother Cancer 2022; 10:jitc-2021-003131. [PMID: 35064009 PMCID: PMC8785210 DOI: 10.1136/jitc-2021-003131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-induced ‘emergency’ myelopoiesis plays a key role in tumor progression by inducing the accumulation of myeloid cells with a suppressive phenotype peripherally and in the tumor. Chemokine receptors (CCRs) and, in particular, CCR1, CCR2, CCR5, and CCR7 are emerging as key regulators of myeloid cell trafficking and function but their precise role has not been completely clarified yet because of the signal redundancy, integration, and promiscuity of chemokines and of the expression of these CCRs on other leukocyte subsets. Methods We used the 4PD nanoparticle for the in vivo targeted silencing of CCR1, CCR2, CCR5, and/or CCR7 in the myeloid cells of tumor bearing mice to evaluate the effect of treatments on tumor growth, myeloid cell trafficking and polarization. We used flow and image cytometry and functional assays to monitor changes in the tumor microenvironment and depletion experiments and immune deficient mice to determine the role of Ly6G+cells during tumor progression. We further evaluated in vitro the impact of chemokine receptor inhibition and tumor derived factors on myeloid cell differentiation from mouse and human hematopoietic stem and precursors cells (HSPCs) using flow cytometry, transcriptome analysis, cytokines beads arrays, functional assays, and mice deficient for CCR1 or CCR5. Results 4PD-mediated in vivo silencing of CCR1 and CCR5 on myeloid cells and myeloid precursors was necessary and sufficient to inhibit tumor progression. Functional studies indicated that this antitumor effect was not mediated by alteration of myeloid cell chemotaxes but rather by the repolarization of polymorphonuclear myeloid-derived suppressor cells (MDSCs) into tumoricidal neutrophils. Transcriptome functional and cytokine analysis indicated that tumor derived factors induced CCL3 and CCL4 in HSPCs that, through the autocrine engagement of CCR1 and CCR5, induced HSPCs differentiation in MDSCs. These finding were confirmed across mice with different genetic backgrounds and using HSPCs from umbilical cord blood and peripheral blood of patients with cancer. Conclusions Our data support the notion that CCR1 and CCR5 and their ligands are a master immunological hub activated by several tumor derived factors. Activation of this pathway is necessary for the differentiation of MDSCs and protumoral macrophages.
Collapse
Affiliation(s)
- Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Donald Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
10
|
Yip JLK, Lee MMK, Leung CCY, Tse MK, Cheung AST, Wong YH. AGS3 and Gα i3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules 2020; 25:molecules25215169. [PMID: 33172018 PMCID: PMC7664263 DOI: 10.3390/molecules25215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Adult neurogenesis is modulated by many Gi-coupled receptors but the precise mechanism remains elusive. A key step for maintaining the population of neural stem cells in the adult is asymmetric cell division (ACD), a process which entails the formation of two evolutionarily conserved protein complexes that establish the cell polarity and spindle orientation. Since ACD is extremely difficult to monitor in stratified tissues such as the vertebrate brain, we employed human neural progenitor cell lines to examine the regulation of the polarity and spindle orientation complexes during neuronal differentiation. Several components of the spindle orientation complex, but not those of the polarity complex, were upregulated upon differentiation of ENStem-A and ReNcell VM neural progenitor cells. Increased expression of nuclear mitotic apparatus (NuMA), Gαi subunit, and activators of G protein signaling (AGS3 and LGN) coincided with the appearance of a neuronal marker (β-III tubulin) and the concomitant loss of neural progenitor cell markers (nestin and Sox-2). Co-immunoprecipitation assays demonstrated that both Gαi3 and NuMA were associated with AGS3 in differentiated ENStem-A cells. Interestingly, AGS3 appeared to preferentially interact with Gαi3 in ENStem-A cells, and this specificity for Gαi3 was recapitulated in co-immunoprecipitation experiments using HEK293 cells transiently overexpressing GST-tagged AGS3 and different Gαi subunits. Moreover, the binding of Gαi3 to AGS3 was suppressed by GTPγS and pertussis toxin. Disruption of AGS3/Gαi3 interaction by pertussis toxin indicates that AGS3 may recognize the same site on the Gα subunit as G protein-coupled receptors. Regulatory mechanisms controlling the formation of spindle orientation complex may provide novel means to manipulate ACD which in turn may have an impact on neurogenesis.
Collapse
Affiliation(s)
- Jackson L. K. Yip
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Maggie M. K. Lee
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Crystal C. Y. Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Man K. Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Annie S. T. Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Yung H. Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7328; Fax: +852-2358-1552
| |
Collapse
|
11
|
Scrodentoids H and I, a Pair of Natural Epimerides from Scrophularia dentata, Inhibit Inflammation through JNK-STAT3 Axis in THP-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1842347. [PMID: 32802115 PMCID: PMC7403932 DOI: 10.1155/2020/1842347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
Background Scrophularia dentata is an important medicinal plant and used for the treatment of exanthema and fever in Traditional Tibetan Medicine. Scrodentoids H and I (SHI), a pair of epimerides of C19-norditerpenoids isolated from Scrophularia dentata, could transfer to each other in room temperature and were firstly reported in our previous work. Here, we first reported the anti-inflammatory effects of SHI on LPS-induced inflammation. Purpose To evaluate the anti-inflammatory property of SHI, we investigated the effects of SHI on LPS-activated THP-1 cells. Methods THP-1 human macrophages were pretreated with SHI and stimulated with LPS. Proinflammatory cytokines IL-1β and IL-6 were measured by RT-PCR and enzyme-linked immunosorbent assays (ELISA). The mechanism of action involving phosphorylation of ERK, JNK, P38, and STAT3 was measured by western Blot. The NF-κB promoter activity was evaluated by Dual-Luciferase Reporter Assay System in TNF-α stimulated 293T cells. Results SHI dose-dependently reduced the production of proinflammatory cytokines IL-1β and IL-6. The ability of SHI to reduce production of cytokines is associated with phosphorylation depress of JNK and STAT3 rather than p38, ERK, and NF-κB promoter. Conclusions Our experimental results indicated that anti-inflammatory effects of SHI exhibit attenuation of LPS-induced inflammation and inhibit activation through JNK/STAT3 pathway in macrophages. These results suggest that SHI might have a potential in treating inflammatory disease.
Collapse
|
12
|
Yan J, Zuo G, Sherchan P, Huang L, Ocak U, Xu W, Travis ZD, Wang W, Zhang JH, Tang J. CCR1 Activation Promotes Neuroinflammation Through CCR1/TPR1/ERK1/2 Signaling Pathway After Intracerebral Hemorrhage in Mice. Neurotherapeutics 2020; 17:1170-1183. [PMID: 31898284 PMCID: PMC7609528 DOI: 10.1007/s13311-019-00821-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activation of C-C chemokine receptor type 1 (CCR1) has been shown to be pro-inflammatory in several animal models of neurological diseases. The objective of this study was to investigate the activation of CCR1 on neuroinflammation in a mouse model of intracerebral hemorrhage (ICH) and the mechanism of CCR1/tetratricopeptide repeat 1 (TPR1)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway in CCR1-mediated neuroinflammation. Adult male CD1 mice (n = 210) were used in the study. The selective CCR1 antagonist Met-RANTES was administered intranasally at 1 h after autologous blood injection. To elucidate potential mechanism, a specific ERK1/2 activator (ceramide C6) was administered prior to Met-RANTES treatment; CCR1 activator (recombinant CCL5, rCCL5) and TPR1 CRISPR were administered in naïve mouse. Neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. The endogenous expressions of CCR1, CCL5, TPR1, and p-ERK1/2 were increased in the brain after ICH. CCR1 were expressed on microglia, neurons, and astrocytes. The inhibition of CCR1 with Met-RANTES improved neurologic function, decreased brain edema, and suppressed microglia/macrophage activations and neutrophil infiltration after ICH. Met-RANTES treatment decreased expressions of CCR1, TPR1, p-ERK, TNF-α, and IL-1β, which was reversed by ceramide C6. The brain CCR1 activation by rCCL5 injection in naïve mouse resulted in neurological deficits and increased expressions of CCR1, TPR1, p-ERK, TNF-α, and IL-1β. These detrimental effects of rCCL5 were reversed by TPR1 knockdown using TPR1 CRISPR. Our study demonstrated that CCR1 activation promoted neuroinflammation through CCR1/TPR1/ERK1/2 signaling pathway after ICH in mice. CCR1 inhibition with Met-RANTES attenuated neuroinflammation, thereby reducing brain edema and improving neurobehavioral functions. Targeting CCR1 activation may provide a promising therapeutic approach in the management of ICH patients.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, 215400, Jiangsu, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
13
|
Liu Y, Duan Y, Li Y. Integrated Gene Expression Profiling Analysis Reveals Probable Molecular Mechanism and Candidate Biomarker in Anti-TNFα Non-Response IBD Patients. J Inflamm Res 2020; 13:81-95. [PMID: 32104045 PMCID: PMC7024800 DOI: 10.2147/jir.s236262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose To explore the molecular mechanism and search for candidate biomarkers in the gene expression profile of IBD patients associated with the response to anti-TNFα agents. Methods Differentially expressed genes (DEGs) of response vs non-response IBD patients in datasets GSE12251, GSE16879, and GSE23597 were integrated using NetworkAnalyst. We conducted functional enrichment analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and extracted hub genes from the protein–protein interaction network. The proportion of immune cell types was estimated via CIBERSORT. ROC curve analysis and binomial Lasso regression were applied to assess the expression level of hub genes in datasets GSE12251, GSE16879, and GSE23597, and another two datasets GSE107865 and GSE42296. Results A total of 287 DEGs were obtained from the integrated dataset. They were enriched in 14 Gene Ontology terms and 11 KEGG pathways. Polarization from M2 to M1 macrophages was relatively high in non-response individuals. We found nine hub genes (TLR4, TLR1, TLR8, CCR1, CD86, CCL4, HCK, and FCGR2A), mainly related to the interaction between Toll-like Receptor (TLR) pathway and FcγR signaling in non-response anti-TNFα individuals. FCGR2A, HCK, TLR1, TLR4, TLR8, and CCL4 show great value for prediction in intestinal tissue. Besides, FCGR2A, HCK, and TLR8 might be candidate blood biomarkers of anti-TNFα non-response IBD patients. Conclusion Over-activated interaction between FcγR-TLR axis in the innate immune cells of IBD patients might be used to identify non-response individuals and increased our understanding of resistance to anti-TNFα therapy.
Collapse
Affiliation(s)
- Yifan Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
14
|
Fu Z, Ma K, Dong B, Zhao C, Che C, Dong C, Zhang R, Wang H, Wang X, Liang R. The synergistic antitumor effect of Huaier combined with 5-Florouracil in human cholangiocarcinoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:203. [PMID: 31391034 PMCID: PMC6686517 DOI: 10.1186/s12906-019-2614-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND 5-Florouracil (5-FU) is a commonly used chemotherapeutic drug for cholangiocarcinoma, whereas it has unsatisfactory effect, and patients often have chemo-resistance to it. The combination of chemotherapeutic agents and traditional Chinese medicine has already exhibited a promising application in oncotherapy. Huaier extract (Huaier) has been used in clinical practice widely, exhibiting good anti-tumor effect. This paper aims to investigate the possibility of combination 5-FU and Huaier as a treatment for cholangiocarcinoma. METHODS A series of experiments were performed on the Huh28 cells in vitro, which involved cell proliferation, colony formation, apoptosis, cell cycle, migratory and invasive tests. Besides, western blots were also performed to examine the potential mechanism of 5-FU. RESULTS The combination effect (antagonism, synergy or additive) was assessed using Chou-Talalay method. Using the CCK-8 and Colony formation assay, the anti-proliferation effect of 5-FU combined with Huaier was observed. Apoptosis inducing and cell cycle arrest effect of the combination of two drugs were assessed by flow cytometry. To determine the combined treatment on cell immigration and invasion ability, wound healing and Transwell assay were performed. The above experiment results suggest that the combined 5-FU and Huaier, compared with treatment using either drug alone, exhibited stronger effects in anti-proliferation, cycle arrest, apoptosis-induced and anti-metastasis. Further, western blot results reveal that the inhibition of STAT3 and its target genes (e.g. Ki67, Cyclin D1, Bcl-2 and MMP-2) might be set as the potential therapeutic targets. Besides, the inhibition of combination treatment in proteins expression associated with proliferation, apoptosis, cell cycle and metastasis was consistent with that of previous phenotypic experiments. CONCLUSIONS Huaier combined with 5-FU exhibited a synergistic anti-tumor effect in Huh28 cell. Furthermore, the mechanisms might be associated with the activation and translocation of STAT3, as well as its downstream genes.
Collapse
|
15
|
Prakash R, Izraely S, Thareja NS, Lee RH, Rappaport M, Kawaguchi R, Sagi-Assif O, Ben-Menachem S, Meshel T, Machnicki M, Ohe S, Hoon DS, Coppola G, Witz IP, Carmichael ST. Regeneration Enhances Metastasis: A Novel Role for Neurovascular Signaling in Promoting Melanoma Brain Metastasis. Front Neurosci 2019; 13:297. [PMID: 31024232 PMCID: PMC6465799 DOI: 10.3389/fnins.2019.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Neural repair after stroke involves initiation of a cellular proliferative program in the form of angiogenesis, neurogenesis, and molecular growth signals in the surrounding tissue elements. This cellular environment constitutes a niche in which regeneration of new blood vessels and new neurons leads to partial tissue repair after stroke. Cancer metastasis has similar proliferative cellular events in the brain and other organs. Do cancer and CNS tissue repair share similar cellular processes? In this study, we identify a novel role of the regenerative neurovascular niche induced by stroke in promoting brain melanoma metastasis through enhancing cellular interactions with surrounding niche components. Repair-mediated neurovascular signaling induces metastatic cells to express genes crucial to metastasis. Mimicking stroke-like conditions in vitro displays an enhancement of metastatic migration potential and allows for the determination of cell-specific signals produced by the regenerative neurovascular niche. Comparative analysis of both in vitro and in vivo expression profiles reveals a major contribution of endothelial cells in mediating melanoma metastasis. These results point to a previously undiscovered role of the regenerative neurovascular niche in shaping the tumor microenvironment and brain metastatic landscape.
Collapse
Affiliation(s)
- Roshini Prakash
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sivan Izraely
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nikita S Thareja
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rex H Lee
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maya Rappaport
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Machnicki
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Dave S Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isaac P Witz
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
17
|
IL-8 Secreted from M2 Macrophages Promoted Prostate Tumorigenesis via STAT3/MALAT1 Pathway. Int J Mol Sci 2018; 20:ijms20010098. [PMID: 30591689 PMCID: PMC6337597 DOI: 10.3390/ijms20010098] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is a major health problem in males. Metastasis-associated with lung adenocarcinoma transcript-1 (MALAT1), which is overexpressed in PCa tissue, is associated with physiological and pathological conditions of PCa. M2 macrophages are major immune cells abundant in the tumor microenvironment. However, it remains unknown whether M2 macrophages are involved in the effects or not, and molecular mechanisms of MALAT1 on PCa progression have not yet been comprehensively explored. Here we reported that, M2 macrophages (PMA/IL-4 treated THP1) induced MALAT1 expression in PCa cell lines. Knockdown MALAT1 expression level in PCa cell lines inhibited cellular proliferation, invasion, and tumor formation. Further mechanistic dissection revealed that M2 macrophages secreted IL-8 was sufficient to drive up MALAT1 expression level via activating STAT3 signaling pathway. Additional chromatin immunoprecipitation (ChIP) and luciferase reporter assays displayed that STAT3 could bind to the MALAT1 promoter region and transcriptionally stimulate the MALAT1 expression. In summary, our present study identified the IL-8/STAT3/MALAT1 axis as key regulators during prostate tumorigenesis and therefore demonstrated a new mechanism for the MALAT1 transcriptional regulation.
Collapse
|
18
|
Chen S, Lian G, Li J, Zhang Q, Zeng L, Yang K, Huang C, Li Y, Chen Y, Huang K. Tumor-driven like macrophages induced by conditioned media from pancreatic ductal adenocarcinoma promote tumor metastasis via secreting IL-8. Cancer Med 2018; 7:5679-5690. [PMID: 30311406 PMCID: PMC6246928 DOI: 10.1002/cam4.1824] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant population of inflammatory cells which play an essential role in remodeling tumor microenvironment and tumor progression. Previously, we found the high density of TAMs was correlated with lymph node metastasis and poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Therefore, this study was designed to investigate the mechanisms of interaction between TAMs and PDAC. THP-1 monocytes were the exposure to conditioned media (CM) produced by PDAC cells; then, monocyte recruitment and macrophage differentiation were assessed. CM from PDAC attracted and polarized THP-1 monocytes to tumor-driven like macrophages. mRNA expression cytokine profiling and ELISA identified the IL-8 secretion was increasing in tumor-driven like macrophages, and STAT3 pathway was involved. Addition of exogenous recombinant human IL-8 promoted PDAC cells motility in vitro and metastasis in vivo via upregulating Twist expression, which mediated epithelial-mesenchymal transition in cancer cells. What is more, IL-8 expression level in tumor stroma by immunohistochemical analysis was related to lymph node metastasis, the number of tumor CD68 but not CD163 positive macrophages and patient outcome. Taken together, these findings shed light on the important interplay between cancer cells and TAMs in tumor microenvironment and suggested that IL-8 signaling might be a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Shao‐jie Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Guo‐da Lian
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jia‐jia Li
- Department of NephrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Qiu‐bo Zhang
- Department of GastroenterologyLihuili Hospital of Ningbo Medical CenterNingboChina
| | - Lin‐juan Zeng
- Department of OncologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Ke‐ge Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chu‐mei Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ya‐qing Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yin‐ting Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Kai‐hong Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Hu K, Yang Y, Lin L, Ai Q, Dai J, Fan K, Ge P, Jiang R, Wan J, Zhang L. Caloric Restriction Mimetic 2-Deoxyglucose Alleviated Inflammatory Lung Injury via Suppressing Nuclear Pyruvate Kinase M2-Signal Transducer and Activator of Transcription 3 Pathway. Front Immunol 2018; 9:426. [PMID: 29552018 PMCID: PMC5840172 DOI: 10.3389/fimmu.2018.00426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammation is an energy-intensive process, and caloric restriction (CR) could provide anti-inflammatory benefits. CR mimetics (CRM), such as the glycolytic inhibitor 2-deoxyglucose (2-DG), mimic the beneficial effects of CR without inducing CR-related physiologic disturbance. This study investigated the potential anti-inflammatory benefits of 2-DG and the underlying mechanisms in mice with lipopolysaccharide (LPS)-induced lethal endotoxemia. The results indicated that pretreatment with 2-DG suppressed LPS-induced elevation of tumor necrosis factor alpha and interleukin 6. It also suppressed the upregulation of myeloperoxidase, attenuated Evans blue leakage, alleviated histological abnormalities in the lung, and improved the survival of LPS-challenged mice. Treatment with 2-DG had no obvious effects on the total level of pyruvate kinase M2 (PKM2), but it significantly suppressed LPS-induced elevation of PKM2 in the nuclei. Prevention of PKM2 nuclear accumulation by ML265 mimicked the anti-inflammatory benefits of 2-DG. In addition, treatment with 2-DG or ML265 suppressed the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). Inhibition of STAT3 by stattic suppressed LPS-induced inflammatory injury. Interestingly, posttreatment with 2-DG at the early stage post-LPS challenge also improved the survival of the experimental animals. This study found that treatment with 2-DG, a representative CRM, provided anti-inflammatory benefits in lethal inflammation. The underlying mechanisms included suppressed nuclear PKM2-STAT3 pathway. These data suggest that 2-DG might have potential value in the early intervention of lethal inflammation.
Collapse
Affiliation(s)
- Kai Hu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Kerui Fan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Groner B, von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 2017; 451:1-14. [PMID: 28576744 DOI: 10.1016/j.mce.2017.05.033] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 05/27/2017] [Indexed: 02/06/2023]
Abstract
The effects of Jak Stat signaling and the persistent activation of Stat3 and Stat5 on tumor cell survival, proliferation and invasion have made the Jak Stat pathway a favorite target for drug development and cancer therapy. This notion was strengthened when additional biological functions of Stat signaling in cancer and their roles in the regulation of cytokine dependent inflammation and immunity in the tumor microenvironment were discovered. Stats act not only as transcriptional inducers, but affect gene expression via epigenetic modifications, induce epithelial mesenchymal transition, generate a pro-tumorigenic microenvironment, promote cancer stem cell self-renewal and differentiation, and help to establish the pre-metastatic niche formation. The effects of Jak Stat inhibition on the suppression of pro-inflammatory responses appears most promising and could become a strategy in the prevention of tumor progression. The direct and mediated mechanisms of Jak Stat signaling in and on tumors cells, the interactions with other signaling pathways and transcription factors and the targeting of the functionally crucial secondary modifications of Stat molecules suggest novel approaches to the future development of Jak Stat based cancer therapeutics.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany.
| | - Viktoria von Manstein
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Li J, Zhou Z, Zhang X, Zheng L, He D, Ye Y, Zhang QQ, Qi CL, He XD, Yu C, Shao CK, Qiao L, Wang L. Inflammatory Molecule, PSGL-1, Deficiency Activates Macrophages to Promote Colorectal Cancer Growth through NFκB Signaling. Mol Cancer Res 2017; 15:467-477. [PMID: 28108624 DOI: 10.1158/1541-7786.mcr-16-0309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022]
Abstract
P-selectin glycoprotein ligand 1 (SELPLG/PSGL-1) is an inflammatory molecule that is functionally related to immune cell differentiation and leukocyte mobilization. However, the role of PSGL-1 in tumor development remains unknown. Therefore, this study investigates the mechanistic role of PSGL-1 in the development of intestinal tumors in colorectal cancer. ApcMin/+ mice are highly susceptible to spontaneous intestinal adenoma formation, and were crossbred with PSGL1-null mice to generate compound transgenic mice with a ApcMin/+;PSGL-1-/- genotype. The incidence and pathologic features of the intestinal tumors were compared between the ApcMin/+ mice and ApcMin/+;PSGL-1-/- mice. Importantly, PSGL-1-deficient mice showed increased susceptibility to develop intestinal tumors and accelerated tumor growth. Mechanistically, increased production of the mouse chemokine ligand 9 (CCL9/MIP-1γ) was found in the PSGL-1-deficient mice, and the macrophages are likely the major source of macrophage inflammatory protein-1 gamma (MIP-1γ). Studies in vitro demonstrated that macrophage-derived MIP-1γ promoted colorectal cancer tumor cell growth through activating NFκB signaling. Conversely, restoration of the PSGL-1 signaling via bone marrow transplantation reduced MIP-1γ production and attenuated the ability of ApcMin/+;PSGL-1-/- mice to generate intestinal tumors. In human colorectal cancer clinical specimens, the presence of PSGL-1-positive cells was associated with a favorable tumor-node-metastasis staging and decreased lymph node metastasis.Implications:PSGL-1 deficiency and inflammation render intestinal tissue more vulnerable to develop colorectal tumors through a MIP-1γ/NFκB signaling axis. Mol Cancer Res; 15(4); 467-77. ©2017 AACR.
Collapse
Affiliation(s)
- Jiangchao Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zeqi Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaohan Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zheng
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cui-Ling Qi
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Dong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Yu
- Department of Gastroenterology, The First Affiliated Hospital of Pharmaceutical University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at the Westmead, New South Wales, Australia
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
22
|
Chan ASL, Lau WWI, Szeto ACH, Wang J, Wong YH. Differential Regulation of CXCL8 Production by Different G Protein Subunits with Synergistic Stimulation by Gi- and Gq-Regulated Pathways. J Mol Biol 2016; 428:3869-84. [PMID: 27040396 DOI: 10.1016/j.jmb.2016.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/14/2023]
Abstract
CXCL8 (also known as interleukin-8 or IL-8) is a proinflammatory chemokine that not only modulates the inflammatory and immune responses, but whose upregulation is often associated with diseases including various types of cancer. Although numerous ligands for G protein-coupled receptors (GPCRs) have been shown to stimulate the production of CXCL8, the specificity of the G protein signal remains undefined. By expressing the constitutively active Gα subunits in HEK293 cells, CXCL8 production was herein demonstrated to be most effectively stimulated by Gαq family members, while those of Gαs and Gα12 elicited much weaker activities, and Gαi being totally ineffective. However, in cell lines such as HepG2, HeLa, and MCF-7 that endogenously express Gβγ-responsive phospholipase Cβ isoforms (PLCβ2/3), activation of the Gi-coupled α2-adrenoceptor significantly stimulated CXCL8 production. This Gi-induced CXCL8 production was apparently mediated via specific Gβγ dimers and required the presence of PLCβ2/3. Co-activation of Gi-coupled α2-adrenoceptor and Gq-coupled bradykinin receptor resulted in a synergistic CXCL8 production, with Gβγ-responsive PLCβ2/3, Src, ERK, and STAT3 serving as critical signaling intermediates. The treatment of HepG2 and B-10 endothelial cells with bradykinin stimulated CXCL8 production and cell proliferation. Interestingly, the latter response was driven by CXCL8 autocrine signaling because it was abolished by SB225002, an antagonist that prevents CXCL8 from binding to CXCR2. Collectively, our results provide a mechanistic basis for various G protein subfamilies to regulate the production of CXCL8, which may then lead to paracrine and/or autocrine signaling with major implications in both normal physiology and pathophysiological conditions.
Collapse
Affiliation(s)
- Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Winnie W I Lau
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Aydan C H Szeto
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiuling Wang
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
A20 regulates IL-1-induced tolerant production of CXC chemokines in human mesangial cells via inhibition of MAPK signaling. Sci Rep 2015; 5:18007. [PMID: 26648169 PMCID: PMC4673611 DOI: 10.1038/srep18007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023] Open
Abstract
Chemokines and chemokine receptors are involved in the resolution or progression of renal diseases. Locally secreted chemokines mediated leukocyte recruitment during the initiation and amplification phase of renal inflammation. However, the regulation of chemokine induction is not fully understood. In this study, we found that IL-1 induced a significant up-regulation of CXC chemokines CXCL1, 2, and 8 at both mRNA and protein levels in human mesangial cells. The induction of chemokines was tolerant, as the pre-treatment of HMC with IL-1 down-regulated the induction of chemokines induced by IL-1 re-stimulation. IL-1 up-regulated the ubiquintin-editing enzyme A20. A20 over-expression down-regulated IL-1-induced up-regulation of chemokines, and A20 down-regulation reversed chemokine inhibition induced by IL-1 pre-treatment, suggested that A20 played important roles in the tolerant production of chemokines. Unexpectedly, A20 over- expression inhibited the activation of ERK, JNK, and P38, but did not inhibit the activation of NF-κB. In addition, both IL-1 treatment and A20 over-expression induced the degradation of IRAK1, an important adaptor for IL-1R1 signaling, and A20 inhibition by RNA interference partly reversed the degradation of IRAK1. Taken together, IL-1-induced A20 negatively regulated chemokine production, suggesting that A20 may be an important target for the prevention and control of kidney inflammation.
Collapse
|
24
|
Serban AI, Stanca L, Geicu OI, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism? Int J Mol Sci 2015; 16:20100-17. [PMID: 26307981 PMCID: PMC4613191 DOI: 10.3390/ijms160920100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/12/2015] [Accepted: 08/06/2015] [Indexed: 01/21/2023] Open
Abstract
Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.
Collapse
Affiliation(s)
- Andreea Iren Serban
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, district 5, Bucharest 050097, Romania.
| | - Loredana Stanca
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, district 5, Bucharest 050097, Romania.
| | - Ovidiu Ionut Geicu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, district 5, Bucharest 050097, Romania.
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, district 5, Bucharest 050095, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, district 5, Bucharest 050095, Romania.
| |
Collapse
|
25
|
|
26
|
Wang Z, Brandt S, Medeiros A, Wang S, Wu H, Dent A, Serezani CH. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS One 2015; 10:e0115855. [PMID: 25706647 PMCID: PMC4338261 DOI: 10.1371/journal.pone.0115855] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022] Open
Abstract
Macrophages dictate both initiation and resolution of inflammation. During acute inflammation classically activated macrophages (M1) predominate, and during the resolution phase alternative macrophages (M2) are dominant. The molecular mechanisms involved in macrophage polarization are understudied. MicroRNAs are differentially expressed in M1 and M2 macrophages that influence macrophage polarization. We identified a role of miR-21 in macrophage polarization, and found that cross-talk between miR-21 and the lipid mediator prostaglandin E2 (PGE2) is a determining factor in macrophage polarization. miR-21 inhibition impairs expression of M2 signature genes but not M1 genes. PGE2 and its downstream effectors PKA and Epac inhibit miR-21 expression and enhance expression of M2 genes, and this effect is more pronounced in miR-21-/- cells. Among potential targets involved in macrophage polarization, we found that STAT3 and SOCS1 were enhanced in miR-21-/- cells and further enhanced by PGE2. We found that STAT3 was a direct target of miR-21 in macrophages. Silencing the STAT3 gene abolished PGE2-mediated expression of M2 genes in miR-21-/- macrophages. These data shed light on the molecular brakes involved in homeostatic macrophage polarization and suggest new therapeutic strategies to prevent inflammatory responses.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephanie Brandt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexandra Medeiros
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” 14801–902 Araraquara, São Paulo, Brazil
| | - Soujuan Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hao Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - C. Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Grigoryeva OA, Korovina IV, Gogia BS, Sysoeva VY. Migration properties of adipose-tissue-derived mesenchymal stromal cells cocultured with activated monocytes in vitro. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14050022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Walsh LA, Roy DM, Reyngold M, Giri D, Snyder A, Turcan S, Badwe CR, Lyman J, Bromberg J, King TA, Chan TA. RECK controls breast cancer metastasis by modulating a convergent, STAT3-dependent neoangiogenic switch. Oncogene 2014; 34:2189-203. [PMID: 24931164 DOI: 10.1038/onc.2014.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is the primary cause of cancer-related death in oncology patients. A comprehensive understanding of the molecular mechanisms that cancer cells usurp to promote metastatic dissemination is critical for the development and implementation of novel diagnostic and treatment strategies. Here we show that the membrane protein RECK (Reversion-inducing cysteine-rich protein with kazal motifs) controls breast cancer metastasis by modulating a novel, non-canonical and convergent signal transducer and activator of transcription factor 3 (STAT3)-dependent angiogenic program. Neoangiogenesis and STAT3 hyperactivation are known to be fundamentally important for metastasis, but the root molecular initiators of these phenotypes are poorly understood. Our study identifies loss of RECK as a critical and previously unknown trigger for these hallmarks of metastasis. Using multiple xenograft mouse models, we comprehensively show that RECK inhibits metastasis, concomitant with a suppression of neoangiogenesis at secondary sites, while leaving primary tumor growth unaffected. Further, with functional genomics and biochemical dissection we demonstrate that RECK controls this angiogenic rheostat through a novel complex with cell surface receptors to regulate STAT3 activation, cytokine signaling, and the induction of both vascular endothelial growth factor and urokinase plasminogen activator. In accordance with these findings, inhibition of STAT3 can rescue this phenotype both in vitro and in vivo. Taken together, our study uncovers, for the first time, that RECK is a novel regulator of multiple well-established and robust mediators of metastasis; thus, RECK is a keystone protein that may be exploited in a clinical setting to target metastatic disease from multiple angles.
Collapse
Affiliation(s)
- L A Walsh
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - D M Roy
- 1] Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA [2] Weill Cornell Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - M Reyngold
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - D Giri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - A Snyder
- 1] Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA [2] Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - S Turcan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - C R Badwe
- Weill Graduate School of Medical Sciences, New York, NY, USA
| | - J Lyman
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Bromberg
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - T A King
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - T A Chan
- 1] Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA [2] Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|