1
|
Freedman AN, Hartwell H, Fry R. Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci 2025; 203:216-226. [PMID: 39836092 PMCID: PMC11775420 DOI: 10.1093/toxsci/kfae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. Although iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal mixtures on the placenta. To address this, we exposed human placental trophoblast cells to iAs, Mn, and an iAs-Mn mixture at 3 concentrations and evaluated transcriptome-wide gene expression and placental migration. We hypothesized that co-exposure to iAs-Mn in a mixture would result in a synergistic/enhanced transcriptomic effect compared to either metal alone. We also anticipated that genes involved in inflammatory or immune-related pathways would be differentially expressed in relation to the mixture compared to single-metals. The results highlight that iAs exposure alone had a stronger genomic response than Mn exposure, with 2-fold the number of differentially expressed genes (DEGs). When analyzing DEGs present across all concentrations of study, the iAs-Mn mixture resulted in the greatest number of DEGs. The results highlight that iAs exposure alone influences the expression of toll-like receptor-initiated response pathways including Triggering Receptor Expressed on Myeloid Cells-1. Exposure to Mn alone influenced the expression of Nicotinamide adenine dinucleotide biosynthesis pathways. In contrast, exposure to the iAs-Mn mixtures resulted in altered expression of inflammatory and immune response-related pathways, including the Nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress response pathway. Migration was unaffected by iAs, Mn, or the iAs-Mn mixture. These findings provide novel toxicogenomic insights into iAs- and Mn-induced placental transcriptomic dysregulations at environmentally relevant concentrations, with implications that in utero exposure to metal mixtures can influence inflammatory and immune pathways within the placenta.
Collapse
Affiliation(s)
- Anastasia N Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
2
|
Hammi I, Giron-Michel J, Riyad M, Akarid K, Arnoult D. FcRγIIA attenuates pathology of cutaneous leishmaniasis and modulates ITAMa/i balance. Parasit Vectors 2024; 17:517. [PMID: 39696675 DOI: 10.1186/s13071-024-06593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Leishmania is the causal parasite of leishmaniasis, a neglected tropical disease affecting millions of individuals worldwide, and its dissemination is linked to climate change. Despite the complexity and effectiveness of the immune response, the parasite has developed many strategies to evade it and take control of the host cell to replicate. These evasion strategies start at early stages of infection by hijacking immune receptors to mitigate the cellular response. In this study, we examined whether Leishmania uses the Fc receptor FcγRIIA/CD32a and its downstream signaling pathways to evade the host immune response. METHODS Regarding in vivo studies, CD32a transgenic mice and the corresponding wild types were infected with Leishmania major Friedlin strain. For the in vitro experiments, BMDMs isolated from WT or CD32a transgenic mice and control or CD32a knockdown differentiated THP-1s were infected with two species of Leishmania, Leishmania major and L. tropica. RESULTS In vivo, expression of FcγRIIA/CD32a was found to accelerate the signs of inflammation while simultaneously preventing the formation of necrotic lesions after Leishmania infection. In infected macrophages, the presence of FcγRIIA/CD32a did not affect the secretion of proinflammatory cytokines, while the balance between ITAMa and ITAMi proteins was disturbed with improved Fyn and Lyn activation. Unexpectedly, infection with L. tropica but not L. major triggered an intracytoplasmic processing of FcγRIIA/CD32a. CONCLUSIONS Our observations underscore the significance of FcγRIIA/CD32a in cutaneous leishmaniasis and its potential use as a therapeutic target.
Collapse
Affiliation(s)
- Ikram Hammi
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, Morocco
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Julien Giron-Michel
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Myriam Riyad
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Khadija Akarid
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, Morocco
| | - Damien Arnoult
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France.
| |
Collapse
|
3
|
Yang R, Cheng S, Xiao J, Pei Y, Zhu Z, Zhang J, Feng J, Li J. GLS and GOT2 as prognostic biomarkers associated with dendritic cell and immunotherapy response in breast cancer. Heliyon 2024; 10:e24163. [PMID: 38234908 PMCID: PMC10792574 DOI: 10.1016/j.heliyon.2024.e24163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Breast cancer is the females' most common cancer. Targeting the immune microenvironment is a new and promising treatment method for breast cancer. Nevertheless, only a small section of patients can profit by immunotherapy, and improving the ability to accurately predict the potential for immunotherapy response is still awaiting further exploration. In this study, we found that the key factors of glutamine metabolism, glutaminase 1 (GLS) and mitochondrial aspartate transaminase (GOT2), showed opposite expression patterns in breast cancer samples. Based on the expression level of GLS and GOT2, we divided the breast cancer samples into two clusters: Cluster 2 showed GLS expressed higher and GOT2 expressed lower, whereas Cluster 1 showed GOT2 expressed higher and GLS expressed lower. GSEA showed that the clusters were related to pathways of immunity. Further analysis showed that Cluster 2 was positively associated with immunity infiltration. Through WGCNA, we identified a module strongly correlated with glutamine metabolism and immunity and identified 11 dendritic cell-associated genes involved in dendritic cell development, maturation, activation and other functions. In addition, Cluster 2 also showed higher immune checkpoint gene expression, which suggest the Cluster 2 had even better response to immunotherapy. The validation dataset could also be clustered into two groups. Cluster 2 (GLS expressed higher and GOT2 expressed lower) of the validation dataset was also positively associated with dendritic cells and a better immunotherapy response. Thus, these data indicate that GLS and GOT2 are prognostic biomarkers which closely related to dendritic cells and better reacted to immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Ruifang Yang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Shuo Cheng
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jie Xiao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yujie Pei
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Zhonglin Zhu
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jifa Zhang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jing Feng
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jing Li
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Kumar P, Rajasekaran K, Malarkannan S. Novel PI(3)K-p85α/p110δ-ITK-LAT-PLC-γ2 and Fyn-ADAP-Carma1-TAK1 Pathways Define Reverse Signaling via FasL. Crit Rev Immunol 2024; 44:55-77. [PMID: 37947072 DOI: 10.1615/critrevimmunol.2023049638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226; Departments of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Zheng K, Yang W, Wang S, Sun M, Jin Z, Zhang W, Ren H, Li C. Identification of immune infiltration-related biomarkers in carotid atherosclerotic plaques. Sci Rep 2023; 13:14153. [PMID: 37644056 PMCID: PMC10465496 DOI: 10.1038/s41598-023-40530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory response of the innate and adaptive immune systems, and it is responsible for several cardiovascular ischemic events. The present study aimed to determine immune infiltration-related biomarkers in carotid atherosclerotic plaques (CAPs). Gene expression profiles of CAPs were extracted from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the CAPs and control groups were screened by the "limma" package in R software. Immune cell infiltration between the CAPs and control groups was evaluated by the single sample gene set enrichment analysis. Key infiltrating immune cells in the CAPs group were screened by the Wilcoxon test and least absolute shrinkage and selection operator regression. The weighted gene co-expression network analysis was used to identify immune cell-related genes. Hub genes were identified by the protein-protein interaction (PPI) network. Receiver operating characteristic curve analysis was performed to assess the gene's ability to differentiate between the CAPs and control groups. Finally, we constructed a miRNA-gene-transcription factor network of hub genes by using the ENCODE database. Eleven different types of immune infiltration-related cells were identified between the CAPs and control groups. A total of 1,586 differentially expressed immunity-related genes were obtained through intersection between DEGs and immune-related genes. Twenty hub genes were screened through the PPI network. Eventually, 7 genes (BTK, LYN, PTPN11, CD163, CD4, ITGAL, and ITGB7) were identified as the hub genes of CAPs, and these genes may serve as the estimable drug targets for patients with CAPs.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wentao Yang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shengxing Wang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingsheng Sun
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhenyi Jin
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wangde Zhang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hualiang Ren
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Chunmin Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Genetic Variants Associated with Neuropeptide Y Autoantibody Levels in Newly Diagnosed Individuals with Type 1 Diabetes. Genes (Basel) 2022; 13:genes13050869. [PMID: 35627254 PMCID: PMC9142038 DOI: 10.3390/genes13050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Autoantibodies to the leucine variant of neuropeptide Y (NPY-LA) have been found in individuals with type 1 diabetes (T1D). We investigated the association between the levels of NPY-LA and single nucleotide polymorphisms (SNP) to better understand the genetic regulatory mechanisms of autoimmunity in T1D and the functional impacts of increased NPY-LA levels. (2) NPY-LA measurements from serum and SNP genotyping were done on 560 newly diagnosed individuals with T1D. SNP imputation with the 1000 Genomes reference panel was followed by an association analysis between the SNPs and measured NPY-LA levels. Additionally, functional enrichment and pathway analyses were done. (3) Three loci (DGKH, DCAF5, and LINC02261) were associated with NPY-LA levels (p-value < 1.5 × 10−6), which indicates an association with neurologic and vascular disorders. SNPs associated with variations in expression levels were found in six genes (including DCAF5). The pathway analysis showed that NPY-LA was associated with changes in gene transcription, protein modification, immunological functions, and the MAPK pathway. (4) Conclusively, we found NPY-LA to be significantly associated with three loci (DGKH, DCAF5, and LINC02261), and based on our findings we hypothesize that the presence of NPY-LA is associated with the regulation of the immune system and possibly neurologic and vascular disorders.
Collapse
|
7
|
Jiang C, Zhang H, Wu W, Wang Z, Dai Z, Zhang L, Liu Z, Cheng Q. Immune Characteristics of LYN in Tumor Microenvironment of Gliomas. Front Cell Dev Biol 2022; 9:760929. [PMID: 35186945 PMCID: PMC8847791 DOI: 10.3389/fcell.2021.760929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
The prognosis of gliomas is poor and there are limited therapeutic approaches. Immunotherapy has become a promising treatment for gliomas. Here, we explored the expression pattern of Lck/yes-related protein tyrosine kinase (LYN) in gliomas and assessed its value as an immunotherapy biomarker. Transcriptional data was mined from two publicly available datasets, TCGA and CGGA, and used to investigate the correlation between LYN and clinical characteristics including patient prognosis, somatic mutation, and immune infiltrating features in gliomas. Besides, the correlation between LYN and classical immune checkpoint molecules was explored. Glioma samples obtained from the Xiangya Hospital cohort were used for immunohistochemistry staining. High expression level of LYN was observed in advanced gliomas and other cancer types, which predicted a worse prognosis. LYN stratified patients' survival in the Xiangya cohort and was also significantly associated with infiltrating immune cell types and inflammatory activities in the tumor microenvironment. LYN was involved in tumor mutation, correlated with the regulation of oncogenic genes, and also showed a significant positive correlation with PD-L1. LYN can be a potential diagnostic marker and immunotherapy marker in gliomas.
Collapse
Affiliation(s)
- Chonghua Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Clinical Diagnosis and Therapeutic Center of Glioma, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Constitutive activation of Lyn kinase enhances BCR responsiveness, but not the development of CLL in Eµ-TCL1 mice. Blood Adv 2020; 4:6106-6116. [PMID: 33351104 DOI: 10.1182/bloodadvances.2020002584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has been improved dramatically by inhibitors targeting B-cell receptor (BCR)-associated kinases. The tyrosine kinase Lyn is a key modulator of BCR signaling and shows increased expression and activity in CLL. To evaluate the functional relevance of Lyn for CLL, we generated a conditional knockin mouse model harboring a gain-of-function mutation of the Lyn gene (LynY508F), which was specifically expressed in the B-cell lineage (Lynup-B). Kinase activity profiling revealed an enhanced responsiveness to BCR stimulation in Lynup-B B cells. When crossing Lynup-B mice with Eµ-TCL1 mice (TCL1tg/wt), a transgenic mouse model for CLL, the resulting TCL1tg/wt Lynup-B mice showed no significant change of hepatomegaly, splenomegaly, bone marrow infiltration, or overall survival when compared with TCL1tg/wt mice. Our data also suggested that TCL1 expression has partially masked the effect of the Lynup-B mutation, because the BCR response was only slightly increased in TCL1tg/wt Lynup-B compared with TCL1tg/wt. In contrast, TCL1tg/wt Lynup-B were protected at various degrees against spontaneous apoptosis in vitro and upon treatment with kinase inhibitors targeting the BCR. Collectively, and consistent with our previous data in a Lyn-deficient CLL model, these data lend further suggest that an increased activation of Lyn kinase in B cells does not appear to be a major driver of leukemia progression and the level of increased BCR responsiveness induced by Lynup-B is insufficient to induce clear changes to CLL pathogenesis in vivo.
Collapse
|
9
|
Roberts ME, Barvalia M, Silva JAFD, Cederberg RA, Chu W, Wong A, Tai DC, Chen S, Matos I, Priatel JJ, Cullis PR, Harder KW. Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan. Circ Res 2020; 126:e61-e79. [PMID: 32151196 DOI: 10.1161/circresaha.119.315708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated. OBJECTIVE We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND RESULTS Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis. CONCLUSIONS Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
Collapse
Affiliation(s)
- Morgan E Roberts
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Maunish Barvalia
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Jessica A F D Silva
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Rachel A Cederberg
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - William Chu
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Amanda Wong
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Daven C Tai
- Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Sam Chen
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Israel Matos
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - John J Priatel
- Department of Pathology and Laboratory Medicine (J.J.P.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Kenneth W Harder
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
11
|
Weiss E, Ziegler S, Fliesser M, Schmitt AL, Hünniger K, Kurzai O, Morton CO, Einsele H, Loeffler J. First Insights in NK-DC Cross-Talk and the Importance of Soluble Factors During Infection With Aspergillus fumigatus. Front Cell Infect Microbiol 2018; 8:288. [PMID: 30177958 PMCID: PMC6110135 DOI: 10.3389/fcimb.2018.00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023] Open
Abstract
Invasive aspergillosis (IA) is an infectious disease caused by the fungal pathogen Aspergillus fumigatus that mainly affects immunocompromised hosts. To investigate immune cell cross-talk during infection with A. fumigatus, we co-cultured natural killer (NK) cells and dendritic cells (DC) after stimulation with whole fungal structures, components of the fungal cell wall, fungal lysate or ligands for distinct fungal receptors. Both cell types showed activation after stimulation with fungal components and were able to transfer activation signals to the counterpart not stimulated cell type. Interestingly, DCs recognized a broader spectrum of fungal components and thereby initiated NK cell activation when those did not recognize fungal structures. These experiments highlighted the supportive function of DCs in NK cell activation. Furthermore, we focused on soluble DC mediated NK cell activation and showed that DCs stimulated with the TLR2/Dectin-1 ligand zymosan could maximally stimulate the expression of CD69 on NK cells. Thus, we investigated the influence of both receptors for zymosan, Dectin-1 and TLR2, which are highly expressed on DCs but show only minimal expression on NK cells. Specific focus was laid on the question whether Dectin-1 or TLR2 signaling in DCs is important for the secretion of soluble factors leading to NK cell activation. Our results show that Dectin-1 and TLR2 are negligible for NK cell activation. We conclude that besides Dectin-1 and TLR2 other receptors on DCs are able to compensate for the missing signal.
Collapse
Affiliation(s)
- Esther Weiss
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Sabrina Ziegler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Mirjam Fliesser
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Kerstin Hünniger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Department of Microbiology and Mycology, Institute for Hygiene and Microbiology, Julius-Maximilian University, Wuerzburg, Germany
| | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Department of Microbiology and Mycology, Institute for Hygiene and Microbiology, Julius-Maximilian University, Wuerzburg, Germany
| | | | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| |
Collapse
|
12
|
Proteomic analysis reveals distinctive protein profiles involved in CD8 + T cell-mediated murine autoimmune cholangitis. Cell Mol Immunol 2018; 15:756-767. [PMID: 29375127 DOI: 10.1038/cmi.2017.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
Autoimmune cholangitis arises from abnormal innate and adaptive immune responses in the liver, and T cells are critical drivers in this process. However, little is known about the regulation of their functional behavior during disease development. We previously reported that mice with T cell-restricted expression of a dominant negative form of transforming growth factor beta receptor type II (dnTGFβRII) spontaneously develop an autoimmune cholangitis that resembles human primary biliary cholangitis (PBC). Adoptive transfer of CD8+ but not CD4+ T cells into Rag1-/- mice reproduced the disease, demonstrating a critical role for CD8+ T cells in PBC pathogenesis. Herein, we used SOMAscan technology to perform proteomic analysis of serum samples from dnTGFβRII and B6 control mice at different ages. In addition, we analyzed CD8 protein profiles after adoptive transfer of splenic CD8+ cells into Rag1-/- recipients. The use of the unique SOMAscan aptamer technology revealed critical and distinct profiles of CD8 cells, which are key to biliary mediation. In total, 254 proteins were significantly increased while 216 proteins were significantly decreased in recipient hepatic CD8+ cells compared to donor splenic CD8+ cells. In contrast to donor splenic CD8+ cells, recipient hepatic CD8+ cells expressed distinct profiles for proteins involved in chemokine signaling, focal adhesion, T cell receptor and natural killer cell-mediated cytotoxicity pathways.
Collapse
|
13
|
Lin W, Wang W, Wang D, Ling W. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol Nutr Food Res 2017; 61. [PMID: 28457022 DOI: 10.1002/mnfr.201700031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2022]
Abstract
SCOPE Quercetin is a typical flavonol with atheroprotective effects, but the effect of quercetin on dendritic cell (DC) maturation in relation to atherosclerosis has not yet been clearly defined. Thus, we investigated whether quercetin can inhibit DC maturation and evaluated its potential value in atherosclerosis progression in ApoE-/- mice. METHODS AND RESULTS Quercetin consumption inhibited DC activation, inflammatory response and suppressed the progression of atherosclerosis in ApoE-/- mice. Subsequently, quercetin treatment inhibited the phenotypic and functional maturation of DCs, as evidenced not only by downregulation of CD80, CD86, MHC-II, IL-6 and IL-12 but also by a reduction in the ability to stimulate T cell allogeneic proliferation. Finally, an in vitro study demonstrated that quercetin inhibited DC maturation via upregulation of Dabs, which then downregulated the Src/PI3K/Akt-NF-κB-inflammatory pathways. CONCLUSIONS Our data indicate that quercetin attenuates atherosclerosis progression by regulating DC activation via Dab2 protein expression.
Collapse
Affiliation(s)
- Weiqun Lin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Wenting Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, PR China
| |
Collapse
|
14
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
15
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Li CC, Munitic I, Mittelstadt PR, Castro E, Ashwell JD. Suppression of Dendritic Cell-Derived IL-12 by Endogenous Glucocorticoids Is Protective in LPS-Induced Sepsis. PLoS Biol 2015; 13:e1002269. [PMID: 26440998 PMCID: PMC4595142 DOI: 10.1371/journal.pbio.1002269] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/28/2015] [Indexed: 01/16/2023] Open
Abstract
Sepsis, an exaggerated systemic inflammatory response, remains a major medical challenge. Both hyperinflammation and immunosuppression are implicated as causes of morbidity and mortality. Dendritic cell (DC) loss has been observed in septic patients and in experimental sepsis models, but the role of DCs in sepsis, and the mechanisms and significance of DC loss, are poorly understood. Here, we report that mice with selective deletion of the glucocorticoid receptor (GR) in DCs (GRCD11c-cre) were highly susceptible to LPS-induced septic shock, evidenced by elevated inflammatory cytokine production, hypothermia, and mortality. Neutralizing anti-IL-12 antibodies prevented hypothermia and death, demonstrating that endogenous GC-mediated suppression of IL-12 is protective. In LPS-challenged GRCD11c-cre mice, CD8+ DCs were identified as the major source of prolonged IL-12 production, which correlated with elevations of NK cell-derived IFN-γ. In addition, the loss of GR in CD11c+ cells rescued LPS-induced loss of CD8+ DCs but not other DC subsets. Unlike wild-type animals, exposure of GRCD11c-cre mice to low-dose LPS did not induce CD8+ DC loss or tolerance to subsequent challenge with high dose, but neutralization of IL-12 restored the ability of low-dose LPS to tolerize. Therefore, endogenous glucocorticoids blunt LPS-induced inflammation and promote tolerance by suppressing DC IL-12 production. Lipopolysaccharide (LPS) from bacteria causes the increased production of endogenous glucocorticoids, protecting mice from sepsis and contributing to LPS tolerance by suppressing production of interleukin-12 (IL-12) by dendritic cells and causing the death of the primary producers of IL-12. Read the Synopsis. Sepsis refers to life-threatening systemic inflammation, often caused by infection with bacteria that produce lipopolysaccharide (LPS). Glucocorticoids, immunosuppressive hormones produced by the adrenals, have been used to treat sepsis for over 50 y, but little is known about the role of endogenous (naturally occurring) glucocorticoids in systemic inflammation. Macrophages have been considered the primary source of inflammatory mediators (cytokines) and a target for glucocorticoid-mediated suppression. The possible role of another immune cell population, dendritic cells, has not been explored in detail. We created a mouse model in which the glucocorticoid receptor is selectively deleted in dendritic cells (DCs). We found that the elevation of glucocorticoids that accompanies sepsis protects mice from LPS-induced septic shock by suppressing DC production of IL-12, a cytokine that causes the secretion of other inflammatory mediators. In addition, LPS-induced glucocorticoids caused the death of a subset of DCs that are the primary producers of IL-12. Glucocorticoids were also found to be important for the phenomenon of "LPS tolerance", in which inoculation with low-dose LPS makes mice resistant to rechallenge with a high dose. This unexpected role of DC-produced IL-12 and its suppression by endogenous glucocorticoids may account, at least in part, for the known association of adrenal insufficiency and prolonged sepsis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/therapeutic use
- CD11c Antigen/genetics
- CD11c Antigen/metabolism
- Cells, Cultured
- Crosses, Genetic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Dose-Response Relationship, Drug
- Female
- Glucocorticoids/agonists
- Glucocorticoids/antagonists & inhibitors
- Glucocorticoids/blood
- Glucocorticoids/metabolism
- Immunity, Innate/drug effects
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/blood
- Interleukin-12/metabolism
- Lipopolysaccharides/toxicity
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Shock, Septic/immunology
- Shock, Septic/metabolism
- Shock, Septic/pathology
- Shock, Septic/prevention & control
- Signal Transduction/drug effects
- Specific Pathogen-Free Organisms
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
Collapse
Affiliation(s)
- Caiyi C. Li
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul R. Mittelstadt
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ehydel Castro
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Toubiana J, Rossi AL, Belaidouni N, Grimaldi D, Pene F, Chafey P, Comba B, Camoin L, Bismuth G, Claessens YE, Mira JP, Chiche JD. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway. Innate Immun 2015; 21:685-97. [DOI: 10.1177/1753425915586075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.
Collapse
Affiliation(s)
- Julie Toubiana
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Department of Pediatrics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Anne-Lise Rossi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Nadia Belaidouni
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - David Grimaldi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Frederic Pene
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Philippe Chafey
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Béatrice Comba
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - Luc Camoin
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Georges Bismuth
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Yann-Erick Claessens
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Paul Mira
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Jean-Daniel Chiche
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
18
|
Roberts ME, Bishop JL, Fan X, Beer JL, Kum WWS, Krebs DL, Huang M, Gill N, Priatel JJ, Finlay BB, Harder KW. Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susceptibility to enteric pathogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5249-63. [PMID: 25339668 DOI: 10.4049/jimmunol.1302832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Lyn tyrosine kinase governs the development and function of various immune cells, and its dysregulation has been linked to malignancy and autoimmunity. Using models of chemically induced colitis and enteric infection, we show that Lyn plays a critical role in regulating the intestinal microbiota and inflammatory responses as well as protection from enteric pathogens. Lyn(-/-) mice were highly susceptible to dextran sulfate sodium (DSS) colitis, characterized by significant wasting, rectal bleeding, colonic pathology, and enhanced barrier permeability. Increased DSS susceptibility in Lyn(-/-) mice required the presence of T but not B cells and correlated with dysbiosis and increased IFN-γ(+) and/or IL-17(+) colonic T cells. This dysbiosis was characterized by an expansion of segmented filamentous bacteria, associated with altered intestinal production of IL-22 and IgA, and was transmissible to wild-type mice, resulting in increased susceptibility to DSS. Lyn deficiency also resulted in an inability to control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. Lyn(-/-) mice exhibited profound cecal inflammation, bacterial dissemination, and morbidity following S. Typhimurium challenge and greater colonic inflammation throughout the course of C. rodentium infection. These results identify Lyn as a key regulator of the mucosal immune system, governing pathophysiology in multiple models of intestinal disease.
Collapse
Affiliation(s)
- Morgan E Roberts
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer L Bishop
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xueling Fan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer L Beer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Winnie W S Kum
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morris Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Navkiran Gill
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - John J Priatel
- Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
19
|
Bishop JL, Roberts ME, Beer JL, Huang M, Chehal MK, Fan X, Fouser LA, Ma HL, Bacani JT, Harder KW. Lyn activity protects mice from DSS colitis and regulates the production of IL-22 from innate lymphoid cells. Mucosal Immunol 2014; 7:405-16. [PMID: 24045577 DOI: 10.1038/mi.2013.60] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 07/17/2013] [Accepted: 07/29/2013] [Indexed: 02/04/2023]
Abstract
Intestinal homeostasis requires a complex balance of interactions between diverse resident microbial communities, the intestinal epithelium, and the underlying immune system. We show that the Lyn tyrosine kinase, a critical regulator of immune cell function and pattern-recognition receptor (PRR) responses, has a key role in controlling gastrointestinal inflammation. Lyn⁻/⁻ mice were highly susceptible to dextran sulfate sodium (DSS)-induced colitis, whereas Lyn gain-of-function (Lyn(up)) mice exhibited attenuated colitis during acute and chronic models of disease. Lyn(up) mice were hypersensitive to lipopolysaccharide (LPS), driving enhanced production of cytokines and factors associated with intestinal barrier function, including interleukin (IL)-22. Oral administration of LPS was sufficient to protect antibiotic-treated Lyn(up) but not wild-type mice from DSS, highlighting how Lyn-dependent changes in the nature/magnitude of PRR responses can impact intestinal health. Furthermore, protection from DSS-induced colitis and increased IL-22 production in response to LPS did not depend on the adaptive immune system, with increased innate lymphoid cell-derived IL-22 correlating with Lyn activity in dendritic cells. These data reveal a key role for Lyn in the regulation of innate immune responses and control of intestinal inflammation.
Collapse
Affiliation(s)
- J L Bishop
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - M E Roberts
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - J L Beer
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Huang
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - M K Chehal
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - X Fan
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - L A Fouser
- Inflammation and Immunology Research Unit, Biotherapeutics Research and Development, Pfizer Worldwide R and D, Cambridge, Masschusetts, USA
| | - H L Ma
- Inflammation and Immunology Research Unit, Biotherapeutics Research and Development, Pfizer Worldwide R and D, Cambridge, Masschusetts, USA
| | - J T Bacani
- Department of Laboratory Medicine and Pathology, Division of Anatomical Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - K W Harder
- Department of Microbiology and Immunology, I Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 192:875-85. [PMID: 24379120 DOI: 10.4049/jimmunol.1300683] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn(-/-) mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn(-/-) mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear Abs, as well as the deposition of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn(-/-) mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn(-/-) mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ(-/-) TCRδ(-/-) mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn(-/-) mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn(-/-) mice.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li G, Fox J, Liu Z, Liu J, Gao GF, Jin Y, Gao H, Wu M. Lyn mitigates mouse airway remodeling by downregulating the TGF-β3 isoform in house dust mite models. THE JOURNAL OF IMMUNOLOGY 2013; 191:5359-70. [PMID: 24127553 DOI: 10.4049/jimmunol.1301596] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic airway remodeling is a serious consequence of asthma, which is caused by complex but largely unknown mechanisms. Despite versatile functions, the role of Lyn in chronic airway remodeling remains undefined. Using Lyn(-/-) mice, we show that continual exposure (for 8 wk) of house dust mite extracts induced a severe phenotype of chronic airway remodeling, including exacerbated mucus production, collagen deposition, dysregulated cytokine secretion, and elevated inflammation. Strikingly, a significant increase in TGF-β3 rather than TGF-β1 was observed in Lyn(-/-) mouse lungs compared with lungs in wild-type mice. Furthermore, TGF-β3 neutralizing Abs not only inhibited the expression of STAT6 and Smad2/3 but also decreased phosphorylation of Smad2 and NF-κB in Lyn(-/-) mouse lungs. In addition, both recombinant and adenoviral TGF-β3 significantly promoted epithelial-to-mesenchymal transition and intensified collagen I production and MUC5AC expression. Further examination of chronic asthma patients showed that a decreased Lyn correlated with the severity of airway inflammation and mucus hypersecretion. Finally, Lyn may critically regulate airway remodeling by directly interacting with TGF-β3. Collectively, these findings revealed that Lyn regulates TGF-β3 isoform and modulates the development of airway remodeling, which may have therapeutic implications for severe chronic asthma.
Collapse
Affiliation(s)
- Guoping Li
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58203
| | | | | | | | | | | | | | | |
Collapse
|