1
|
Maleki AH, Rajabivahid M, Khosh E, Khanali Z, Tahmasebi S, Ghorbi MD. Harnessing IL-27: challenges and potential in cancer immunotherapy. Clin Exp Med 2025; 25:34. [PMID: 39797931 PMCID: PMC11724803 DOI: 10.1007/s10238-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways. Specifically, IL-27 is identified as augmenting cytokine of immune responses, including Th1 cell differentiation, TCd4 + cell proliferation, and IFN-γ production with the help of IL-12. According to several published studies, due to the pro-inflammatory or anti-inflammatory functions of cytokine related to the biological context in various disorders and diseases, IL-27 has been considered a complex regulator of the immune system. Surprisingly, the dual role of IL-27, the same as the double-edged sword, has also been evidenced in clinical models of various hematological or solid tumors. Predominantly, Il-27 applies anti-tumor functions by inducing the responses of a cytotoxic T lymphocyte (CTL) and Th1 and suppressing the growth, proliferation, angiogenesis, invasiveness, metastasis, and survival of tumor cells. On the other hand, IL-27 may also play a protumor role in cancers and induce tumor progression. The current update study aimed to summarize the protumor anti-tumor and biological functions of IL-27 in different hematological malignancies and solid tumors.
Collapse
Affiliation(s)
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Khanali
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Dehghani Ghorbi
- Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
3
|
Múnera-Rodríguez AM, Leiva-Castro C, Sobrino F, López-Enríquez S, Palomares F. Sulforaphane-mediated immune regulation through inhibition of NF-kB and MAPK signaling pathways in human dendritic cells. Biomed Pharmacother 2024; 177:117056. [PMID: 38945082 DOI: 10.1016/j.biopha.2024.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammation and immune responses are intricately intertwined processes crucial for maintaining homeostasis and combating against pathogens. These processes involve complex signaling pathways, notably the Nuclear Factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) pathways, which play crucial roles. Sulforaphane (SFN), a nutraceutic, has emerged as a potential regulator of NF-κB and MAPK signaling pathways, exhibiting anti-inflammatory properties. However, limited knowledge exists regarding SFN's effects on immune cell modulation. This study aimed to assess the immunomodulatory capacity of SFN pretreatment in human dendritic cells (DCs), followed by exposure to a chronic inflammatory environment induced by lipopolysaccharide. SFN pretreatment was found to inhibit the NF-κB and MAPK signaling pathways, resulting in phenotypic changes in DCs characterized by a slight reduction in the expression of surface markers, as well as a decrease of TNF-α/IL-10 ratio. Additionally, SFN pretreatment enhanced the proliferation of Treg-cells and promoted the production of IL-10 by B-cells before exposure to the chronic inflammatory environment. Furthermore, these changes in DCs were found to be influenced by the inhibition of NF-κB and MAPK pathways (specifically p38 MAPK and JNK), suggesting that these pathways may play a role in the regulation of the differentiation of adaptive immune responses (proliferation of T- and IL-10-producing regulatory-cells), prior to SFN pretreatment. Our findings suggest that SFN pretreatment may induce a regulatory response by inhibiting NF-κB and MAPK signaling pathways in an inflammatory environment. SFN could be considered a promising strategy for utilizing functional foods to protect against inflammation and develop immunoregulatory interventions.
Collapse
Affiliation(s)
- Ana M Múnera-Rodríguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Camila Leiva-Castro
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain; Institute of Biomedicine of Seville (IBiS)/ Virgen del Rocío University Hospital/ Virgen Macarena University Hospital/ University of Seville/ CSIC, Seville, Spain.
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain; Institute of Biomedicine of Seville (IBiS)/ Virgen del Rocío University Hospital/ Virgen Macarena University Hospital/ University of Seville/ CSIC, Seville, Spain.
| |
Collapse
|
4
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
7
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
8
|
Koda Y, Nakamoto N, Chu PS, Teratani T, Ueno A, Amiya T, Taniki N, Chiba S, Miyamoto K, Sakamoto M, Kanai T. CCR9 axis inhibition enhances hepatic migration of plasmacytoid dendritic cells and protects against liver injury. JCI Insight 2022; 7:159910. [PMID: 35943802 PMCID: PMC9536268 DOI: 10.1172/jci.insight.159910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) perform dual proinflammatory and immunosuppressive roles. We recently reported the potential of pDC therapy for treatment of intractable acute liver failure. However, establishment of efficient methods to deliver pDCs to the liver is essential for future clinical therapeutic applications. The present study demonstrates a higher abundance of liver and peripheral blood pDCs in mice lacking the C-C motif chemokine receptor 9 (CCR9), a pDC gut-homing receptor, than that in wild-type (WT) mice. Adoptive pDC transfer resulted in a higher efficiency of Ccr9-/- pDC migration to the liver than that to the original target organ, the small intestine, compared with that of WT pDCs. Further, Ccr9-/- pDCs consistently migrated efficiently to the concanavalin A-induced inflamed liver, and exerted a more effective immunosuppressive effect, resulting in better protection against acute liver inflammation than that demonstrated by WT pDCs. These findings highlight the therapeutic potential of the manipulation of CCR9 axis as a novel approach to improve migration of immunosuppressive pDCs to the liver in order to exploit their beneficial effects in acute liver disease.
Collapse
Affiliation(s)
- Yuzo Koda
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Po-Sung Chu
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Amiya
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sayako Chiba
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Plasmacytoid dendritic cells mediate the tolerogenic effect of CD8 +regulatory T cells in a rat tolerant liver transplantation model. Transpl Immunol 2021; 70:101508. [PMID: 34843936 DOI: 10.1016/j.trim.2021.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tolerance is more easily induced in liver transplant models than in other organs; CD8+CD45RClowregulatory T cells (Tregs) have been shown to induce tolerance in heart allografts. Whether CD8+CD45RClowTregs could induce tolerance in a liver transplant model and how dendritic cells (DCs) mediate the CD8+CD45RClowTregs effect remains to be investigated. METHODS A rat liver transplantation model was established and used to test tolerance and acute rejection compared to control groups. Liver function and histopathological changes of allograft were examined by enzyme-linked immunosorbent assay (ELISA) and haematoxylin and eosin (H&E) staining, respectively. The distribution and proportion of CD8+CD45RClowTregs and plasmacytoid dendritic cells (pDCs) in the allografts and spleen were determined using flow cytometry. Cytokine secretion levels were determined using ELISA and real-time quantitative PCR (qRT-PCR). RESULTS The rat liver transplantation model was well established, with a success rate of 93.3% (28/30). The mean survival time of the tolerant and acute-rejection rats were 156 and 14 days, respectively. The proportions of CD8+CD45RClowTegs were higher in the allografts of tolerant rats than in those of acute-rejection rats (33.1 ± 4.3 and 12.4 ± 4.6, respectively; P = 0.04). Significant accumulation of pDCs was observed in tolerant liver graft rats compared to that in acute-rejection rats (1.46 ± 0.23 and 0.80 ± 0.20, respectively; P = 0.02). Importantly, CD8+CD45RClowTregs were positively associated with the frequency of pDCs (P = 0.001, r2 = 0.775). The protein and mRNA expression of IL-10 and TGF-β in the allograft group were increased, possibly being responsible for tolerance induction. CONCLUSION CD8+CD45RClowT cells interact with pDCs through the induction of IL-10 and TGF-β expression and are responsible for inducing immune tolerance in rat liver transplantation.
Collapse
|
10
|
Tang Y, Ma T, Jia S, Zhang Q, Liu S, Qi L, Yang L. The Mechanism of Interleukin-35 in Chronic Hepatitis B. Semin Liver Dis 2021; 41:516-524. [PMID: 34233371 DOI: 10.1055/s-0041-1731708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Collapse
Affiliation(s)
- Ying Tang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Tianyi Ma
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Qian Zhang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Ling Qi
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lanlan Yang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
11
|
Zhu XX, Yin XQ, Hei GZ, Wei R, Guo Q, Zhao L, Zhang Z, Chu C, Fu XX, Xu K, Li X. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion. Mol Hum Reprod 2021; 27:6317516. [PMID: 34240166 PMCID: PMC8355038 DOI: 10.1093/molehr/gaab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of early pregnancy. Dendritic cells (DCs) are thought to confer fetal–maternal immunotolerance and play a crucial role in ensuring a successful pregnancy. A decrease of plasmacytoid dendritic cells (pDCs) was found to be involved in RSA, but the underlying mechanisms of decreased pDC in RSA remain unclear. MicroRNAs (miRNAs) play critical roles in RSA as well as the development, differentiation and functional regulation of pDCs; however, the regulatory effect of miRNAs on pDC in RSA has not been fully investigated. Here we demonstrated that both the proportion of pDC and signal transducer and activator of transcription (STAT3)/transcription factor 4 (Tcf4/E2-2) expression decreased in the peripheral blood mononuclear cells and decidua of patients with RSA compared to those with normal pregnancy (NP), and there was a significantly positive correlation between pDC and STAT3 mRNA. MiRNA microarray assay and quantitative reverse transcription PCR results showed that miR-6875-5p expression was markedly increased in women with RSA and negatively correlated with mRNA expression level of STAT3. Up-regulated miR-6875-5p could sensitively discriminate patients with RSA from NP subjects. Overexpression of miR-6875-5p significantly down-regulated the mRNA expression of STAT3 and E2-2 as well as the protein and phosphorylation level of STAT3, while miR-6875-5p knockdown showed opposite results. Dual luciferase reporter verified that miR-6875-5p regulated STAT3 expression by directly binding to its 3'untranslated region. Overall, our results suggested that increased miR-6875-5p is involved in RSA by decreasing the differentiation of pDCs via inhibition of the STAT3/E2-2 signaling pathway. miR-6875-5p may be explored as a promising diagnostic marker and therapeutic target for RSA.
Collapse
Affiliation(s)
- Xiao-Xiao Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xun-Qiang Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guo-Zhen Hei
- Shandong Province Maternal and Child Health Care Hospital, Jinan, Shandong, China
| | - Ran Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Qiang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chu Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao-Xiao Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Ke Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Nakano R, Tran LM, Geller DA, Macedo C, Metes DM, Thomson AW. Dendritic Cell-Mediated Regulation of Liver Ischemia-Reperfusion Injury and Liver Transplant Rejection. Front Immunol 2021; 12:705465. [PMID: 34262574 PMCID: PMC8273384 DOI: 10.3389/fimmu.2021.705465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Liver allograft recipients are more likely to develop transplantation tolerance than those that receive other types of organ graft. Experimental studies suggest that immune cells and other non-parenchymal cells in the unique liver microenvironment play critical roles in promoting liver tolerogenicity. Of these, liver interstitial dendritic cells (DCs) are heterogeneous, innate immune cells that appear to play pivotal roles in the instigation, integration and regulation of inflammatory responses after liver transplantation. Interstitial liver DCs (recruited in situ or derived from circulating precursors) have been implicated in regulation of both ischemia/reperfusion injury (IRI) and anti-donor immunity. Thus, livers transplanted from mice constitutively lacking DCs into syngeneic, wild-type recipients, display increased tissue injury, indicating a protective role of liver-resident donor DCs against transplant IRI. Also, donor DC depletion before transplant prevents mouse spontaneous liver allograft tolerance across major histocompatibility complex (MHC) barriers. On the other hand, mouse liver graft-infiltrating host DCs that acquire donor MHC antigen via "cross-dressing", regulate anti-donor T cell reactivity in association with exhaustion of graft-infiltrating T cells and promote allograft tolerance. In an early phase clinical trial, infusion of donor-derived regulatory DCs (DCreg) before living donor liver transplantation can induce alterations in host T cell populations that may be conducive to attenuation of anti-donor immune reactivity. We discuss the role of DCs in regulation of warm and liver transplant IRI and the induction of liver allograft tolerance. We also address design of cell therapies using DCreg to reduce the immunosuppressive drug burden and promote clinical liver allograft tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lillian M. Tran
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Camila Macedo
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Diana M. Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Nakano R, Yoshida O, Kimura S, Nakao T, Yokota S, Ono Y, Minervini MI, Geller DA, Thomson AW. Donor plasmacytoid dendritic cells modulate effector and regulatory T cell responses in mouse spontaneous liver transplant tolerance. Am J Transplant 2021; 21:2040-2055. [PMID: 33247989 PMCID: PMC8628164 DOI: 10.1111/ajt.16412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
We assessed the role of donor liver non-conventional plasmacytoid dendritic cells (pDCs) in spontaneous liver transplant tolerance in a fully MHC-mismatched (C57BL/6 (H2b ) to C3H (H2k )) mouse model. Compared with spleen pDCs, liver pDCs expressed higher levels of DNAX-activating protein of 12 kDa and its co-receptor, triggering receptor expressed by myeloid cells 2, and higher ratios of programed death ligand-1 (PD-L1):costimulatory CD80/CD86 in the steady state and after Toll-like receptor 9 ligation. Moreover, liver pDCs potently suppressed allogeneic CD4+ and CD8+ T cell proliferative responses. Survival of pDC-depleted livers was much poorer (median survival time: 25 days) than that of either untreated donor livers or pDC-depleted syngeneic donor livers that survived indefinitely. Numbers of forkhead box p3 (FoxP3)+ regulatory T cells in grafts and mesenteric lymph nodes of mice given pDC-depleted allogeneic livers were reduced significantly compared with those in recipients of untreated livers. Graft-infiltrating CD8+ T cells with an exhausted phenotype (programed cell death protein 1+ , T cell immunoglobulin and mucin domain-containing protein 3+ ) were also reduced in recipients of pDC-depleted livers. PD1-PD-L1 pathway blockade reversed the reduction in exhausted T cells. These novel observations link immunoregulatory functions of liver interstitial pDCs, alloreactive T cell exhaustion, and spontaneous liver transplant tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osamu Yoshida
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shoko Kimura
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Toshimasa Nakao
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Shinichiro Yokota
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yoshihiro Ono
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marta I. Minervini
- Department of Pathology, Division of Transplantation Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Ni X, Wang Q, Gu J, Lu L. Clinical and Basic Research Progress on Treg-Induced Immune Tolerance in Liver Transplantation. Front Immunol 2021; 12:535012. [PMID: 34093514 PMCID: PMC8173171 DOI: 10.3389/fimmu.2021.535012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Rejection after organ transplantation is a cause of graft failure. Effectively reducing rejection and inducing tolerance is a challenge in the field of transplantation immunology. The liver, as an immunologically privileged organ, has high rates of spontaneous and operational tolerance after transplantation, allowing it to maintain its normal function for long periods. Although modern immunosuppression regimens have serious toxicity and side effects, it is very risky to discontinue immunosuppression regimens blindly. A more effective treatment to induce immune tolerance is the most sought-after goal in transplant medicine. Tregs have been shown to play a pivotal role in the regulation of immune balance, and infusion of Tregs can also effectively prevent rejection and cure autoimmune diseases without significant side effects. Given the immune characteristics of the liver, the correct use of Tregs can more effectively induce the occurrence of operational tolerance for liver transplants than for other organ transplants. This review mainly summarizes the latest research advances regarding the characteristics of the hepatic immune microenvironment, operational tolerance, Treg generation in vitro, and the application of Tregs in liver transplantation. It is hoped that this review will provide a deeper understanding of Tregs as the most effective treatment to induce and maintain operational tolerance after liver transplantation.
Collapse
Affiliation(s)
- Xuhao Ni
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jian Gu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
15
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
16
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
17
|
Yuan JM, Wang Y, Wang R, Luu HN, Adams-Haduch J, Koh WP, Gao YT, Behari J, Lotze MT. Serum IL27 in Relation to Risk of Hepatocellular Carcinoma in Two Nested Case-Control Studies. Cancer Epidemiol Biomarkers Prev 2020; 30:388-395. [PMID: 33203693 DOI: 10.1158/1055-9965.epi-20-1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND IL27 mRNA is highly enriched in the tissue of hepatocellular carcinoma. Overexpression of IL27 gene has been found to increase T-cell expression of inhibitory receptors, an immunosuppressive feature in tumor microenvironment, that promotes the development of hepatocellular carcinoma. METHODS Two parallel case-control studies of hepatocellular carcinoma, each with 100 case-control pairs were conducted in the Singapore Chinese Health Study and the Shanghai Cohort Study to examine the association between serum IL27 levels and risk of developing hepatocellular carcinoma. RESULTS The IL27 concentrations were significantly elevated in sera collected from study participants 4 to 5 years prior to the diagnosis of hepatocellular carcinoma in both cohort studies. Compared with the lowest tertile of IL27, odds ratios (OR) of hepatocellular carcinoma for the highest tertile of IL27 was 46.08 [95% confidence interval (CI), 4.68-453.86] in the Singapore Chinese Health Study and 19.09 (95% CI, 3.81-95.57) in the Shanghai Cohort Study (both P trend <0.001). The corresponding ORs in both cohort studies were 42.47 (95% CI, 8.30-217.40) among individuals negative for hepatitis B surface antigen (HBsAg) and 242.46 (95% CI, 38.42-1,529.01) among those positive for HBsAg compared with the lowest tertile of interleukin-27 and negative HBsAg. CONCLUSIONS Levels of IL27 in prediagnostic sera were significantly associated with increased risk of hepatocellular carcinoma development. IMPACT IL27, through its immunosuppressive property, may play a significant role in the development of hepatocellular carcinoma. Serum levels of IL27 may be used as a biomarker for prediction of hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Jian-Min Yuan
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Yue Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Renwei Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hung N Luu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | | | - Woon-Puay Koh
- Health Service and Systems Research, Duke-NUS Medical School, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael T Lotze
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Wang Y, Petrikova E, Gross W, Sticht C, Gretz N, Herr I, Karakhanova S. Sulforaphane Promotes Dendritic Cell Stimulatory Capacity Through Modulation of Regulatory Molecules, JAK/STAT3- and MicroRNA-Signaling. Front Immunol 2020; 11:589818. [PMID: 33193420 PMCID: PMC7661638 DOI: 10.3389/fimmu.2020.589818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction The broccoli isothiocyanate sulforaphane was shown to inhibit inflammation and tumor progression, also in pancreatic cancer, while its effect on tumor immunity is poorly understood. We investigated the immunoregulatory effect of sulforaphane on human dendritic cells alone and in presence of pancreatic tumor antigens, as well as underlying molecular mechanisms. Methods Sulforaphane-treated human dendritic cells were matured in vitro with a cytokine cocktail, and the expression of regulatory molecules was examined by flow cytometry. The subsequent T-cell response was analyzed by T-cell proliferation assay and CD25 expression. To confirm the findings, dendritic cells pulsed with pancreatic cancer-derived tumor antigens were used. To identify the involved pathway- and microRNA-signaling in sulforaphane-treated dendritic cells, inhibitors of various signaling pathways, western blot analysis, microRNA array, and bioinformatic analysis were applied. Results Sulforaphane modulated the expression of the costimulatory CD80, CD83 and the suppressive B7-H1 molecules on dendritic cells and thereby promoted activation of T cells. The effect was verified in presence of pancreatic tumor antigens. Phosphorylation of STAT3 in dendritic cells was diminished by sulforaphane, and the inhibition of JAK/STAT3 led to downregulation of B7-H1 expression. Among the identified top 100 significant microRNA candidates, the inhibition of miR-155-5p, important for the expression of costimulatory molecules, and the induction of miR-194-5p, targeting the B7-H1 gene, were induced by sulforaphane. Conclusion Our findings demonstrate that sulforaphane promotes T-cell activation by dendritic cells through the modulation of regulatory molecules, JAK/STAT3- and microRNA-signaling in healthy conditions and in context of pancreatic cancer-derived antigens. They explore the immunoregulatory properties of sulforaphane and justify further research on nutritional strategies in the co-treatment of cancer.
Collapse
Affiliation(s)
- Yangyi Wang
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Emilia Petrikova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
20
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Golrokh Mofrad M, Taghizadeh Maleki D, Faghihloo E. The roles of programmed death ligand 1 in virus-associated cancers. INFECTION GENETICS AND EVOLUTION 2020; 84:104368. [DOI: 10.1016/j.meegid.2020.104368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
|
22
|
Ronca V, Wootton G, Milani C, Cain O. The Immunological Basis of Liver Allograft Rejection. Front Immunol 2020; 11:2155. [PMID: 32983177 PMCID: PMC7492390 DOI: 10.3389/fimmu.2020.02155] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Liver allograft rejection remains a significant cause of morbidity and graft failure in liver transplant recipients. Rejection is caused by the recognition of non-self donor alloantigens by recipient T-cells. Antigen recognition results in proliferation and activation of T-cells in lymphoid tissue before migration to the allograft. Activated T-cells have a variety of effector mechanisms including direct T-cell mediated damage to bile ducts, endothelium and hepatocytes and indirect effects through cytokine production and recruitment of tissue-destructive inflammatory cells. These effects explain the histological appearances of typical acute T-cell mediated rejection. In addition, donor specific antibodies, most typically against HLA antigens, may give rise to antibody-mediated rejection causing damage to the allograft primarily through endothelial injury. However, as an immune-privileged site there are several mechanisms in the liver capable of overcoming rejection and promoting tolerance to the graft, particularly in the context of recruitment of regulatory T-cells and promotors of an immunosuppressive environment. Indeed, around 20% of transplant recipients can be successfully weaned from immunosuppression. Hence, the host immunological response to the liver allograft is best regarded as a balance between rejection-promoting and tolerance-promoting factors. Understanding this balance provides insight into potential mechanisms for novel anti-rejection therapies.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,National Institute of Health Research Liver Biomedical Research Unit Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Grace Wootton
- National Institute of Health Research Liver Biomedical Research Unit Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Owen Cain
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
23
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
24
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
25
|
Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:33-59. [PMID: 32185706 DOI: 10.1007/978-981-15-3266-5_3] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapies that target PD-1/PD-L1 axis have shown unprecedented success in a wide variety of human cancers. PD-1 is one of the key coinhibitory receptors expressed on T cells upon T cell activation. After engagement with its ligands, mainly PD-L1, PD-1 is activated and recruits the phosphatase SHP-2 in proximity to T cell receptor (TCR) and CD28 signaling. This event results in dephosphorylation and attenuation of key molecules in TCR and CD28 pathway, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes (CTLs) killer functions, and eventual death of activated T cells. Bodies evolve coinhibitory pathways controlling T cell response magnitude and duration to limit tissue damage and maintain self-tolerance. However, tumor cells hijack these inhibitory pathways to escape host immune surveillance by overexpression of PD-L1. This provides the scientific rationale for clinical application of immune checkpoint inhibitors in oncology. The aberrantly high expression of PD-L1 in tumor microenvironment (TME) can be attributable to the "primary" activation of multiple oncogenic signaling and the "secondary" induction by inflammatory factors such as IFN-γ. Clinically, antibodies targeting PD-1/PD-L1 reinvigorate the "exhausted" T cells in TME and show remarkable objective response and durable remission with acceptable toxicity profile in large numbers of tumors such as melanoma, lymphoma, and mismatch-repair deficient tumors. Nevertheless, most patients are still refractory to anti-PD-1/PD-L1 therapy. Identifying the predictive biomarkers and design rational PD-1-based combination therapy become the priorities in cancer immunotherapy. PD-L1 expression, cytotoxic T lymphocytes infiltration, and tumor mutation burden (TMB) are generally considered as the most important factors affecting the effectiveness of PD-1/PD-L1 blockade. The revolution in cancer immunotherapy achieved by PD-1/PD-L1 blockade offers the paradigm for scientific translation from bench to bedside. The next decades will without doubt witness the renaissance of immunotherapy.
Collapse
Affiliation(s)
- Luoyan Ai
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Antao Xu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Cao WH, Li MH, Pan CQ, Lu Y, Zhang L, Ran CP, Wu SL, Hua WH, Liu SA, Shen G, Chang M, Liu RY, Hao HX, Hu LP, Xie Y. Quantitation of Plasmacytoid Dendritic Cells in Chronic Hepatitis B Patients with HBeAg Positivity During PEG-IFN and Entecavir Therapy. J Interferon Cytokine Res 2019; 38:197-205. [PMID: 29791282 DOI: 10.1089/jir.2018.0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are crucial for control of chronic hepatitis B (CHB) virus infection. In this study, we evaluated the frequencies of pDCs and expression of functional molecules on pDCs in patients treated with PEG-IFN-α-2a or entecavir (ETV) and investigated changes during treatment. The mean fluorescence intensity of CD86 (CD86MFI) on the surface of pDCs and frequencies of pDCs and CD86+ pDCs in peripheral blood were measured. Compared with baseline, CD86+ pDC% and CD86MFI increased obviously after PEG-IFN-α-2a treatment for 12 and 24 weeks. For patients treated with ETV, only pDC% increased observably after treatment weeks 12 and 24 (P < 0.001) compared with baseline. Hepatitis B surface antigen (HBsAg) decline was significantly associated with elevated CD86+ pDC% (r = 0.348, P = 0.015) during PEG-IFN-α-2a treatment. In the HBsAg response group, CD86+ pDC% and CD86MFI (P < 0.001) increased observably after PEG-IFN-α-2a therapy, whereas only CD86MFI had a statistically significant difference after therapy compared with baseline (12 weeks versus 0 weeks, P = 0.022; 24 weeks versus 0 weeks, P = 0.015) in the HBsAg nonresponse group. CD86+ pDC% between the 2 groups had statistically significant differences at baseline (P = 0.001) and at the treatment time points of 12 and 24 weeks (P < 0.001), respectively. For patients receiving ETV therapy, pDC% increased observably, but CD86+ pDC% decreased significantly (P < 0.001) in the HBV DNA nonresponse group during early treatment with ETV. In CHB patients, HBsAg response in PEG-IFN-α-2a therapy correlated with the increase of CD86+ pDC% and HBV DNA nonresponse in ETV treatment correlated with the decrease of CD86+ pDC%.
Collapse
Affiliation(s)
- Wei-Hua Cao
- 1 Department of Hepatology Division 2, Liver Diseases Center, Peking University Ditan Teaching Hospital , Beijing, China
| | - Ming-Hui Li
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Calvin Q Pan
- 3 Division of Gastroenterology and Hepatology, Department of Medicine, NYU Langone Health, New York University School of Medicine , New York, New York
| | - Yao Lu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Lu Zhang
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Chong-Ping Ran
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Shu-Ling Wu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Wen-Hao Hua
- 4 Clinical Test Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Shun-Ai Liu
- 5 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Ge Shen
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Min Chang
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Ru-Yu Liu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Hong-Xiao Hao
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Lei-Ping Hu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Yao Xie
- 1 Department of Hepatology Division 2, Liver Diseases Center, Peking University Ditan Teaching Hospital , Beijing, China
| |
Collapse
|
27
|
Wang H, Yan Z, Hao J, Yang B, Wang J, Yi L, Wang X, Li S, Zhang H, Zhang S. CD137 ligand feedback upregulates PD-L1 expression on lung cancer via T cell production of IFN-γ. Thorac Cancer 2019; 10:2225-2235. [PMID: 31625289 PMCID: PMC6885434 DOI: 10.1111/1759-7714.13207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The expression of PD-L1 and its regulation in tumors remains unclear. The importance of IFN-γ in upregulating the PD-L1 expression in various tumors, and the effects of other essential cytokines in the tumor microenvironment (TME), need to be further elucidated. METHODS Constitutive expression of PD-L1 and CD137L in all 13 lung cancer cell lines were tested by flow cytometry. CD137L mRNA of lung cancer cell lines was detected by RT-PCR. PD-L1 expression rates following stimulation with these cytokines (IFN-γ, TNFα and IL2) were measured. After coculture of cells expressing CD137L (lung cancer cells or 293FT cells transfected with CD137L plasmid) with T cells, the PDL1 expression of lung cancer cells and IFN-γ in supernatant was detected. RESULTS Our data revealed that adenocarcinoma and squamous cell carcinoma cells had the highest positive expression rate. IFN-γ was the core-inducing factor for enhancing the PD-L1 expression. CD137L was also widely expressed in the lung cancer cell lines at the mRNA level, whereas its expression was generally low at the protein level. However, the low expression of CD137L protein was still enough to induce T cells to produce IFN-γ, which subsequently increased the PD-L1 expression by lung cancer cells. The CD137 signal induces IFN-γ secretion by T cells, which stimulates high-level of PD-L1 expression in cancer cells; this negative immune regulation may represent a mechanism of immune escape regulation. CONCLUSIONS CD137L mRNA was widely expressed in lung cancer cell lines whereas levels of protein expression were generally low. The low level of CD137L protein was still enough to induce T cells to produce IFN-γ that subsequently increased PD-L1 expression. The CD137L-induced negative immune regulation may represent a mechanism of immune escape.
Collapse
Affiliation(s)
- Helin Wang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhuohong Yan
- Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jianqing Hao
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bin Yang
- Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ling Yi
- Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaojue Wang
- Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuping Li
- Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongtao Zhang
- Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shucai Zhang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
28
|
Bourque J, Hawiger D. Immunomodulatory Bonds of the Partnership between Dendritic Cells and T Cells. Crit Rev Immunol 2019; 38:379-401. [PMID: 30792568 DOI: 10.1615/critrevimmunol.2018026790] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By acquiring, processing, and presenting both foreign and self-antigens, dendritic cells (DCs) initiate T cell activation that is shaped through the immunomodulatory functions of a variety of cell-membrane-bound molecules including BTLA-HVEM, CD40-CD40L, CTLA-4-CD80/CD86, CD70-CD27, ICOS-ICOS-L, OX40-OX40L, and PD-L1-PD-1, as well as several key cytokines and enzymes such as interleukin-6 (IL-6), IL-12, IL-23, IL-27, transforming growth factor-beta 1 (TGF-β1), retinaldehyde dehydrogenase (Raldh), and indoleamine 2,3-dioxygenase (IDO). Some of these distinct immunomodulatory signals are mediated by specific subsets of DCs, therefore contributing to the functional specialization of DCs in the priming and regulation of immune responses. In addition to responding to the DC-mediated signals, T cells can reciprocally modulate the immunomodulatory capacities of DCs, further refining immune responses. Here, we review recent studies, particularly in experimental mouse systems, that have delineated the integrated mechanisms of crucial immunomodulatory pathways that enable specific populations of DCs and T cells to work intimately together as single functional units that are indispensable for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Morrow KN, Coopersmith CM, Ford ML. IL-17, IL-27, and IL-33: A Novel Axis Linked to Immunological Dysfunction During Sepsis. Front Immunol 2019; 10:1982. [PMID: 31507598 PMCID: PMC6713916 DOI: 10.3389/fimmu.2019.01982] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide despite numerous attempts to identify effective therapeutics. While some sepsis deaths are attributable to tissue damage caused by inflammation, most mortality is the result of prolonged immunosuppression. Ex vivo, immunosuppression during sepsis is evidenced by a sharp decrease in the production of pro-inflammatory cytokines by T cells and other leukocytes and increased lymphocyte apoptosis. This allows suppressive cytokines to exert a greater inhibitory effect on lymphocytes upon antigen exposure. While some pre-clinical and clinical trials have demonstrated utility in targeting cytokines that promote lymphocyte survival, this has not led to the approval of any therapies for clinical use. As cytokines with a more global impact on the immune system are also altered by sepsis, they represent novel and potentially valuable therapeutic targets. Recent evidence links interleukin (IL)-17, IL-27, and IL-33 to alterations in the immune response during sepsis using patient serum and murine models of peritonitis and pneumonia. Elevated levels of IL-17 and IL-27 are found in the serum of pediatric and adult septic patients early after sepsis onset and have been proposed as diagnostic biomarkers. In contrast, IL-33 levels increase in patient serum during the immunosuppressive stage of sepsis and remain high for more than 5 months after recovery. All three cytokines contribute to immunological dysfunction during sepsis by disrupting the balance between type 1, 2, and 17 immune responses. This review will describe how IL-17, IL-27, and IL-33 exert these effects during sepsis and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kristen N Morrow
- Immunology and Molecular Pathogenesis Program, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States.,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Koda Y, Nakamoto N, Chu PS, Ugamura A, Mikami Y, Teratani T, Tsujikawa H, Shiba S, Taniki N, Sujino T, Miyamoto K, Suzuki T, Yamaguchi A, Morikawa R, Sato K, Sakamoto M, Yoshimoto T, Kanai T. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. J Clin Invest 2019; 129:3201-3213. [PMID: 31264967 DOI: 10.1172/jci125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is a life-threatening condition, and liver transplantation is the only therapeutic option. Although immune dysregulation is central to its pathogenesis, the precise mechanism remains unclear. Here, we show that the number of peripheral and hepatic plasmacytoid DCs (pDCs) decrease during acute liver injury in both humans and mice. Selective depletion of pDCs in Siglechdtr/+ mice exacerbated concanavalin A-induced acute liver injury. In contrast, adoptively transferred BM-derived pDCs preferentially accumulated in the inflamed liver and protected against liver injury. This protective effect was independent of TLR7 and TLR9 signaling, since a similar effect occurred following transfer of MyD88-deficient pDCs. Alternatively, we found an unexpected immunosuppressive role of pDCs in an IL-35-dependent manner. Both Il12a and Ebi3, heterodimeric components of IL-35, were highly expressed in transferred pDCs and CD4+CD25+ Tregs. However, the protective effect of pDC transfer was completely lost in mice depleted of Tregs by anti-CD25 antibody. Moreover, pDCs derived from IL-35-deficient mice had less of a protective effect both in vivo and in vitro even in the presence of Tregs. These results highlight a unique aspect of pDCs in association with Tregs, serving as a guide for immunotherapeutic options in ALF.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aya Ugamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Shiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Yamaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
31
|
Gu X, Dong M, Liu Z, Mi Y, Yang J, Zhang Z, Liu K, Jiang L, Zhang Y, Dong S, Shi Y. Elevated PD-L1 expression predicts poor survival outcomes in patients with cervical cancer. Cancer Cell Int 2019; 19:146. [PMID: 31143091 PMCID: PMC6533692 DOI: 10.1186/s12935-019-0861-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) expression has been shown to associate with poor prognosis in a variety of solid tumors. However, the prognostic value of PD-L1 expression in cervical cancer is still controversial. Therefore, we carried a meta-analysis to investigate the prognostic and clinicopathological impact of PD-L1 in cervical cancer. METHODS A comprehensive literature search in was performed in PubMed, Embase, Web of Science, and Cochrane Library. The correlation between PD-L1 expression and overall survival (OS), progression-free survival (PFS), and clinicopathological features was analyzed by hazard ratios (HR), odds ratios (OR) and corresponding 95% confidence intervals (CI). RESULTS Seven studies with 783 patients were included in this meta-analysis. The combined HR and 95% CI of OS was 2.52 (1.09-5.83), p = 0.031. The pooled results for PFS were HR = 2.07, 95% CI = 0.52-8.23, p = 0.302. The results of subgroup analysis showed that PD-L1 was a significant prognostic factor of poor OS in Asian patients (HR = 4.77, 95% CI = 3.02-7.54, p < 0.001) and of poor PFS in Asian patients (HR = 4.78, 95% CI = 1.77-12.91, p = 0.002). However, the pooled results suggested that PD-L1 was not significantly correlated with lymph node metastasis, tumor size, FIGO stage, depth of invasion, lymph-vascular invasion, or age. CONCLUSIONS The results of this meta-analysis suggest that PD-L1 overexpression is related to poor OS in patients with cervical cancer and poor PFS in Asian patients with cervical cancer. This study also suggests that PD-L1 is a promising prognostic indicator for cervical cancer.
Collapse
Affiliation(s)
- Xiaobin Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Meilian Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Zheyan Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Yin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Jing Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Zhigang Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Ke Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Li Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Yue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Shiliang Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Yonggang Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| |
Collapse
|
32
|
Huang W, Wei X, Wei Y, Feng R. Biology of Tumor Associated Macrophages in Diffuse Large B Cell Lymphoma. DNA Cell Biol 2018; 37:947-952. [PMID: 30403536 DOI: 10.1089/dna.2018.4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tumor associated microenvironment is known to play a vital role during the development and progression of different malignant tumors. As a part of tumor microenvironment, tumor associated macrophages (TAMs) are crucial for the genesis, proliferation, metastasis, and survival of tumor cells. Recently, more and more studies showed that TAMs were related with poor clinical status and survival in patients with diffuse large B cell lymphoma (DLBCL). Considering the complex roles which TAMs play in the tumor microenvironment of DLBCL, the aim of this study was to review the biological mechanisms between TAMs and DLBCL cells, including extracellular matrix remodeling and angiogenesis promotion, tumor promotion, immune suppression, and phagocytosis inhibition. This review will help us to further understand the comprehensive impact of TAMs on DLBCL and explore possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
33
|
Huang H, Lu Y, Zhou T, Gu G, Xia Q. Innate Immune Cells in Immune Tolerance After Liver Transplantation. Front Immunol 2018; 9:2401. [PMID: 30473690 PMCID: PMC6237933 DOI: 10.3389/fimmu.2018.02401] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Currently, liver transplantation is the most effective treatment for end-stage liver disease. Immunosuppressive agents are required to be taken after the operations, which have significantly reduced rejection rates and improved the short-term (<1 year) survival rates. However, post-transplant complications related to the immunosuppressive therapy have led to the development of new protocols aimed at protecting renal function and preventing de novo cancer and dysmetabolic syndrome. Donor specific immune tolerance, which means the mature immune systems of recipients will not attack the grafts under the conditions without any immunosuppression therapies, is considered the optimal state after liver transplantation. There have been studies that have shown that some patients can reach this immune tolerance state after liver transplantation. The intrahepatic immune system is quite different from that in other solid organs, especially the innate immune system. It contains a variety of liver specific cells, such as liver-derived dendritic cells, Kupffer cells, liver sinusoidal endothelial cells, liver-derived natural killer (NK) cells, natural killer T (NKT) cells, and so on. Depending on their specific structures and functions, these intrahepatic innate immune cells play important roles in the development of intrahepatic immune tolerance. In this article, in order to have a deeper understanding of the tolerogenic functions of liver, we summarized the molecular mechanisms of immune tolerance induced by intrahepatic innate immune cells after liver transplantation.
Collapse
Affiliation(s)
- Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yefeng Lu
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tao Zhou
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guangxiang Gu
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Xia
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
34
|
Bazhin AV, von Ahn K, Fritz J, Werner J, Karakhanova S. Interferon-α Up-Regulates the Expression of PD-L1 Molecules on Immune Cells Through STAT3 and p38 Signaling. Front Immunol 2018; 9:2129. [PMID: 30356906 PMCID: PMC6190899 DOI: 10.3389/fimmu.2018.02129] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Interferon-α (IFNα) has one of the longest histories of use amongst cytokines in clinical oncology and has been applied for the treatment of many types of cancers. Due to its immune-activating properties, IFNα is also an attractive candidate for combinatory anti-cancer therapies. Despite its extensive use in animal tumor models as well as in several clinical trials, the different mechanisms underlying patient responses and affecting desirable clinical benefits are still under investigation. Here we show that in addition to its immune-activating properties, IFNα induces the expression of a key negative regulator, immunosuppressive PD-L1 molecule, in the majority of the specific immune cell populations, particularly in the dendritic cells (DC). DC can modulate immune responses by a variety of mechanisms, including expression of T-cell regulatory molecules and cytokines. Our results showed that treatment of DC with IFNα-2b led to pronounced up-regulation of surface expression of PD-L1 molecules, increased IL-6 and decreased IL-12 production. Moreover, we present evidence that IFNα-treated DC exhibited a reduced capacity to stimulate interferon-γ production in T cells compared to control DC. This T-cell response after treatment of DC with IFNα was recovered by a pre-treatment with an anti-PD-L1 blocking antibody. Further analyses revealed that IFNα regulated PD-L1 expression through the STAT3 and p38 signaling pathways, since blocking of STAT3 and p38 activation with specific inhibitors prevented PD-L1 up-regulation. Our findings underline the important roles of p38 and STAT3 in the regulation of PD-L1 expression and prove that IFNα induces STAT3/p38-mediated expression of PD-L1 and thereby a reduced stimulatory ability of DC. The augmentation of PD-L1 expression in immune cells through IFNα treatment should be considered by use of IFNα in an anti-cancer therapy.
Collapse
Affiliation(s)
- Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katharina von Ahn
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jasmin Fritz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Svetlana Karakhanova
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Robinson KA, Orent W, Madsen JC, Benichou G. Maintaining T cell tolerance of alloantigens: Lessons from animal studies. Am J Transplant 2018; 18:1843-1856. [PMID: 29939471 PMCID: PMC6352985 DOI: 10.1111/ajt.14984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023]
Abstract
Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Kortney A. Robinson
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - William Orent
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA.,Division of Cardiac Surgery, Department of Surgery,
Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gilles Benichou
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Rolvering C, Zimmer AD, Ginolhac A, Margue C, Kirchmeyer M, Servais F, Hermanns HM, Hergovits S, Nazarov PV, Nicot N, Kreis S, Haan S, Behrmann I, Haan C. The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies. J Leukoc Biol 2018; 104:969-985. [PMID: 30040142 DOI: 10.1002/jlb.ma1217-495r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH 1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulation-mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexia-can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.
Collapse
Affiliation(s)
- Catherine Rolvering
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Andreas D Zimmer
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- University of Luxembourg, Life Sciences Research Unit-Bioinformatics Core Facility, Belvaux, Luxembourg
| | - Christiane Margue
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Mélanie Kirchmeyer
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Florence Servais
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Heike M Hermanns
- University Hospital Würzburg, Medical Clinic II, Division of Hepatology, Würzburg, Germany
| | - Sabine Hergovits
- University Hospital Würzburg, Medical Clinic II, Division of Hepatology, Würzburg, Germany
| | - Petr V Nazarov
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Nathalie Nicot
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Stephanie Kreis
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Serge Haan
- University of Luxembourg, Life Sciences Research Unit-Molecular Disease Mechanisms Laboratory, Belvaux, Luxembourg
| | - Iris Behrmann
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Claude Haan
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| |
Collapse
|
37
|
Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Mol Immunol 2018; 16:28-39. [PMID: 30002451 DOI: 10.1038/s41423-018-0086-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Checkpoint blockade-based immunotherapy offers new options and powerful weapons for the treatment of cancer, but its efficacy varies greatly among different types of cancer and across individual patients. Thus, the development of the right tools that can be used to identify patients who could benefit from this therapy is of utmost importance in order to maximize the therapeutic benefit, minimize risk of toxicities, and guide combination approaches. Multiple predictors have emerged that are based on checkpoint receptor ligand expression, tumor mutational burden, neoantigen and microsatellite instability, tumor-infiltrating immune cells, and peripheral blood biomarkers. In this review, we discuss the current state and progress of predictors as aids in checkpoint blockade-based immunotherapy in cancer.
Collapse
|
38
|
Teruya S, Okamura T, Komai T, Inoue M, Iwasaki Y, Sumitomo S, Shoda H, Yamamoto K, Fujio K. Egr2-independent, Klf1-mediated induction of PD-L1 in CD4 + T cells. Sci Rep 2018; 8:7021. [PMID: 29728568 PMCID: PMC5935736 DOI: 10.1038/s41598-018-25302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/19/2018] [Indexed: 01/15/2023] Open
Abstract
Programmed death ligand 1 (PD-L1)-mediated induction of immune tolerance has been vigorously investigated in autoimmunity and anti-tumor immunity. However, details of the mechanism by which PD-L1 is induced in CD4+ T cells are unknown. Here, we revealed the potential function of Klf1 and Egr2-mediated induction of PD-L1 in CD4+ T cells. We focused on the molecules specifically expressed in CD4+CD25-LAG3+ regulatory T cells (LAG3+ Tregs) highly express of PD-L1 and transcription factor Egr2. Although ectopic expression of Egr2 induced PD-L1, a deficiency of Egr2 did not affect its expression, indicating the involvement of another PD-L1 induction mechanism. Comprehensive gene expression analysis of LAG3+ Tregs and in silico binding predictions revealed that Krüppel-like factor 1 (Klf1) is a candidate inducer of the PD-L1 gene (Cd274). Klf1 is a transcription factor that promotes β-globin synthesis in erythroid progenitors, and its role in immunological homeostasis is unknown. Ectopic expression of Klf1 induced PD-L1 in CD4+ T cells through activation of the PI3K-mTOR signaling pathway, independent of STATs signaling and Egr2 expression. Our findings indicate that Klf1 and Egr2 are modulators of PD-L1-mediated immune suppression in CD4+ T cells and might provide new insights into therapeutic targets for autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Shuzo Teruya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Max Planck-University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Max Planck-University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
39
|
Saglam O, Conejo-Garcia J. PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000272. [PMID: 29955379 PMCID: PMC6016855 DOI: 10.15761/icst.1000272] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed cell death-1 and programmed cell death ligand-1 (PD-1/PD-L1) blockage has become an important treatment modality after approval of pembrolizumab and nivolumab by Food and Drug Administration in advanced cancers. Patients with metastatic and recurrent cervical cancer have limited treatment options and usually receive palliative platinum-based chemotherapy without significant survival benefit. Recent studies provided support for usage of immune checkpoint inhibitors in advanced cervical cancer. Around 35% of cervical squamous cell carcinoma (C-SCC) and 17% of adenocarcinomas expressed PD-L1. Human Papilloma Virus status was also correlated with PD-L1 expression. PD-1/PD-L1 expression in tumor infiltrating inflammatory cells was higher in cervical cancer in comparison to endometrial and ovarian adenocarcinomas. In C-SCC diffuse PD-L1 expression as compared to marginal PD-L1 expression on the interface between tumor and stroma was a risk factor for poor disease-free and disease-specific survival rates. Higher numbers of infiltrating regulatory T cells in PD-L1 positive tumors was associated with better prognosis. The studies performed on other cancer types revealed PD-L1 tumor heterogeneity and transient marker expression. Drug-resistance to immune checkpoint inhibitors is also a potential problem. Currently Phase I/II clinical trials evaluating effects of PD-1 therapy are in progress for cervical carcinoma. Additional studies are required to develop novel biomarkers and for standard evaluation of PD-L1 testing in order to predict response to immune checkpoint inhibitors in all cancer types including cervical carcinoma.
Collapse
Affiliation(s)
- Ozlen Saglam
- Department of Anatomic Pathology, Moffitt Cancer Center, USA
| | | |
Collapse
|
40
|
Ono Y, Perez-Gutierrez A, Nakao T, Dai H, Camirand G, Yoshida O, Yokota S, Stolz DB, Ross MA, Morelli AE, Geller DA, Thomson AW. Graft-infiltrating PD-L1 hi cross-dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance. Hepatology 2018; 67:1499-1515. [PMID: 28921638 PMCID: PMC5856603 DOI: 10.1002/hep.29529] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 01/07/2023]
Abstract
UNLABELLED Although a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. We investigated the role of intragraft dendritic cells (DCs) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. Although donor interstitial DCs diminished rapidly after transplantation, they were replaced in the liver by host DCs that peaked on postoperative day (POD) 7 and persisted indefinitely. Approximately 60% of these recipient DCs displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0%-2%) of cross-dressed DCs (CD-DCs) was evident in the spleen. CD-DCs sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of interleukin-10 compared with non-CD-DCs (nCD-DCs) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)hi T cell immunoglobulin and mucin domain containing 3 (TIM-3)+ exhausted graft-infiltrating CD8+ T cells were observed. Unlike nCD-DCs, the CD-DCs failed to stimulate proliferation of allogeneic T cells but markedly suppressed antidonor host T cell proliferation. CD-DCs were much less evident in allografts from DNAX-activating protein of 12 kDa (DAP12)-/- donors that were rejected acutely. CONCLUSION These findings suggest that graft-infiltrating PD-L1hi CD-DCs may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. (Hepatology 2018;67:1499-1515).
Collapse
Affiliation(s)
- Yoshihiro Ono
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angelica Perez-Gutierrez
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Toshimasa Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helong Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Osamu Yoshida
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna Beer Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark A. Ross
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adrian E. Morelli
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author: Angus W. Thomson, PhD DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392, Fax: (412)-624-1172,
| |
Collapse
|
41
|
Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat Commun 2018; 9:1241. [PMID: 29593314 PMCID: PMC5871883 DOI: 10.1038/s41467-018-03584-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
A chronic viral or tumor microenvironment can push T cells to exhaustion by promoting coinhibitory ligand expression. However, how host factors control coinhibitory ligand expression and whether viral infection breaks this control during tumor progress is unknown. Here we show a close negative correlation between SALL4 or PD-L1 and miR-200c in tumors from 98 patients with HBV-related hepatocellular carcinoma. SALL4 or PD-L1 expression correlates negatively with miR-200c expression, and patients with lower levels of SALL4 or PD-L1 and higher miR-200c survive longer. Moreover, over-expression of miR-200c antagonizes HBV-mediated PD-L1 expression by targeting 3'-UTR of CD274 (encoding PD-L1) directly, and reverses antiviral CD8+ T cell exhaustion. MiR-200c transcription is inhibited by oncofetal protein SALL4, which is re-expressed through HBV-induced STAT3 activation in adulthood. We propose that an HBV-pSTAT3-SALL4-miR-200c axis regulates PD-L1. Therapeutic strategies to influence this axis might reverse virus-induced immune exhaustion.
Collapse
|
42
|
Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018; 48:434-452. [PMID: 29562194 PMCID: PMC7116507 DOI: 10.1016/j.immuni.2018.03.014] [Citation(s) in RCA: 1535] [Impact Index Per Article: 219.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
Expression of programmed death-ligand 1 (PD-L1) is frequently observed in human cancers. Binding of PD-L1 to its receptor PD-1 on activated T cells inhibits anti-tumor immunity by counteracting T cell-activating signals. Antibody-based PD-1-PD-L1 inhibitors can induce durable tumor remissions in patients with diverse advanced cancers, and thus expression of PD-L1 on tumor cells and other cells in the tumor microenviroment is of major clinical relevance. Here we review the roles of the PD-1-PD-L1 axis in cancer, focusing on recent findings on the mechanisms that regulate PD-L1 expression at the transcriptional, posttranscriptional, and protein level. We place this knowledge in the context of observations in the clinic and discuss how it may inform the design of more precise and effective cancer immune checkpoint therapies.
Collapse
Affiliation(s)
- Chong Sun
- Division of Molecular Oncology & Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Riccardo Mezzadra
- Division of Molecular Oncology & Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Front Immunol 2017; 8:1597. [PMID: 29255458 PMCID: PMC5723106 DOI: 10.3389/fimmu.2017.01597] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
PD-1-PD-L1 interaction is known to drive T cell dysfunction, which can be blocked by anti-PD-1/PD-L1 antibodies. However, studies have also shown that the function of the PD-1-PD-L1 axis is affected by the complex immunologic regulation network, and some CD8+ T cells can enter an irreversible dysfunctional state that cannot be rescued by PD-1/PD-L1 blockade. In most advanced cancers, except Hodgkin lymphoma (which has high PD-L1/L2 expression) and melanoma (which has high tumor mutational burden), the objective response rate with anti-PD-1/PD-L1 monotherapy is only ~20%, and immune-related toxicities and hyperprogression can occur in a small subset of patients during PD-1/PD-L1 blockade therapy. The lack of efficacy in up to 80% of patients was not necessarily associated with negative PD-1 and PD-L1 expression, suggesting that the roles of PD-1/PD-L1 in immune suppression and the mechanisms of action of antibodies remain to be better defined. In addition, important immune regulatory mechanisms within or outside of the PD-1/PD-L1 network need to be discovered and targeted to increase the response rate and to reduce the toxicities of immune checkpoint blockade therapies. This paper reviews the major functional and clinical studies of PD-1/PD-L1, including those with discrepancies in the pathologic and biomarker role of PD-1 and PD-L1 and the effectiveness of PD-1/PD-L1 blockade. The goal is to improve understanding of the efficacy of PD-1/PD-L1 blockade immunotherapy, as well as enhance the development of therapeutic strategies to overcome the resistance mechanisms and unleash the antitumor immune response to combat cancer.
Collapse
Affiliation(s)
- Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianyong Li
- Department of Hematology, JiangSu Province Hospital, The First Affiliated Hospital of NanJing Medical University, NanJing, JiangSu Province, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Science, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
44
|
Soysa R, Wu X, Crispe IN. Dendritic cells in hepatitis and liver transplantation. Liver Transpl 2017; 23:1433-1439. [PMID: 28752938 DOI: 10.1002/lt.24833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) play a key role in innate immune responses and are also the most effective cells for the activation of T cell immunity. They acquire antigen and process it; then they display it on the cell surface bound in a noncovalent complex with human leukocyte antigen molecules of class I (human leukocyte antigens A, B, and C) and class II (human leukocyte antigen DR). These cells are subdivided into 3 main subsets: 2 called myeloid dendritic cells (mDC) or classical DCs of types 1 and 2, and 1 called plasmacytoid dendritic cells (pDCs). The mDCs process and present antigen while the pDCs also strongly respond to viral signals by secreting type 1 interferon. In the liver, all of these subsets are present. However, their relative abundance is different from the peripheral blood, and it is further modified by liver disease. It appears that in relation to T cell tolerance, both mDCs and pDCs are influenced by the liver milieu and promote T cell inactivation. However, in antiviral responses and in ischemia/reperfusion injury, where innate immune functions are more important, mDCs and pDCs have distinct roles. Liver Transplantation 23 1433-1439 2017 AASLD.
Collapse
Affiliation(s)
- Radika Soysa
- Global Health, University of Washington, Seattle, WA
| | | | | |
Collapse
|
45
|
Zhang B, Xie F, Dong CL, Gu CJ, Cheng J, Wang Y, Xu XZ, Pu H, Wu YB, Qi XW, Li DJ, Yu JJ, Li MQ. The cross talk between cervical carcinoma cells and vascular endothelial cells mediated by IL-27 restrains angiogenesis. Am J Reprod Immunol 2017; 78. [PMID: 28508429 DOI: 10.1111/aji.12706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
PROBLEM To explore whether cervical carcinoma cell-derived interleukin-27 (IL-27) modulates the angiogenesis of vascular endothelial cells. METHOD OF STUDY The expression of IL-27 in cervical cancer tissues and cervical cell lines was analyzed by immunohistochemistry, ELISA and flow cytometry. Then, the effects of IL-27 on the proliferation and apoptosis-related molecules and angiogenesis in vitro of human umbilical vein endothelial cells (HUVECs) were investigated. Finally, in vivo experiment was performed to further confirm the effects of IL-27. RESULTS Compared with cervicitis, the cervical cancer tissues highly expressed IL-27. Both HeLa and CaSki cells secreted IL-27, and HUVECs expressed low levels of IL-27 receptors (IL-27R). However, the co-culture of cervical cell lines and HUVECs led to a significant elevation of IL-27R on HUVECs. Co-culturing with IL-27-overexpressed HeLa cells downregulated Ki-67 and Bcl-2 and upregulated Fas expression in HUVECs. In addition, overexpression of IL-27 in HeLa cells and CasKi cells secreted less IL-8 and could further restrict angiogenesis compared with control cells in vitro. In the subcutaneous tumorous model of C57/BL6 mouse, there were decreased vessel density and tumor volume when inoculation with IL-27-overexpressed TC-1 cells. CONCLUSION This study indicates that IL-27 secreted by cervical carcinoma cells restricts the angiogenesis in a paracrine manner in the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Medical Center of Diagnosis and Treatment for Cervical Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Chun-Lin Dong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chun-Jie Gu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jiao Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xi-Zhong Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hong Pu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yi-Bo Wu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiao-Wei Qi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jin-Jin Yu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
46
|
Horlad H, Ma C, Yano H, Pan C, Ohnishi K, Fujiwara Y, Endo S, Kikukawa Y, Okuno Y, Matsuoka M, Takeya M, Komohara Y. An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma. Cancer Sci 2017; 107:1696-1704. [PMID: 27564404 PMCID: PMC5132271 DOI: 10.1111/cas.13065] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 12/29/2022] Open
Abstract
Immune escape and tolerance in the tumor microenvironment are closely involved in tumor progression, and are caused by T‐cell exhaustion and mediated by the inhibitory signaling of immune checkpoint molecules including programmed death‐1 (PD‐1), cytotoxic T‐lymphocyte associated protein 4, and T‐cell immunoglobulin and mucin domaincontaining molecule‐3. In the present study, we investigated the expression of the PD‐1 ligand 1 (PD‐L1) in a lymphoma microenvironment using paraffin‐embedded tissue samples, and subsequently studied the detailed mechanism of upregulation of PD‐L1 on macrophages using cultured human macrophages and lymphoma cell lines. We found that macrophages in lymphoma tissues of almost all cases of adult T‐cell leukemia/lymphoma (ATLL), follicular lymphoma and diffuse large B‐cell lymphoma expressed PD‐L1. Cell culture studies showed that the conditioned medium of ATL‐T and SLVL cell lines induced increased expression of PD‐L1/2 on macrophages, and that this PD‐L1/2 overexpression was dependent on activation of signal transducer and activator of transcription 3 (Stat3). In vitro studies including cytokine array analysis showed that IL‐27 (heterodimer of p28 and EBI3) induced overexpression of PD‐L1/2 on macrophages via Stat3 activation. Because lymphoma cell lines produced IL‐27B (EBI3) but not IL‐27p28, it was proposed that the IL‐27p28 derived from macrophages and the IL‐27B (EBI3) derived from lymphoma cells formed an IL‐27 (heterodimer) that induced PD‐L1/2 overexpression. Although the significance of PD‐L1/2 expressions on macrophages in lymphoma progression has never been clarified, an IL‐27‐Stat3 axis might be a target for immunotherapy for lymphoma patients.
Collapse
Affiliation(s)
- Hasita Horlad
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chaoya Ma
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Kikukawa
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Okuno
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069. [PMID: 28255204 PMCID: PMC5309407 DOI: 10.1155/2017/3958069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
IL-27 is a pleiotropic two-chain cytokine, composed of EBI3 and IL-27p28 subunits, which is structurally related to both IL-12 and IL-6 cytokine families. IL-27 acts through a heterodimer receptor consisting of IL-27Rα (WSX1) and gp130 chains, which mediate signaling predominantly through STAT1 and STAT3. IL-27 was initially reported as an immune-enhancing cytokine that supports CD4+ T cell proliferation, T helper (Th)1 cell differentiation, and IFN-γ production, acting in concert with IL-12. However, subsequent studies demonstrated that IL-27 displays complex immune-regulatory functions, which may result in either proinflammatory or anti-inflammatory effects in relationship to the biological context and experimental models considered. Several pieces of evidence, obtained in preclinical tumor models, indicated that IL-27 has a potent antitumor activity, related not only to the induction of tumor-specific Th1 and cytotoxic T lymphocyte (CTL) responses but also to direct inhibitory effects on tumor cell proliferation, survival, invasiveness, and angiogenic potential. Nonetheless, given its immune-regulatory functions, the effects of IL-27 on cancer may be dual and protumor effects may also occur. Here, we will summarize IL-27 biological activities and its functional overlaps with the IFNs and discuss its dual role in tumors in the light of potential applications to cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Fabbi
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Grazia Carbotti
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
48
|
de Araújo EF, Medeiros DH, Galdino NADL, Condino-Neto A, Calich VLG, Loures FV. Tolerogenic Plasmacytoid Dendritic Cells Control Paracoccidioides brasiliensis Infection by Inducting Regulatory T Cells in an IDO-Dependent Manner. PLoS Pathog 2016; 12:e1006115. [PMID: 27992577 PMCID: PMC5215616 DOI: 10.1371/journal.ppat.1006115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/04/2017] [Accepted: 12/09/2016] [Indexed: 11/26/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), considered critical for immunity against viruses, were recently associated with defense mechanisms against fungal infections. However, the immunomodulatory function of pDCs in pulmonary paracoccidiodomycosis (PCM), an endemic fungal infection of Latin America, has been poorly defined. Here, we investigated the role of pDCs in the pathogenesis of PCM caused by the infection of 129Sv mice with 1 x 106P. brasiliensis-yeasts. In vitro experiments showed that P. brasiliensis infection induces the maturation of pDCs and elevated synthesis of TNF-α and IFN-β. The in vivo infection caused a significant influx of pDCs to the lungs and increased levels of pulmonary type I IFN. Depletion of pDCs by a specific monoclonal antibody resulted in a less severe infection, reduced tissue pathology and increased survival time of infected mice. An increased influx of macrophages and neutrophils and elevated presence of CD4+ and CD8+ T lymphocytes expressing IFN-γ and IL-17 in the lungs of pDC-depleted mice were also observed. These findings were concomitant with decreased frequency of Treg cells and reduced levels of immunoregulatory cytokines such as IL-10, TGF-β, IL-27 and IL-35. Importantly, P. brasilienis infection increased the numbers of pulmonary pDCs expressing indoleamine 2,3-dioxygenase-1 (IDO), an enzyme with immunoregulatory properties, that were reduced following pDC depletion. In agreement, an increased immunogenic activity of infected pDCs was observed when IDO-deficient or IDO-inhibited pDCs were employed in co-cultures with lymphocytes Altogether, our results suggest that in pulmonary PCM pDCs exert a tolerogenic function by an IDO-mediated mechanism that increases Treg activity. The fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), the most relevant deep mycosis in Latin America. The plasmacytoid dendritic cells (pDCs) are important immune cells involved in protection against viral infections, but their role in fungal infections remains unclear. Here, we investigated the role of pDCs in the pathogenesis of pulmonary PCM using a monoclonal antibody to deplete this DC subset. pDCs depletion leads to a less severe PCM associated with increased T cell response mainly mediated by Th1 and Th17 cells. The lung homogenates of depleted mice showed diminished levels of type I IFN and anti-inflammatory cytokines. In addition, a reduced number of regulatory T cells (Treg) paralleled a diminished number pDCs expressing IDO, a potent immunoregulatory enzyme. In agreement, pDCs of IDO-/- mice or IDO-inhibited pDCs stimulated by P. brasiliensis yeasts expanded elevated numbers of T cells concomitant with a reduced expansion of Treg cells. Taken together, our results demonstrate a tolerogenic activity of pDCs that enhances the severity of a pulmonary mycosis mediated by the concerted action of IDO and Treg cells. These results reveal a new function for pDCs in primary fungal infections and open new perspectives for immunotherapeutic procedures of PCM involving the control of IDO and Treg activity.
Collapse
Affiliation(s)
- Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniella Helena Medeiros
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Antônio Condino-Neto
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio Vieira Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
49
|
Rolvering C, Zimmer AD, Kozar I, Hermanns HM, Letellier E, Vallar L, Nazarov PV, Nicot N, Ginolhac A, Haan S, Behrmann I, Haan C. Crosstalk between different family members: IL27 recapitulates IFNγ responses in HCC cells, but is inhibited by IL6-type cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:516-526. [PMID: 27939431 DOI: 10.1016/j.bbamcr.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition.
Collapse
Affiliation(s)
- Catherine Rolvering
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Andreas D Zimmer
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Ines Kozar
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Heike M Hermanns
- University Hospital Würzburg, Medical Clinic II, Division of Hepatology, Grombühlstr. 12, D-97080 Würzburg, Germany.
| | - Elisabeth Letellier
- University of Luxembourg, Life Sciences Research Unit - Molecular Disease Mechanisms Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Laurent Vallar
- Genomics Research Laboratory, Dept. of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, L1526 Luxembourg, Luxembourg.
| | - Petr V Nazarov
- Genomics Research Laboratory, Dept. of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, L1526 Luxembourg, Luxembourg.
| | - Nathalie Nicot
- Genomics Research Laboratory, Dept. of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, L1526 Luxembourg, Luxembourg.
| | - Aurélien Ginolhac
- University of Luxembourg, Life Sciences Research Unit - Bioinformatics Core Facility, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Serge Haan
- University of Luxembourg, Life Sciences Research Unit - Molecular Disease Mechanisms Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Iris Behrmann
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| | - Claude Haan
- University of Luxembourg, Life Sciences Research Unit - Signal Transduction Laboratory, 6, Avenue du Swing, L4367 Belvaux, Luxembourg.
| |
Collapse
|
50
|
Moravej A, Karimi MH, Geramizadeh B, Azarpira N, Zarnani AH, Yaghobi R, Khosravi M, Kalani M, Gharesi-Fard B. Mesenchymal Stem Cells Upregulate the Expression of PD-L1 But Not VDR in Dendritic Cells. Immunol Invest 2016; 46:80-96. [PMID: 27736253 DOI: 10.1080/08820139.2016.1225757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) show immunomodulatory functions. But the exact mechanism underlying these activities of MSCs is still not completely understood. There have been a few studies which have assessed the effects of these cells on dendritic cells (DCs) function. Given the importance of programmed cell death receptor-1 (PD-L1) and vitamin D receptor (VDR) expression in induction of tolerance in DCs, we were encouraged to investigate if one of the immunomodulatory functions of MSCs could be inducing upregulation of PD-L1 and VDR on DCs or not. METHODS DCs were co-cultured with MSCs or treated with them in transwell plates in the presence or absence of Lipopolysaccharide (LPS). Expression of PD-L1 and VDR mRNA and proteins in treated DCs were assessed by Real-time PCR and Western blot techniques. Furthermore, treated DCs were co-cultured with allogeneic T-cells, and T-cell proliferation and cytokine secretions in co-culture supernatants were assessed. RESULTS The results showed that PD-L1 but not VDR expression is significantly upregulated in the DCs co-cultured with MSCs. Furthermore, cell-to-cell contact and also presence of maturation inducers like LPS is necessary for this function. Moreover, our results indicated that MSCs could induce tolerogenic DCs (TolDCs) which could decrease the secretion of IL-2 by T-cells and inhibit T-cell proliferation as well as increase secretion of IL-10. CONCLUSIONS Overall, our results show that MSCs may have several suppressive effects on immune responses by induction of TolDCs expressing more PD-L1 immunomodulatory molecule and change the cytokines profile of DCs and T-cells.
Collapse
Affiliation(s)
- Ali Moravej
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran.,b Noncommunicable Diseases Research Centre , Fasa University of Medical Sciences , Fasa , Iran
| | - Mohammad-Hossein Karimi
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bita Geramizadeh
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Negar Azarpira
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Amir-Hasan Zarnani
- c Nanobiotechnology Research Center , Avicenna Research Institute, ACECR , Tehran , Iran.,d Immunology Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Ramin Yaghobi
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Khosravi
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mehdi Kalani
- e Alborzi Clinical Microbiology Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Behrouz Gharesi-Fard
- f Department of Immunology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|