1
|
Dörner T, Lipsky PE. The essential roles of memory B cells in the pathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2024; 20:770-782. [PMID: 39511302 DOI: 10.1038/s41584-024-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Emerging evidence indicates that memory B cells are dysfunctional in systemic lupus erythematosus (SLE). They are hyporesponsive to signalling through the B cell receptor (BCR) but retain responsiveness to Toll-like receptor (TLR) and type I interferon signalling, as well as to T cell-mediated activation via CD40-CD154. Chronic exposure to immune complexes of ribonucleoprotein (RNP)-specific autoantibodies and TLR-engaging or BCR-engaging cargo is likely to contribute to this partially anergic phenotype. TLR7 or TLR8 signalling and the resulting production of type I interferon, as well as the sustained activation by bystander T cells, fuel a positive feedforward loop in memory B cells that can evade negative selection and permit preferential expansion of anti-RNP autoantibodies. Clinical trials of autologous stem cell transplantation or of B cell-targeted monoclonal antibodies and chimeric antigen receptor (CAR) T cells have correlated replenishment of the memory B cell population with relapse of SLE. Moreover, the BCR hyporesponsiveness of memory B cells might explain the failure of non-depleting B cell-targeting approaches in SLE, including BTK inhibitors and anti-CD22 monoclonal antibodies. Thus, targeting of dysfunctional memory B cells might prove effective in SLE, while also avoiding the adverse events of broad-spectrum targeting of B cell and plasma cell subsets that are not directly involved in disease pathogenesis.
Collapse
Affiliation(s)
- Thomas Dörner
- Department Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin & Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.
| | | |
Collapse
|
2
|
Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol 2022; 18:575-590. [PMID: 36097207 DOI: 10.1038/s41584-022-00826-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Type I interferons have been suspected for decades to have a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Evidence has now overturned several long-held assumptions about how type I interferons are regulated and cause pathological conditions, providing a new view of SLE pathogenesis that resolves longstanding clinical dilemmas. This evidence includes data on interferons in relation to genetic predisposition and epigenetic regulation. Importantly, data are now available on the role of interferons in the early phases of the disease and the importance of non-haematopoietic cellular sources of type I interferons, such as keratinocytes, renal tubular cells, glial cells and synovial stromal cells, as well as local responses to type I interferons within these tissues. These local effects are found not only in inflamed target organs in established SLE, but also in histologically normal skin during asymptomatic preclinical phases, suggesting a role in disease initiation. In terms of clinical application, evidence relating to biomarkers to characterize the type I interferon system is complex, and, notably, interferon-blocking therapies are now licensed for the treatment of SLE. Collectively, the available data enable us to propose a model of disease pathogenesis that invokes the unique value of interferon-targeted therapies. Accordingly, future approaches in SLE involving disease reclassification and preventative strategies in preclinical phases should be investigated.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
3
|
Gordon RA, Giannouli C, Raparia C, Bastacky SI, Marinov A, Hawse W, Cattley R, Tilstra JS, Campbell AM, Nickerson KM, Davidson A, Shlomchik MJ. Rubicon promotes rather than restricts murine lupus and is not required for LC3-associated phagocytosis. JCI Insight 2022; 7:155537. [PMID: 35192551 PMCID: PMC9057630 DOI: 10.1172/jci.insight.155537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 01/03/2023] Open
Abstract
NADPH oxidase deficiency exacerbates lupus in murine models and patients, but the mechanisms remain unknown. It is hypothesized that NADPH oxidase suppresses autoimmunity by facilitating dead cell clearance via LC3-associated phagocytosis (LAP). The absence of LAP reportedly causes an autoinflammatory syndrome in aged, nonautoimmune mice. Prior work implicated cytochrome b-245, β polypeptide (CYBB), a component of the NADPH oxidase complex, and the RUN and cysteine-rich domain-containing Beclin 1-interacting protein (RUBICON) as requisite for LAP. To test the hypothesis that NADPH oxidase deficiency exacerbates lupus via a defect in LAP, we deleted Rubicon in the B6.Sle1.Yaa and MRL.Faslpr lupus mouse models. Under this hypothesis, RUBICON deficiency should phenocopy NADPH oxidase deficiency, as both work in the same pathway. However, we observed the opposite - RUBICON deficiency resulted in reduced mortality, renal disease, and autoantibody titers to RNA-associated autoantigens. Given that our data contradict the published role for LAP in autoimmunity, we assessed whether CYBB and RUBICON are requisite for LAP. We found that LAP is not dependent on either of these 2 pathways. To our knowledge, our data reveal RUBICON as a novel regulator of SLE, possibly by a B cell-intrinsic mechanism, but do not support a role for LAP in lupus.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina Giannouli
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Jeremy S. Tilstra
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven Connecticut, USA
| | | | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | |
Collapse
|
4
|
Quach TD, Huang W, Sahu R, Diadhiou CM, Raparia C, Johnson R, Leung TM, Malkiel S, Ricketts PG, Gallucci S, Tükel Ç, Jacob CO, Lesser ML, Zou YR, Davidson A. Context dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight 2022; 7:149094. [PMID: 35104241 PMCID: PMC8983147 DOI: 10.1172/jci.insight.149094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
TNF inhibitors are widely used to treat inflammatory diseases; however, 30%–50% of treated patients develop new autoantibodies, and 0.5%–1% develop secondary autoimmune diseases, including lupus. TNF is required for formation of germinal centers (GCs), the site where high-affinity autoantibodies are often made. We found that TNF deficiency in Sle1 mice induced TH17 T cells and enhanced the production of germline encoded, T-dependent IgG anti-cardiolipin antibodies but did not induce GC formation or precipitate clinical disease. We then asked whether a second hit could restore GC formation or induce pathogenic autoimmunity in TNF-deficient mice. By using a range of immune stimuli, we found that somatically mutated autoantibodies and clinical disease can arise in the setting of TNF deficiency via extrafollicular pathways or via atypical GC-like pathways. This breach of tolerance may be due to defects in regulatory signals that modulate the negative selection of pathogenic autoreactive B cells.
Collapse
Affiliation(s)
- Tam D Quach
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Weiqing Huang
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Ranjit Sahu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Catherine Mm Diadhiou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Roshawn Johnson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Tung Ming Leung
- Biostatistics Unit, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Peta-Gay Ricketts
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, United States of America
| | - Çagla Tükel
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, United States of America
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States of America
| | - Martin L Lesser
- Biostatistics Unit, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| |
Collapse
|
5
|
Chodisetti SB, Fike AJ, Domeier PP, Singh H, Choi NM, Corradetti C, Kawasawa YI, Cooper TK, Caricchio R, Rahman ZSM. Type II but Not Type I IFN Signaling Is Indispensable for TLR7-Promoted Development of Autoreactive B Cells and Systemic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:796-809. [PMID: 31900342 DOI: 10.4049/jimmunol.1901175] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/18/2019] [Indexed: 01/12/2023]
Abstract
TLR7 is associated with development of systemic lupus erythematosus (SLE), but the underlying mechanisms are incompletely understood. Although TLRs are known to activate type I IFN (T1IFN) signaling, the role of T1IFN and IFN-γ signaling in differential regulation of TLR7-mediated Ab-forming cell (AFC) and germinal center (GC) responses, and SLE development has never been directly investigated. Using TLR7-induced and TLR7 overexpression models of SLE, we report in this study a previously unrecognized indispensable role of TLR7-induced IFN-γ signaling in promoting AFC and GC responses, leading to autoreactive B cell and SLE development. T1IFN signaling in contrast, only modestly contributed to autoimmune responses and the disease process in these mice. TLR7 ligand imiquimod treated IFN-γ reporter mice show that CD4+ effector T cells including follicular helper T (Tfh) cells are the major producers of TLR7-induced IFN-γ. Transcriptomic analysis of splenic tissues from imiquimod-treated autoimmune-prone B6.Sle1b mice sufficient and deficient for IFN-γR indicates that TLR7-induced IFN-γ activates multiple signaling pathways to regulate TLR7-promoted SLE. Conditional deletion of Ifngr1 gene in peripheral B cells further demonstrates that TLR7-driven autoimmune AFC, GC and Tfh responses and SLE development are dependent on IFN-γ signaling in B cells. Finally, we show crucial B cell-intrinsic roles of STAT1 and T-bet in TLR7-driven GC, Tfh and plasma cell differentiation. Altogether, we uncover a nonredundant role for IFN-γ and its downstream signaling molecules STAT1 and T-bet in B cells in promoting TLR7-driven AFC, GC, and SLE development whereas T1IFN signaling moderately contributes to these processes.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Yuka Imamura Kawasawa
- Department of Pharmacology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
6
|
Domeier PP, Chodisetti SB, Schell SL, Kawasawa YI, Fasnacht MJ, Soni C, Rahman ZSM. B-Cell-Intrinsic Type 1 Interferon Signaling Is Crucial for Loss of Tolerance and the Development of Autoreactive B Cells. Cell Rep 2019; 24:406-418. [PMID: 29996101 PMCID: PMC6089613 DOI: 10.1016/j.celrep.2018.06.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/09/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Type 1 interferon (T1IFN) signaling promotes inflammation and lupus pathology, but its role in autoreactive B cell development in the antibody-forming cell (AFC) and germinal center (GC) pathways is unclear. Using a lupus model that allows for focused study of the AFC and GC responses, we show that T1IFN signaling is crucial for autoreactive B cell development in the AFC and GC pathways. Through bone marrow chimeras, DNA-reactive B cell transfer, and GC-specific Cre mice, we confirm that IFNαR signaling in B cells promotes autoreactive B cell development into both pathways. Transcriptomic analysis reveals gene expression alterations in multiple signaling pathways in non-GC and GC B cells in the absence of IFNαR. Finally, we find that T1IFN signaling promotes autoreactive B cell development in the AFC and GC pathways by regulating BCR signaling. These data suggest value for anti-IFNαR therapy in individuals with elevated T1IFN activity before clinical disease onset. The B-cell-intrinsic mechanisms of type 1 interferon (T1IFN) signaling in regulating B cell tolerance is unclear. Domeier et al. show that T1IFN signaling in B cells causes loss of B cell tolerance, promoting autoreactive B cell development into the antibody-forming cell and germinal center pathways by regulating BCR signaling.
Collapse
Affiliation(s)
- Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Melinda J Fasnacht
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA.
| |
Collapse
|
7
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
8
|
Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski C, Chaumeil J, Mejía JE, Guéry JC. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 2018; 3:3/19/eaap8855. [PMID: 29374079 DOI: 10.1126/sciimmunol.aap8855] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 7 (TLR7) is critical to the induction of antiviral immunity, but TLR7 dosage is also a key pathogenic factor in systemic lupus erythematosus (SLE), an autoimmune disease with strong female bias. SLE prevalence is also elevated in individuals with Klinefelter syndrome, who carry one or more supernumerary X chromosomes, suggesting that the X chromosome complement contributes to SLE susceptibility. TLR7 is encoded by an X chromosome locus, and we examined here whether the TLR7 gene evades silencing by X chromosome inactivation in immune cells from women and Klinefelter syndrome males. Single-cell analyses of TLR7 allelic expression demonstrated that substantial fractions of primary B lymphocytes, monocytes, and plasmacytoid dendritic cells not only in women but also in Klinefelter syndrome males express TLR7 on both X chromosomes. Biallelic B lymphocytes from women displayed greater TLR7 transcriptional expression than the monoallelic cells, correlated with higher TLR7 protein expression in female than in male leukocyte populations. Biallelic B cells were preferentially enriched during the TLR7-driven proliferation of CD27+ plasma cells. In addition, biallelic cells showed a greater than twofold increase over monoallelic cells in the propensity to immunoglobulin G class switch during the TLR7-driven, T cell-dependent differentiation of naive B lymphocytes into immunoglobulin-secreting cells. TLR7 escape from X inactivation endows the B cell compartment with added responsiveness to TLR7 ligands. This finding supports the hypothesis that enhanced TLR7 expression owing to biallelism contributes to the higher risk of developing SLE and other autoimmune disorders in women and in men with Klinefelter syndrome.
Collapse
Affiliation(s)
- Mélanie Souyris
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Claire Cenac
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Pascal Azar
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Danièle Daviaud
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Astrid Canivet
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Solange Grunenwald
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Larrey, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Catherine Pienkowski
- Service Pédiatrie-Unité d'Endocrinologie de l'Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Julie Chaumeil
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris-Descartes, Paris, France
| | - José E Mejía
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse, CNRS, INSERM, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
9
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
10
|
Schell SL, Soni C, Fasnacht MJ, Domeier PP, Cooper TK, Rahman ZSM. Mer Receptor Tyrosine Kinase Signaling Prevents Self-Ligand Sensing and Aberrant Selection in Germinal Centers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:4001-4015. [PMID: 29118245 DOI: 10.4049/jimmunol.1700611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/11/2017] [Indexed: 04/04/2025]
Abstract
Mer tyrosine kinase (Mer) signaling maintains immune tolerance by clearing apoptotic cells (ACs) and inducing immunoregulatory signals. We previously showed that Mer-deficient mice (Mer-/-) have increased germinal center (GC) responses, T cell activation, and AC accumulation within GCs. Accumulated ACs in GCs can undergo necrosis and release self-ligands, which may influence the outcome of a GC response and selection. In this study, we generated Mer-/- mice with a global MyD88, TLR7, or TLR9 deficiency and cell type-specific MyD88 deficiency to study the functional correlation between Mer and TLRs in the development of GC responses and autoimmunity. We found that GC B cell-intrinsic sensing of self-RNA, but not self-DNA, released from dead cells accumulated in GCs drives enhanced GC responses in Mer-/- mice. Although self-ligands directly affect GC B cell responses, the loss of Mer in dendritic cells promotes enhanced T cell activation and proinflammatory cytokine production. To study the impact of Mer deficiency on the development of autoimmunity, we generated autoimmune-prone B6.Sle1b mice deficient in Mer (Sle1bMer-/-). We observed accelerated autoimmunity development even under conditions where Sle1bMer-/- mice did not exhibit increased AC accumulation in GCs compared with B6.Sle1b mice, indicating that Mer immunoregulatory signaling in APCs regulates B cell selection and autoimmunity. We further found significant expansion, retention, and class-switching of autoreactive B cells in GCs under conditions where ACs accumulated in GCs of Sle1bMer-/- mice. Altogether, both the phagocytic and immunomodulatory functions of Mer regulate GC responses to prevent the development of autoimmunity.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Melinda J Fasnacht
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| |
Collapse
|
11
|
Perera J, Zheng Z, Li S, Gudjonson H, Kalinina O, Benichou JIC, Block KE, Louzoun Y, Yin D, Chong AS, Dinner AR, Weigert M, Huang H. Self-Antigen-Driven Thymic B Cell Class Switching Promotes T Cell Central Tolerance. Cell Rep 2017; 17:387-398. [PMID: 27705788 DOI: 10.1016/j.celrep.2016.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
B cells are unique antigen-presenting cells because their antigen presentation machinery is closely tied to the B cell receptor. Autoreactive thymic B cells can efficiently present cognate self-antigens to mediate CD4+ T cell-negative selection. However, the nature of thymocyte-thymic B cell interaction and how this interaction affects the selection of thymic B cell repertoire and, in turn, the T cell repertoire are not well understood. Here we demonstrate that a large percentage of thymic B cells have undergone class switching intrathymically. Thymic B cell class switching requires cognate interaction with specific T cells. Class-switched thymic B cells have a distinct repertoire compared with unswitched thymic B cells or splenic B cells. Particularly, autoreactive B cell specificities preferentially expand in the thymus by undergoing class switching, and these enriched, class-switched autoreactive thymic B cells play an important role in CD4 T cell tolerance.
Collapse
Affiliation(s)
- Jason Perera
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Zhong Zheng
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Shuyin Li
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Herman Gudjonson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Graduate Program in the Biophysical Sciences, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Olga Kalinina
- Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer I C Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Katharine E Block
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R Dinner
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Graduate Program in the Biophysical Sciences, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Martin Weigert
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Haochu Huang
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Robinet M, Villeret B, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models. Front Immunol 2017; 8:1029. [PMID: 28970832 PMCID: PMC5609563 DOI: 10.3389/fimmu.2017.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. MG symptoms are characterized by muscle weaknesses. The thymus of MG patients is very often abnormal and possesses all the characteristics of tertiary lymphoid organs such as neoangiogenesis processes, overexpression of inflammatory cytokines and chemokines, and infiltration of B lymphocytes leading to ectopic germinal center (GC) development. We previously demonstrated that injections of mice with polyinosinic–polycytidylic acid [Poly(I:C)], a synthetic double-stranded RNA mimicking viral infection, induce thymic changes and trigger MG symptoms. Upon Poly(I:C) injections, we observed increased thymic expressions of α-AChR, interferon-β and chemokines such as CXCL13 and CCL21 leading to B-cell recruitment. However, these changes were only transient. In order to develop an experimental MG model associated with thymic GCs, we used Poly(I:C) in the classical experimental autoimmune MG model induced by immunizations with purified AChR emulsified in complete Freund’s adjuvant. We observed that Poly(I:C) strongly favored the development of MG as almost all mice displayed MG symptoms. Nevertheless, we did not observe any ectopic GC development. We next challenged mice with Poly(I:C) together with other toll-like receptor (TLR) agonists known to be involved in GC development and that are overexpressed in MG thymuses. Imiquimod and CpG oligodeoxynucleotides that activate TLR7 and TLR9, respectively, did not induce thymic changes. In contrast, lipopolysaccharide that activates TLR4 potentiated Poly(I:C) effects and induced a significant expression of CXCL13 mRNA in the thymus associated with a higher recruitment of B cells that induced over time thymic B-lymphoid structures. Altogether, these data suggest that tertiary lymphoid genesis in MG thymus could result from a combined activation of TLR signaling pathways.
Collapse
Affiliation(s)
- Marieke Robinet
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Bérengère Villeret
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Solène Maillard
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Mélanie A Cron
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| |
Collapse
|
13
|
DeFranco AL. Germinal centers and autoimmune disease in humans and mice. Immunol Cell Biol 2016; 94:918-924. [PMID: 27562062 DOI: 10.1038/icb.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are involved in the pathogenesis of many autoimmune diseases. Although the mechanisms underlying the antibody response to infection or vaccination are reasonably well understood, we still have a poor understanding of the nature of autoimmune antibody responses. The most well studied are the anti-nuclear antibody responses characteristic of systemic lupus erythematosus and studies over the past decade or so have demonstrated a critical role for signaling by TLR7 and/or TLR9 in B cells to promote these responses. These Toll-like receptors (TLRs) can promote T-cell-independent extrafollicular antibody responses with a heavy-chain class switch and a low degree of somatic mutation, but they can also strongly boost the germinal center response that gives rise to high-affinity antibodies and long-lived plasma cells. TLRs have been shown to enhance affinity maturation in germinal center responses to produce high-affinity neutralizing antibodies in several virus infection models of mice. Although more data are needed, it appears that anti-nuclear antibodies in mouse models of lupus and in lupus patients can be generated by either pathway, provided there are genetic susceptibility alleles that compromise B-cell tolerance at one or another stage. Limited data in other autoimmune diseases suggest that the germinal center response may be the predominant pathway leading to autoantibodies in those diseases. A better understanding of the mechanisms of autoantibody production may ultimately be helpful in the development of targeted therapeutics for lupus or other autoimmune diseases.
Collapse
Affiliation(s)
- Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Suurmond J, Calise J, Malkiel S, Diamond B. DNA-reactive B cells in lupus. Curr Opin Immunol 2016; 43:1-7. [PMID: 27504587 DOI: 10.1016/j.coi.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
IgG anti-DNA antibodies are both diagnostic and pathogenic for systemic lupus erythematosus (SLE). They contribute to tissue inflammation through direct tissue binding and to systemic inflammation through activation of Toll-like receptors by nucleic acid-containing immune complexes. IgG DNA-reactive antibodies originate when B cell tolerance mechanisms are impaired. The heterogeneous immune perturbations in SLE lead to the survival and activation of DNA-reactive B cells in various B cell subsets at distinct stages of B cell maturation and differentiation. We propose that the spectrum of B cell alterations and failed tolerance mechanisms for DNA-reactive B cells in lupus patients is best understood by studying genetic risk alleles. This implies that the B cells producing IgG anti-DNA antibodies and the failed tolerance mechanisms(s) will differ across patients. A better understanding of these differences should lead to better patient stratification, improved outcomes of clinical trials, and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jolien Suurmond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA
| | - Justine Calise
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA; PhD Program in Molecular Medicine, Hofstra-Northwell School of Medicine, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Susan Malkiel
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
15
|
Zhou Z, Ma J, Xiao C, Han X, Qiu R, Wang Y, Zhou Y, Wu L, Huang X, Shen N. Phenotypic and functional alterations of pDCs in lupus-prone mice. Sci Rep 2016; 6:20373. [PMID: 26879679 PMCID: PMC4754657 DOI: 10.1038/srep20373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) were considered to be the major IFNα source in systemic lupus erythematosus (SLE) but their phenotype and function in different disease status have not been well studied. To study the function and phenotype of pDCs in lupus-prone mice we used 7 strains of lupus-prone mice including NZB/W F1, NZB, NZW, NZM2410, B6.NZMSle1/2/3, MRL/lpr and BXSB/Mp mice and C57BL/6 as control mice. Increased spleen pDC numbers were found in most lupus mice compared to C57BL/6 mice. The IFNα-producing ability of BM pDCs was similar between lupus and C57BL/6 mice, whereas pDCs from the spleens of NZB/W F1 and NZB mice produced more IFNα than pDCs from the spleens of C57BL/6 mice. Furthermore, spleen pDCs from MRL-lpr and NZM2410 mice showed increased responses to Tlr7 and Tlr9, respectively. As the disease progressed, IFN signature were evaluated in both BM and spleen pDC from lupus prone mice and the number of BM pDCs and their ability to produce IFNα gradually decreased in lupus-prone mice. In conclusion, pDC are activated alone with disease development and its phenotype and function differ among lupus-prone strains, and these differences may contribute to the development of lupus in these mice.
Collapse
Affiliation(s)
- Zhenyuan Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chunyuan Xiao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao Han
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS) &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rong Qiu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS) &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS) &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yingying Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Xinfang Huang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS) &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China.,Division of Rheumatology and the Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
16
|
Boneparth A, Woods M, Huang W, Akerman M, Lesser M, Davidson A. The Effect of BAFF Inhibition on Autoreactive B-Cell Selection in Murine Systemic Lupus Erythematosus. Mol Med 2016; 22:173-182. [PMID: 26882090 DOI: 10.2119/molmed.2016.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022] Open
Abstract
The goal of this study was to determine how B-cell-activating factor of the TNF family (BAFF) availability influences selection of the autoreactive B-cell repertoire in NZB/W and NZW/BXSB lupus-prone mice bearing the site-directed heavy-chain transgene 3H9 that encodes for anti-dsDNA and anti-cardiolipin (CL) autoantibodies. We used a bone marrow chimera system in which autoreactive 3H9 transgenic B cells were allowed to mature in competition with wild-type cells and could be identified by green fluorescent protein. The light-chain repertoire associated with the 3H9 heavy chain in naive and antigen-activated B-cell subsets was assessed using single-cell polymerase chain reaction. We found that deletion of autoreactive transgenic B cells occurred in the bone marrow of both strains regardless of BAFF availability, and there were only modest and physiologically non-relevant effects on the naive B-cell repertoire. BAFF inhibition had different effects on selection of the germinal center repertoire in the two strains. In the NZW/BXSB strain, BAFF inhibition phenocopied the loss of one TLR7 allele in that it influenced the selection of 3H9-encoded autoreactive B cells in the germinal center but did not prevent somatic mutation. In the NZB/W strain, BAFF inhibition did not alter the selection of 3H9-encoded B cells in the germinal center, but it influenced selection of a subset of germinal center cells into the plasma cell compartment. Our data underscore the complexity of regulation of the autoreactive B-cell repertoire by BAFF and may help to explain the heterogeneity of responses observed after BAFF inhibition in humans.
Collapse
Affiliation(s)
- Alexis Boneparth
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Megan Woods
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Weiqing Huang
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meredith Akerman
- Musculoskeletal Diseases and Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Martin Lesser
- Musculoskeletal Diseases and Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Anne Davidson
- Center for Autoimmunity, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
17
|
Han S, Zhuang H, Xu Y, Lee P, Li Y, Wilson JC, Vidal O, Choi HS, Sun Y, Yang LJ, Reeves WH. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther 2015; 17:384. [PMID: 26717913 PMCID: PMC4718029 DOI: 10.1186/s13075-015-0886-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Pristane-treated mice chronically produce high levels of anti-ribonucleoprotein/Smith (anti-Sm/RNP) and other lupus autoantibodies. The present study addressed how these autoantibody levels are maintained over time. Methods Lupus was induced in BALB/c mice using pristane. Naïve B cells, switched memory B cells, switched plasmablasts, and plasma cells were flow-sorted and total IgG and anti-U1A (RNP) autoantibodies were determined with ELISA. Results B cells with a switched “memory-like” (CD19+CD138−IgM−IgD−) (sMB) phenotype were increased in pristane-treated mice and expressed higher levels of Toll like receptor 7 (Tlr7) than cells with this phenotype from untreated mice. Flow-sorted sMB cells from pristane-treated mice did not secrete IgG spontaneously, but were hyper-responsive to both synthetic (R848) and natural (apoptotic cells) TLR7 ligands, resulting in increased IgG production in vitro. The flow-sorted sMB cells also could be driven by R848 to produce IgG anti-U1A autoantibodies. Production of IgG was strongly inhibited by both JSH-23 and SB203580, suggesting that the canonical NFκB and p38 MAPK pathways, respectively, contribute to the TLR7 ligand hyper-responsiveness of sMB from pristane-treated mice. Conclusions The switched memory B cell subset from pristane-treated mice is expanded and shows an increased propensity to undergo terminal (plasma cell) differentiation in response to synthetic and natural TLR7 ligands. The data suggest that the decreased clearance of apoptotic cells characteristic of pristane-treated mice might help maintain high serum levels of anti-RNP/Sm autoantibodies. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0886-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuhong Han
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Haoyang Zhuang
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Yuan Xu
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Pui Lee
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA. .,Current Address: Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| | - Yi Li
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Joseph C Wilson
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA.
| | - Osvaldo Vidal
- College of Pharmacy, University of Florida, Student Service Center, HPNP Complex, PO Box 100495, Gainesville, FL, 32610-0495, USA.
| | - Hong Seok Choi
- Department of Molecular genetics and Microbiology, University of Florida, PO Box 100221, Gainesville, FL, 32610-0221, USA.
| | - Yu Sun
- Department of Pathology and Laboratory Medicine, University of Florida, 1395 Center Dr., Gainesville, FL, 32610-0495, USA. .,Current Address: Qilu Hospital of Shandong University, Jinan, 250012, PR China.
| | - Li-Jun Yang
- Department of Pathology and Laboratory Medicine, University of Florida, 1395 Center Dr., Gainesville, FL, 32610-0495, USA.
| | - Westley H Reeves
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, 1600 Archer Road, Gainesville, FL, 32610-0275, USA. .,Department of Pathology and Laboratory Medicine, University of Florida, 1395 Center Dr., Gainesville, FL, 32610-0495, USA.
| |
Collapse
|
18
|
Yin Y, Choi SC, Xu Z, Zeumer L, Kanda N, Croker BP, Morel L. Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2015; 196:80-90. [PMID: 26608911 DOI: 10.4049/jimmunol.1501537] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
We have previously shown that CD4(+) T cells from B6.Sle1Sle2.Sle3 lupus mice and patients present a high cellular metabolism, and a treatment combining 2-deoxy-D-glucose, which inhibits glucose metabolism, and metformin, which inhibits oxygen consumption, normalized lupus T cell functions in vitro and reverted disease in mice. We obtained similar results with B6.lpr mice, another model of lupus, and showed that a continuous treatment is required to maintain the beneficial effect of metabolic inhibitors. Further, we investigated the relative roles of glucose oxidation and pyruvate reduction into lactate in this process. Treatments of B6.Sle1Sle2.Sle3 mice with either 2-deoxy-D-glucose or metformin were sufficient to prevent autoimmune activation, whereas their combination was necessary to reverse the process. Treatment of B6.Sle1Sle2.Sle3 mice with dichloroacetate, an inhibitor of lactate production, failed to effectively prevent or reverse autoimmune pathology. In vitro, CD4(+) T cell activation upregulated the expression of genes that favor oxidative phosphorylation. Blocking glucose oxidation inhibited both IFN-γ and IL-17 production, which could not be achieved by blocking pyruvate reduction. Overall, our data show that targeting glucose oxidation is required to prevent or reverse lupus development in mice, which cannot be achieved by simply targeting the pyruvate-lactate conversion.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Leilani Zeumer
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
19
|
Woods M, Zou YR, Davidson A. Defects in Germinal Center Selection in SLE. Front Immunol 2015; 6:425. [PMID: 26322049 PMCID: PMC4536402 DOI: 10.3389/fimmu.2015.00425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023] Open
Abstract
Germinal centers (GCs) are the primary site at which clonal expansion and affinity maturation of B cells occur. B cells encounter antigen and receive T cell help in the GC light zone (LZ) and then migrate to the dark zone where they proliferate and undergo somatic mutation before cycling back to the LZ for further rounds of selection. Tolerance to autoantigens is frequently lost de novo as GC B cells undergo class switching and somatic mutation. This loss of tolerance is regulated by a variety of mechanisms including cell death, failure to compete for T cell help, and failure to differentiate into effector cells. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nucleic acid antigens. While defects in tolerance occur in the naïve repertoire of SLE patients, pathogenic autoantibodies also arise in the GC by somatic mutation from non-autoreactive precursors. Several B cell defects contribute to the loss of GC tolerance in SLE, including polymorphisms of genes encoded by the Sle1 locus, excess TLR7 signaling, defects in FcRIIB expression, or defects of B cell apoptosis. Extrinsic soluble factors, such as Type-1 IFN and B cell-activating factor, or an increased number of T follicular helper cells in the GC also alter B cell-negative selection. Finally, defects in clearance of apoptotic debris within the GC result in BCR-mediated internalization of nucleic acid containing material and stimulation of autoantibody production by endosomal TLR-driven mechanisms.
Collapse
Affiliation(s)
- Megan Woods
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Yong-Rui Zou
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| |
Collapse
|
20
|
Mackern-Oberti JP, Obreque J, Méndez GP, Llanos C, Kalergis AM. Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus. Clin Exp Immunol 2015; 182:1-13. [PMID: 26095291 DOI: 10.1111/cei.12657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 01/15/2023] Open
Abstract
Systemic lupus erythematosus is characterized by the presence of circulating anti-nuclear antibodies (ANA) and systemic damage that includes nephritis, haematological manifestations and pulmonary compromise, among others. Although major progress has been made in elucidating the molecular mechanisms responsible for autoimmunity, current therapies for lupus have not improved considerably. Because the exposure of carbon monoxide (CO) has been shown to display beneficial immunoregulatory properties in different immune-mediated diseases, we investigated whether CO therapy improves lupus-related kidney injury in lupus mice. MRL-Fas(lpr) lupus mice were exposed to CO and disease progression was evaluated. ANA, leucocyte-infiltrating populations in spleen, kidney and lung and kidney lesions, were measured. CO therapy significantly decreased the frequency of activated B220(+) CD4(-) CD8(-) T cells in kidneys and lungs, as well as serum levels of ANA. Furthermore, we observed that CO therapy reduced kidney injury by decreasing proliferative glomerular damage and immune complexes deposition, decreased proinflammatory cytokine production and finally delayed the impairment of kidney function. CO exposure ameliorates kidney and lung leucocyte infiltration and delays kidney disease in MRL-Fas(lpr) lupus mice. Our data support the notion that CO could be explored as a potential new therapy for lupus nephritis.
Collapse
Affiliation(s)
- J P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Microbiología y Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina
| | - J Obreque
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G P Méndez
- Departamento de Anatomía Patológica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Llanos
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Microbiología y Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM UMR 1064-Center for Research in Transplantation and Immunology, Nantes, France
| |
Collapse
|
21
|
Todo K, Koga O, Nishikawa M, Hikida M. Modulation of Igβ is essential for the B cell selection in germinal center. Sci Rep 2015; 5:10303. [PMID: 25980548 PMCID: PMC4650814 DOI: 10.1038/srep10303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/08/2015] [Indexed: 01/07/2023] Open
Abstract
The positive and negative selection of antigen-reactive B cells take place in the germinal center (GC) during an immune responses. However, the precise molecular mechanisms underlying these selection machineries, including the involvement of antigen receptor signaling molecules, remain to be elucidated. We found that expression levels of Igα and Igβ, which are the essential components of B cell antigen-receptor complex, were differentially regulated in GC B cells and that the expression of Igβ was more prominently down-regulated in a portion of GC B cells. The suppression of Igβ down-regulation reduced the number of GL7(+)GC B cells and the affinity maturation in T-dependent responses was markedly impaired. In addition, the disease phenotypes in autoimmune-prone mice were ameliorated by blocking of Igβ down-regulation. These results suggest that Igβ down-regulation is involved in the normal positive selection in GC and the accumulation of autoreactive B cells in autoimmune-prone mice.
Collapse
Affiliation(s)
- Kagefumi Todo
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University Yoshidakonoecho, Sakyoku, Kyoto 606-8501, Japan
| | - Orie Koga
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University Yoshidakonoecho, Sakyoku, Kyoto 606-8501, Japan
| | - Miwako Nishikawa
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University Yoshidakonoecho, Sakyoku, Kyoto 606-8501, Japan
| | - Masaki Hikida
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University Yoshidakonoecho, Sakyoku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Boneparth A, Huang W, Bethunaickan R, Woods M, Sahu R, Arora S, Akerman M, Lesser M, Davidson A. TLR7 influences germinal center selection in murine SLE. PLoS One 2015; 10:e0119925. [PMID: 25794167 PMCID: PMC4368537 DOI: 10.1371/journal.pone.0119925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/17/2015] [Indexed: 12/05/2022] Open
Abstract
TLR7 enhances germinal center maturation and migration of B cells to the dark zone where proliferation and somatic hypermutation occur. Our goal was to determine how Tlr7 dose influences selection of the autoreactive B cell repertoire in NZW/BXSB. Yaa mice bearing the site-directed heavy chain transgene 3H9 that encodes for the TLR7 regulated anti-CL response. To create a physiologic setting in which autoreactive B cells compete for survival with non-autoreactive B cells, we generated bone marrow chimeras in which disease onset occurred with similar kinetics and the transferred 3H9+ female non-Yaa, male Yaa or male TLR7-/Yaa cells could be easily identified by positivity for GFP. Deletion of 3H9 B cells occurred in the bone marrow and the remaining 3H9 follicular B cells manifested a decrease in surface IgM. Although there were differences in the naïve repertoire between the chimeras it was not possible to distinguish a clear pattern of selection against lupus related autoreactivity in TLR7-/Yaa or female chimeras. By contrast, preferential expansion of 3H9+ B cells occurred in the germinal centers of male Yaa chimeras. In addition, although all chimeras preferentially selected 3H9/Vκ5 encoded B cells into the germinal center and plasma cell compartments, 3H9 male Yaa chimeras had a more diverse repertoire and positively selected the 3H9/Vκ5-48/Jκ4 pair that confers high affinity anti-cardiolipin activity. We were unable to demonstrate a consistent effect of Tlr7 dose or Yaa on somatic mutations. Our data show that TLR7 excess influences the selection, expansion and diversification of B cells in the germinal center, independent of other genes in the Yaa locus.
Collapse
Affiliation(s)
- Alexis Boneparth
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Weiqing Huang
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Megan Woods
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Ranjit Sahu
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Shitij Arora
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Meredith Akerman
- Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Martin Lesser
- Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
- * E-mail:
| |
Collapse
|
23
|
Xia Y, Herlitz LC, Gindea S, Wen J, Pawar RD, Misharin A, Perlman H, Wu L, Wu P, Michaelson JS, Burkly LC, Putterman C. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J Am Soc Nephrol 2014; 26:1053-70. [PMID: 25270074 DOI: 10.1681/asn.2014030233] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/23/2014] [Indexed: 11/03/2022] Open
Abstract
TNF ligand superfamily member 12, also known as TNF-related weak inducer of apoptosis (TWEAK), acts through its receptor, fibroblast growth factor-inducible 14 (Fn14), to mediate several key pathologic processes involved in tissue injury relating to lupus nephritis. To explore the potential for renal protection in lupus nephritis by targeting this pathway, we introduced the Fn14 null allele into the MRL-lpr/lpr lupus mouse strain. At 26-38 weeks of age, female Fn14-knockout MRL-lpr/lpr mice had significantly lower levels of proteinuria compared with female wild-type MRL-lpr/lpr mice. Furthermore, Fn14-knockout mice had significantly improved renal histopathology accompanied by attenuated glomerular and tubulointerstitial inflammation. There was a significant reduction in glomerular Ig deposition in Fn14-knockout mice, despite no detectable differences in either serum levels of antibodies or splenic immune cell subsets. Notably, we found that the Fn14-knockout mice displayed substantial preservation of podocytes in glomeruli and that TWEAK signaling directly damaged barrier function and increased filtration through podocyte and glomerular endothelial cell monolayers. Our results show that deficiency of the Fn14 receptor significantly improves renal disease in a spontaneous lupus nephritis model through prevention of the direct injurious effects of TWEAK on the filtration barrier and/or modulation of cytokine production by resident kidney cells. Thus, blocking the TWEAK/Fn14 axis may be a novel therapeutic intervention in immune-mediated proliferative GN.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, New York
| | - Simona Gindea
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Jing Wen
- Department of Microbiology and Immunology and
| | - Rahul D Pawar
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander Misharin
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harris Perlman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lan Wu
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | - Ping Wu
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | | | - Linda C Burkly
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts; and
| | - Chaim Putterman
- Department of Microbiology and Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
24
|
Abstract
The initiation and perpetuation of autoimmunity recognize numerous checkpoints, from the genomic susceptibility to the breakdown of tolerance. This latter phenomenon includes the loss of B cell anergy and T regulatory cell failure, as well as the production of autoantibodies and autoreactive T cells. These mechanisms ultimately lead to tissue injury via different mechanisms that span from the production of proinflammatory cytokines to the chemotaxis of immune cells to the target sites. The pathways to autoimmunity have been widely investigated over the past year and resulted in a number of articles in peer-reviewed journals that has increased by nearly 10 % compared to 2011. We herein follow on the attempt to provide a brief discussion of the majority of articles on autoimmune diseases that were published in the major immunology journals in the previous solar year. The selection is necessarily arbitrary and may thus not be seen as comprehensive but reflects current research trends. Indeed, 2012 articles were mostly dedicated to define new and old mechanisms with potential therapeutic implications in autoimmunity in general, though based on specific clinical conditions or animal models. As paradigmatic examples, the environmental influence on autoimmunity, Th17 changes modulating the autoimmune response, serum autoantibodies and B cell changes as biomarkers and therapeutic targets were major issues addressed by experimental articles in 2012. Further, a growing number of studies investigated the sex bias of autoimmunity and supported different working hypotheses to explain the female predominance, including sex chromosome changes and reproductive life factors. In conclusion, the resulting scenario illustrates that common factors may underlie different autoimmune diseases and this is well represented by the observed alterations in interferon-α and TGFβ or by the shared signaling pathways.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,
| |
Collapse
|
25
|
Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep 2014; 4:3792. [PMID: 24445780 PMCID: PMC3896912 DOI: 10.1038/srep03792] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs), as innate immunity sensors, play critical roles in immune responses. Six SNPs of TLR3, TLR7, and TLR8 were genotyped to determine their associations with systemic lupus erythematosus (SLE) and clinical manifestations of SLE. TLR7 SNP rs3853839 was independently associated with SLE susceptibility in females (G vs. C: p = 0.0051). TLR7 rs3853839-G (G vs. C: p = 0.0100) and TLR8 rs3764880-G (recessive model: p = 0.0173; additive model: p = 0.0161) were associated with pericardial effusion in females relative to healthy females. Anti-SSA positive cases were more likely to have the dominant TLR7 rs179010-T allele than normal controls (p = 0.0435). TLR3 rs3775296-T was associated with photosensitivity (p = 0.0020) and anemia (p = 0.0082). The “G-G” haplotype of TLR7 rs3853839 and TLR8 rs3764880 increased risk of SLE in females (age adjusted p = 0.0032). These findings suggest that TLR variations that modify gene expression affect risk for SLE susceptibility, clinical phenotype development, and production of autoantibodies.
Collapse
|
26
|
Kono DH, Baccala R, Theofilopoulos AN. TLRs and interferons: a central paradigm in autoimmunity. Curr Opin Immunol 2013; 25:720-7. [PMID: 24246388 DOI: 10.1016/j.coi.2013.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 01/08/2023]
Abstract
Investigations into the pathogenesis of lupus have largely focused on abnormalities in components of the adaptive immune system. Despite important advances, however, the question about the origin of the pathogenic process, the primary disease trigger, and the dominance of autoantibodies against nuclear components, remained unanswered. Discoveries in the last decade have provided some resolution to these questions by elucidating the central role of nucleic acid-sensing TLRs and the attendant inflammatory response, particularly the production of type I interferons. These priming events are responsible for initiating the adaptive responses that ultimately mediate the pathogenic process.
Collapse
Affiliation(s)
- Dwight H Kono
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | | | | |
Collapse
|
27
|
Abstract
The role of type I interferons (IFNs) in SLE pathogenesis has been a subject of intense investigation in the last decade. The strong link between type I IFNs and SLE was initially provided by ex vivo studies showing that exposure of peripheral blood mononuclear cells to immune complexes from SLE patients elicits a signature of IFN inducible genes and was then further highlighted by human genetic studies. The mechanisms by which type I IFNs, especially IFN alpha (IFNα), modulate the immune system and exacerbate SLE have been largely elucidated through studies in mouse lupus models. In this review, we discuss the characteristics of several such models in which disease is accelerated by ectopically expressed IFNα. We also summarize several studies which tested therapeutic interventions in these models and discuss the advantages and disadvantages of using IFNα accelerated models to study experimental treatments for lupus.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset , New York, NY , USA
| | | |
Collapse
|