1
|
Ranoa DRE, Sharma P, Schane CP, Lewis AN, Valdez E, Marada VVVR, Hager MV, Montgomery W, Wolf SP, Schreiber K, Schreiber H, Bailey K, Fan TM, Hergenrother PJ, Roy EJ, Kranz DM. Single CAR-T cell treatment controls disseminated ovarian cancer in a syngeneic mouse model. J Immunother Cancer 2023; 11:e006509. [PMID: 37258040 PMCID: PMC10255004 DOI: 10.1136/jitc-2022-006509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Treatment of some blood cancers with T cells that express a chimeric antigen receptor (CAR) against CD19 have shown remarkable results. In contrast, CAR-T cell efficacy against solid tumors has been difficult to achieve. METHODS To examine the potential of CAR-T cell treatments against ovarian cancers, we used the mouse ovarian cancer cell line ID8 in an intraperitoneal model that exhibits disseminated solid tumors in female C57BL/6J mice. The CAR contained a single-chain Fv from antibody 237 which recognizes a Tn-glycopeptide-antigen expressed by ID8 due to aberrant O-linked glycosylation in the absence of the transferase-dependent chaperone Cosmc. The efficacy of four Tn-dependent CARs with varying affinity to Tn antigen, and each containing CD28/CD3ζ cytoplasmic domains, were compared in vitro and in vivo in this study. RESULTS In line with many observations about the impact of aberrant O-linked glycosylation, the ID8Cosmc knock-out (ID8Cosmc-KO) exhibited more rapid tumor progression compared with wild-type ID8. Despite the enhanced tumor growth in vivo, 237 CAR and a mutant with 30-fold higher affinity, but not CARs with lower affinity, controlled advanced ID8Cosmc-KO tumors. Tumor regression could be achieved with a single intravenous dose of the CARs, but intraperitoneal administration was even more effective. The CAR-T cells persisted over a period of months, allowing CAR-treated mice to delay tumor growth in a re-challenge setting. The most effective CARs exhibited the highest affinity for antigen. Antitumor effects observed in vivo were associated with increased numbers of T cells and macrophages, and higher levels of cleaved caspase-3, in the tumor microenvironment. Notably, the least therapeutically effective CAR mediated tonic signaling leading to antigen-independent cytokine expression and it had higher levels of the immunosuppressive cytokine interleukin10. CONCLUSION The findings support the development of affinity-optimized CAR-T cells as a potential treatment for established ovarian cancer, with the most effective CARs mediating a distinct pattern of inflammatory cytokine release in vitro. Importantly, the most potent Tn-dependent CAR-T cells showed no evidence of toxicity in tumor-bearing mice in a syngeneic, immunocompetent system.
Collapse
Affiliation(s)
- Diana Rose E Ranoa
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Preeti Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Claire P Schane
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amber N Lewis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Edward Valdez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Venkata V V R Marada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marlies V Hager
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Will Montgomery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Steven P Wolf
- Department of Pathology and David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Karin Schreiber
- Department of Pathology and David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Hans Schreiber
- Department of Pathology and David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Keith Bailey
- Charles River Laboratories Inc Mattawan, Mattawan, Michigan, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul J Hergenrother
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Edward J Roy
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David M Kranz
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Schaettler MO, Desai R, Wang AZ, Livingstone AJ, Kobayashi DK, Coxon AT, Bowman-Kirigin JA, Liu CJ, Li M, Bender DE, White MJ, Kranz DM, Johanns TM, Dunn GP. TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma. J Immunother Cancer 2023; 11:e006121. [PMID: 36808076 PMCID: PMC9944319 DOI: 10.1136/jitc-2022-006121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS We employed single-cell PCR to isolate a TCR specific for the Imp3D81N neoantigen (mImp3) previously identified within the murine glioblastoma model GL261. This TCR was used to generate the Mutant Imp3-Specific TCR TransgenIC (MISTIC) mouse in which all CD8 T cells are specific for mImp3. The therapeutic efficacy of neoantigen-specific T cells was assessed through a model of cellular therapy consisting of the transfer of activated MISTIC T cells and interleukin 2 into lymphodepleted tumor-bearing mice. We employed flow cytometry, single-cell RNA sequencing, and whole-exome and RNA sequencing to examine the factors underlying treatment response. RESULTS We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma.
Collapse
Affiliation(s)
- Maximilian O Schaettler
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anthony Z Wang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Dale K Kobayashi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay A Bowman-Kirigin
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Connor J Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mao Li
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diane E Bender
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J White
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Kranz
- Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner M Johanns
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Kozin SV. Vascular damage in tumors: a key player in stereotactic radiation therapy? Trends Cancer 2022; 8:806-819. [PMID: 35835699 DOI: 10.1016/j.trecan.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The use of stereotactic radiation therapy (SRT) for cancer treatment has grown in recent years, showing excellent results for some tumors. The greatly increased doses per fraction in SRT compared to conventional radiotherapy suggest a 'new biology' that determines treatment outcome. Proposed mechanisms include significant damage to tumor blood vessels and enhanced antitumor immune responses, which are also vasculature-dependent. These ideas are mostly based on the results of radiation studies in animal models because direct observations in humans are limited. However, even preclinical findings are somewhat incomplete and result in ambiguous conclusions. Current evidence of vasculature-related mechanisms of SRT is reviewed. Understanding them could result in better optimization of SRT alone or in combination with immune or other cancer therapies.
Collapse
Affiliation(s)
- Sergey V Kozin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Che Y, Yang Y, Suo J, An Y, Wang X. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunol Immunother 2020; 69:2651-2664. [PMID: 32607768 DOI: 10.1007/s00262-020-02651-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Cervical cancer is the most common malignant tumor of the genital tract in females worldwide. Persistent human papillomavirus (HPV) infection is closely associated with the occurrence of cervical cancer. No licensed therapeutic HPV vaccines for cervical cancer are currently available. In our previous study, we demonstrated that the vaccine containing the HPV16 E7 43-77 peptide and the adjuvant unmethylated cytosine-phosphate-guanosine oligodeoxynucleotide elicited significant prophylactic and therapeutic effects on cervical cancer. In the current study, we comprehensively evaluated the effect of the vaccine on systemic immune responses and the tumor microenvironment (TME) in a mouse model of cervical cancer. The results showed that the administration of the vaccine induced a significant increase in splenic IFN-γ-producing CD4 and CD8 T cells as well as tumor infiltrating CD4 and CD8 T cells. Moreover, marked decreases in splenic MDSCs and Tregs as well as intratumoral MDSCs, Tregs and type 2-polarized tumor-associated macrophages were observed in the vaccine group. The profile of cytokines, chemokines and matrix metalloproteinases (MMPs) in the TME revealed significantly increased expression of IL-2, IL-12, TNF-α, IFN-γ, CCL-20, CXCL-9, CXCL-10 and CXCL-14 and decreased expression of IL-6, IL-10, TGF-β, CCL-2, CCL-3, CCL-5, CXCL-8, MMP-2, MMP-9 and VEGF in the vaccine group. The expression of the cell proliferation indicator Ki67, apoptosis regulatory protein p53 and angiogenesis marker CD31 was significantly decreased in the vaccine group. In conclusion, the vaccine reversed tolerogenic systemic and local TME immunosuppression and induced robust antitumor immune responses, which resulted in the inhibition of established implanted tumors.
Collapse
Affiliation(s)
- Yuxin Che
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Yang Yang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jinguo Suo
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Yujing An
- School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xuelian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
5
|
Oncogene-specific T cells fail to eradicate lymphoma-initiating B cells in mice. Blood 2018; 132:924-934. [PMID: 30002144 DOI: 10.1182/blood-2018-02-834036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022] Open
Abstract
To date, little is known about the interaction between (pre-)malignant B cells and T cells. We generated transgenic mice that allow B cell-specific induction of the oncogene SV40 large T-antigen (TAg) to analyze the role of oncogene-specific T cells during sporadic B-cell lymphoma development. Constitutive TAg expression in CD19-Cre × LoxP-Tag mice resulted in TAg-tolerant CD8+ T cells and development of B-cell lymphomas. In contrast, CD19-CreERT2 × LoxP-Tag mice retained TAg-competent CD8+ T cells at time of oncogene induction and TAg expression in few B cells of adult mice resulted in exceptionally rare lymphoma formation late in life. Increased lymphoma incidence in the absence of TAg-specific T cells suggested T cell-mediated inhibition of lymphoma progression. However, TAg-initiated B cells were not eliminated by T cells and detected long term. Our results demonstrate a failure of the immune system to eradicate lymphoma-initiating B cells, retaining the risk of lymphoma development.
Collapse
|
6
|
Davis RJ, Moore EC, Clavijo PE, Friedman J, Cash H, Chen Z, Silvin C, Van Waes C, Allen C. Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3Kδ/γ. Cancer Res 2017; 77:2607-2619. [PMID: 28364000 PMCID: PMC5466078 DOI: 10.1158/0008-5472.can-16-2534] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 03/10/2017] [Indexed: 01/10/2023]
Abstract
Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth J Davis
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Ellen C Moore
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Jay Friedman
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Harrison Cash
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Chris Silvin
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Clint Allen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Eruslanov EB, Singhal S, Albelda SM. Mouse versus Human Neutrophils in Cancer: A Major Knowledge Gap. Trends Cancer 2017; 3:149-160. [PMID: 28718445 DOI: 10.1016/j.trecan.2016.12.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023]
Abstract
Many types of cancer recruit neutrophils that could have protumor or antitumor effects on tumor development. Numerous findings in murine models suggest a predominantly protumoral role for neutrophils in cancer development. However, there are fundamental differences between mouse and human tumors in the evolution of tumors, genetic diversity, immune response, and also in the intrinsic biology of neutrophils that might have a profound impact on tumor development and the function of these cells. A crucial difference is that the majority of mouse tumor models lack the prolonged initial phases of multistage tumor evolution present in humans when antitumoral mechanisms are activated. In this review, we discuss the challenges specific to cross-species extrapolation of neutrophil function during mouse versus human tumor development.
Collapse
Affiliation(s)
- Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Thoracic Surgery, Department of Surgery, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Arina A, Karrison T, Galka E, Schreiber K, Weichselbaum RR, Schreiber H. Transfer of Allogeneic CD4+ T Cells Rescues CD8+ T Cells in Anti-PD-L1-Resistant Tumors Leading to Tumor Eradication. Cancer Immunol Res 2017; 5:127-136. [PMID: 28077434 DOI: 10.1158/2326-6066.cir-16-0293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T-cell-mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the "exhaustion" markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD-1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. Cancer Immunol Res; 5(2); 127-36. ©2017 AACR.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Pathology, The University of Chicago, Chicago, Illinois.
| | - Theodore Karrison
- Department of Health Studies, The University of Chicago, Chicago, Illinois
| | - Eva Galka
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
|
10
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
11
|
Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, Idel C, Arina A, Duraiswamy J, Weichselbaum RR, Uckert W, Nakamura Y, Schreiber H. Eradication of Large Solid Tumors by Gene Therapy with a T-Cell Receptor Targeting a Single Cancer-Specific Point Mutation. Clin Cancer Res 2015; 22:2734-43. [PMID: 26667491 DOI: 10.1158/1078-0432.ccr-15-2361] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. EXPERIMENTAL DESIGN By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. RESULTS When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. CONCLUSIONS Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602.
Collapse
Affiliation(s)
| | - Boris Engels
- Department of Pathology, The University of Chicago, Illinois
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Illinois
| | - Poh Yin Yew
- Department of Medicine, The University of Chicago, Illinois
| | | | - Christian Idel
- Department of Pathology, The University of Chicago, Illinois
| | - Ainhoa Arina
- Department of Pathology, The University of Chicago, Illinois
| | | | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Illinois
| | - Wolfgang Uckert
- Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | | | - Hans Schreiber
- Institute of Immunology, Charité, Campus Buch, Berlin, Germany. Department of Pathology, The University of Chicago, Illinois
| |
Collapse
|
12
|
Abstract
Radiation has been a staple of cancer therapy since the early 20th century and is implemented in nearly half of current cancer treatment plans. Originally, the genotoxic function of radiation led to a focus on damage and repair pathways associated with deoxyribonucleic acid as important therapeutic targets to augment radiation efficacy. However, in recent decades, the participation of endogenous immune responses in modifying radiation effects have been widely documented and exploited in both preclinical and clinical settings. In particular, preclinical studies have highlighted the capacity of hypofractionated-radiation dose schedules to modify endogenous immune responses raising interest in the use of hypofractionation in the clinical setting to harness the indirect immune effects of radiation and improve clinical responses. We review the current literature regarding the immunomodulatory effects of hypofractionated "ablative" radiation with a primary focus on the preclinical literature but also highlight examples from the clinical literature.
Collapse
Affiliation(s)
- Byron Burnette
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL
| |
Collapse
|
13
|
Arina A, Bronte V. Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Curr Opin Immunol 2015; 33:120-5. [PMID: 25728992 DOI: 10.1016/j.coi.2015.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
Novel models of autochthonous tumorigenesis and adoptive T cell therapy (ATT) are providing new clues regarding the pro-tumorigenic and immunosuppressive effects of myeloid-derived suppressor cells (MDSC), and their interaction with T cells. New findings are shifting the perception of the main level at which MDSC act, from direct cell-to-cell suppression to others, such as limiting T cell infiltration. Adoptively transferred, high-avidity T cells recognizing peptides with high-affinity for MHC-I eliminated large tumors. However, low-avidity T cells or low-affinity peptides resulted in failure to eradicate tumors. Manipulation of intratumoral myeloid cells improved the outcome of otherwise unsuccessful ATT. Therefore, therapeutic intervention directed at the tumor stroma might be required when using suboptimal T cells for ATT.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| | - Vincenzo Bronte
- Verona University Hospital, Department of Pathology and Diagnostics, 37134 Verona, Italy.
| |
Collapse
|
14
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
15
|
Gao Y, Whitaker-Dowling P, Barmada MA, Basse PH, Bergman I. Viral infection of implanted meningeal tumors induces antitumor memory T-cells to travel to the brain and eliminate established tumors. Neuro Oncol 2014; 17:536-44. [PMID: 25223975 DOI: 10.1093/neuonc/nou231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Leptomeningeal metastases occur in 2%-5% of patients with breast cancer and have an exceptionally poor prognosis. The blood-brain and blood-meningeal barriers severely inhibit successful chemotherapy. We have developed a straightforward method to induce antitumor memory T-cells using a Her2/neu targeted vesicular stomatitis virus. We sought to determine whether viral infection of meningeal tumor could attract antitumor memory T-cells to eradicate the tumors. METHODS Meningeal implants in mice were studied using treatment trials and analyses of immune cells in the tumors. RESULTS This paper demonstrates that there is a blood-meningeal barrier to bringing therapeutic memory T-cells to meningeal tumors. The barrier can be overcome by viral infection of the tumor. Viral infection of the meningeal tumors followed by memory T-cell transfer resulted in 89% cure of meningeal tumor in 2 different mouse strains. Viral infection produced increased infiltration and proliferation of transferred memory T-cells in the meningeal tumors. Following viral infection, the leukocyte infiltration in meninges and tumor shifted from predominantly macrophages to predominantly T-cells. Finally, this paper shows that successful viral therapy of peritoneal tumors generates memory CD8 T-cells that prevent establishment of tumor in the meninges of these same animals. CONCLUSIONS These results support the hypothesis that a virally based immunization strategy can be used to both prevent and treat meningeal metastases. The meningeal barriers to cancer therapy may be much more permeable to treatment based on cells than treatment based on drugs or molecules.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Y.G.); Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.W.-D.); Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, American University Hospital, Beirut, Lebanon (M.A.B.); Department of Immunology, University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, Pennsylvania (P.H.B.); Department of Pediatrics, Department of Neurology, and Department of Immunology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania (I.B.)
| | - Patricia Whitaker-Dowling
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Y.G.); Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.W.-D.); Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, American University Hospital, Beirut, Lebanon (M.A.B.); Department of Immunology, University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, Pennsylvania (P.H.B.); Department of Pediatrics, Department of Neurology, and Department of Immunology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania (I.B.)
| | - Mamdouha A Barmada
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Y.G.); Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.W.-D.); Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, American University Hospital, Beirut, Lebanon (M.A.B.); Department of Immunology, University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, Pennsylvania (P.H.B.); Department of Pediatrics, Department of Neurology, and Department of Immunology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania (I.B.)
| | - Per H Basse
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Y.G.); Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.W.-D.); Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, American University Hospital, Beirut, Lebanon (M.A.B.); Department of Immunology, University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, Pennsylvania (P.H.B.); Department of Pediatrics, Department of Neurology, and Department of Immunology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania (I.B.)
| | - Ira Bergman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Y.G.); Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.W.-D.); Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, American University Hospital, Beirut, Lebanon (M.A.B.); Department of Immunology, University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, Pennsylvania (P.H.B.); Department of Pediatrics, Department of Neurology, and Department of Immunology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania (I.B.)
| |
Collapse
|
16
|
Arina A. Rethinking the role of myeloid-derived suppressor cells in adoptive T-cell therapy for cancer. Oncoimmunology 2014; 3:e28464. [PMID: 25050213 PMCID: PMC4063155 DOI: 10.4161/onci.28464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
The expansion of cancer-induced myeloid cells is thought to be one of the main obstacles to successful immunotherapy. Nevertheless, in murine tumors undergoing immune-mediated destruction by adoptively transferred T cells, we have recently shown that such cells maintain their immunosuppressive properties. Therefore, adoptive T-cell therapy can, under certain conditions, overcome myeloid cell immunosuppression.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Pathology; The University of Chicago; Chicago, IL USA
| |
Collapse
|