1
|
Dolbec D, Lehoux M, de Beauville AA, Zahn A, Di Noia JM, Segura M. Unmutated but T cell dependent IgM antibodies targeting Streptococcus suis play an essential role in bacterial clearance. PLoS Pathog 2024; 20:e1011957. [PMID: 38241393 PMCID: PMC10829992 DOI: 10.1371/journal.ppat.1011957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.
Collapse
Affiliation(s)
- Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Alexis Asselin de Beauville
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
| | - Javier Marcelo Di Noia
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
- Department of Medicine, Faculty of Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
2
|
The transcription factor E2A can bind to and cleave single-stranded immunoglobulin heavy chain locus DNA. Mol Immunol 2023; 153:51-59. [PMID: 36434987 DOI: 10.1016/j.molimm.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Class switch recombination (CSR) changes the constant region of the immunoglobulin heavy chain (IgH), and somatic hypermutation (SH) introduces point mutations in the variable regions of the antibody genes. Both these processes that optimize antibody responses of B lymphocytes are initiated by the enzyme Activation Induced cytidine Deaminase (AID). Here we have searched for CSR or SH coupled activities of the transcription factor E2A, since E2A is in a complex with AID and the transcription factors PAX5, ETS1 and IRF4 on key sequences of the Igh locus in B lymphocytes activated to CSR and SH. We report that E2A in contrast to other described transcription factors binds sequence specifically also to single-stranded DNA. The binding of E2A to single-stranded DNA has a strong sequence preference for one strand of a site in the intronic enhancer of the Igh locus. Furthermore, E2A was also found to cleave single-stranded DNA. The sequence profile of substrates cleaved by E2A is coupled to the sequences of substrates and products of AID, suggesting that E2A has a role not only in targeting of AID to switch regions and SH parts of antibody genes but also in cleavage of DNA at these sites.
Collapse
|
3
|
Zhong MC, Lu Y, Qian J, Zhu Y, Dong L, Zahn A, Di Noia JM, Karo-Atar D, King IL, Veillette A. SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. J Exp Med 2021; 218:e20200756. [PMID: 33237304 PMCID: PMC7694575 DOI: 10.1084/jem.20200756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yingzi Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Astrid Zahn
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Javier M. Di Noia
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Danielle Karo-Atar
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L. King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Safavi S, Larouche A, Zahn A, Patenaude AM, Domanska D, Dionne K, Rognes T, Dingler F, Kang SK, Liu Y, Johnson N, Hébert J, Verdun RE, Rada CA, Vega F, Nilsen H, Di Noia JM. The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID. NAR Cancer 2021; 2:zcaa019. [PMID: 33554121 PMCID: PMC7848951 DOI: 10.1093/narcan/zcaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung−/− mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung−/− mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.
Collapse
Affiliation(s)
- Shiva Safavi
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Ariane Larouche
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Anne-Marie Patenaude
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Kiersten Dionne
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Felix Dingler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Seong-Kwi Kang
- ITR Laboratories Canada, Inc., 19601 Clark Graham Ave, Baie-D'Urfe, QC H9X 3T1, Canada
| | - Yan Liu
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Nathalie Johnson
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Josée Hébert
- Department of Medicine, Université de Montréal, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Ramiro E Verdun
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | | | - Francisco Vega
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Hilde Nilsen
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
5
|
Eldin P, Péron S, Galashevskaya A, Denis-Lagache N, Cogné M, Slupphaug G, Briant L. Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. J Transl Med 2020; 18:310. [PMID: 32778120 PMCID: PMC7418440 DOI: 10.1186/s12967-020-02478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). Methods The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. Results In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. Conclusions This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | - Sophie Péron
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Anastasia Galashevskaya
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Nicolas Denis-Lagache
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Michel Cogné
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
6
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Choi JE, Matthews AJ, Michel G, Vuong BQ. AID Phosphorylation Regulates Mismatch Repair-Dependent Class Switch Recombination and Affinity Maturation. THE JOURNAL OF IMMUNOLOGY 2020; 204:13-22. [PMID: 31757865 DOI: 10.4049/jimmunol.1900809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023]
Abstract
Activation-induced cytidine deaminase (AID) generates U:G mismatches in Ig genes that can be converted into untemplated mutations during somatic hypermutation or DNA double-strand breaks during class switch recombination (CSR). Null mutations in UNG and MSH2 demonstrate the complementary roles of the base excision repair (BER) and mismatch repair pathways, respectively, in CSR. Phosphorylation of AID at serine 38 was previously hypothesized to regulate BER during CSR, as the AID phosphorylation mutant, AID(S38A), cannot interact with APE1, a BER protein. Consistent with these findings, we observe a complete block in CSR in AIDS38A/S38AMSH2-/- mouse B cells that correlates with an impaired mutation frequency at 5'Sμ. Similarly, somatic hypermutation is almost negligible at the JH4 intron in AIDS38A/S38AMSH2-/- mouse B cells, and, consistent with this, NP-specific affinity maturation in AIDS38A/S38AMSH2-/- mice is not significantly elevated in response to NP-CGG immunization. Surprisingly, AIDS38A/S38AUNG-/- mouse B cells also cannot complete CSR or affinity maturation despite accumulating significant mutations in 5'Sμ as well as the JH4 intron. These data identify a novel role for phosphorylation of AID at serine 38 in mismatch repair-dependent CSR and affinity maturation.
Collapse
Affiliation(s)
- Jee Eun Choi
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Allysia J Matthews
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Genesis Michel
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY 10016
| |
Collapse
|
8
|
Germinal Immunogenetics predict treatment outcome for PD-1/PD-L1 checkpoint inhibitors. Invest New Drugs 2019; 38:160-171. [PMID: 31402427 DOI: 10.1007/s10637-019-00845-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Background Checkpoint inhibitors bring marked benefits but only in a minority of patients and may also be associated with severe adverse events. Treatment outcome still cannot be faithfully predicted. The following study hypothesized that host genetics could be applied as predictive biomarkers for checkpoint inhibitor response and immune-related adverse events. We conducted a study based on germinal polymorphisms from genes coding for proteins involved in immune regulation. Methods Germinal DNA was obtained from advanced cancer patients treated with anti-PD-1/PD-L1 checkpoint inhibitors. DNA was genotyped using a custom panel of 166 single nucleotide polymorphisms covering 86 preselected immunogenetic-related genes. Computational analysis using a GTEX portal was made to determine potential expression Quantitative Trait Loci in tissues. Results Ninety-four consecutive patients were included. Objective response rate (complete or partial response) was significantly correlated to tumor microenvironment-related SNPs concerning CCL2, NOS3, IL1RN, IL12B, CXCR3 and IL6R genes. Toxicity were linked to target-related gene SNPs including UNG, IFNW1, CTLA4, PD-L1 and IFNL4 genes. The Area Under the ROC curve (AUC) was 0.81 (95% CI: 0.72-0.9) for response and 0.89 (95% CI: 0.76-1.00) for toxicity. In silico functionality exploring pointed rs4845618 (IL6R), rs10964859 (IFNW1) and rs3087243 (CTLA4) as potentially impacting gene expression. Conclusion These results strongly support a role for distinct immunogenetic-related gene SNPs able to predict efficacy and safety of anti-PD1/PD-L1 therapies. The results highlight the existence of patient-specific, germinal biomarkers able predict response to checkpoint inhibitor efficacy and, possibly, to predict treatment-related adverse events.
Collapse
|
9
|
PRMT5 is essential for B cell development and germinal center dynamics. Nat Commun 2019; 10:22. [PMID: 30604754 PMCID: PMC6318318 DOI: 10.1038/s41467-018-07884-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
Mechanisms regulating B cell development, activation, education in the germinal center (GC) and differentiation, underpin the humoral immune response. Protein arginine methyltransferase 5 (Prmt5), which catalyzes most symmetric dimethyl arginine protein modifications, is overexpressed in B cell lymphomas but its function in normal B cells is poorly defined. Here we show that Prmt5 is necessary for antibody responses and has essential but distinct functions in all proliferative B cell stages in mice. Prmt5 is necessary for B cell development by preventing p53-dependent and p53-independent blocks in Pro-B and Pre-B cells, respectively. By contrast, Prmt5 protects, via p53-independent pathways, mature B cells from apoptosis during activation, promotes GC expansion, and counters plasma cell differentiation. Phenotypic and RNA-seq data indicate that Prmt5 regulates GC light zone B cell fate by regulating transcriptional programs, achieved in part by ensuring RNA splicing fidelity. Our results establish Prmt5 as an essential regulator of B cell biology. Protective antibody responses depend critically on proper B cell development and differentiation at multiple stages. Here the authors show that a protein arginine methyltransferase, Prmt5 uses multiples pathways to prevent death of immature B cells, yet modulates, in p53-independent manners, the survival and differentiation of mature B cells.
Collapse
|
10
|
Galicia G, Lee DSW, Ramaglia V, Ward LA, Yam JY, Leung LYT, Li R, Handy M, Zhang J, Drohomyrecky PC, Lancaster E, Bar-Or A, Martin A, Gommerman JL. Isotype-Switched Autoantibodies Are Necessary To Facilitate Central Nervous System Autoimmune Disease in Aicda−/− and Ung−/− Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:1119-1130. [DOI: 10.4049/jimmunol.1700729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 12/30/2022]
|
11
|
Chen Z, Zhu S, Wang L, Xie D, Zhang H, Li X, Zheng X, Du Z, Li J, Bai L. Memory Follicular Helper Invariant NKT Cells Recognize Lipid Antigens on Memory B Cells and Elicit Antibody Recall Responses. THE JOURNAL OF IMMUNOLOGY 2018; 200:3117-3127. [DOI: 10.4049/jimmunol.1701026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
|
12
|
|
13
|
Eid MMA, Shimoda M, Singh SK, Almofty SA, Pham P, Goodman MF, Maeda K, Sakaguchi N. Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells. Int Immunol 2017; 29:211-220. [PMID: 28541550 PMCID: PMC5890899 DOI: 10.1093/intimm/dxx032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin affinity maturation depends on somatic hypermutation (SHM) in immunoglobulin variable (IgV) regions initiated by activation-induced cytidine deaminase (AID). AID induces transition mutations by C→U deamination on both strands, causing C:G→T:A. Error-prone repairs of U by base excision and mismatch repairs (MMRs) create transversion mutations at C/G and mutations at A/T sites. In Neuberger’s model, it remained to be clarified how transition/transversion repair is regulated. We investigate the role of AID-interacting GANP (germinal center-associated nuclear protein) in the IgV SHM profile. GANP enhances transition mutation of the non-transcribed strand G and reduces mutation at A, restricted to GYW of the AID hotspot motif. It reduces DNA polymerase η hotspot mutations associated with MMRs followed by uracil-DNA glycosylase. Mutation comparison between IgV complementary and framework regions (FWRs) by Bayesian statistical estimation demonstrates that GANP supports the preservation of IgV FWR genomic sequences. GANP works to maintain antibody structure by reducing drastic changes in the IgV FWR in affinity maturation.
Collapse
Affiliation(s)
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.,Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC).,Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)
| | - Sarah Ameen Almofty
- Laboratory of Immunology, Institute for Research and Medical Consultations (IRMC), University Of Dammam (UOD), PO Box 1982, Dammam 31441, Saudi Arabia
| | - Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, University Park, Los Angeles, CA 90089-2910, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, University Park, Los Angeles, CA 90089-2910, USA
| | - Kazuhiko Maeda
- Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC).,Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobuo Sakaguchi
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
14
|
Yuan C, Chu CC, Yan XJ, Bagnara D, Chiorazzi N, MacCarthy T. The Number of Overlapping AID Hotspots in Germline IGHV Genes Is Inversely Correlated with Mutation Frequency in Chronic Lymphocytic Leukemia. PLoS One 2017; 12:e0167602. [PMID: 28125682 PMCID: PMC5268644 DOI: 10.1371/journal.pone.0167602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots. Human Ig heavy chain (IGHV) genes differ in terms of WGCW numbers, ranging from 4 for IGHV3-48*03 to as many as 12 in IGHV1-69*01. An absence of V-region mutations in CLL patients ("IGHV unmutated", or U-CLL) is associated with a poorer prognosis compared to "IGHV mutated" (M-CLL) patients. The reasons for this difference are still unclear, but it has been noted that particular IGHV genes associate with U-CLL vs M-CLL. For example, patients with IGHV1-69 clones tend to be U-CLL with a poor prognosis, whereas patients with IGHV3-30 tend to be M-CLL and have a better prognosis. Another distinctive feature of CLL is that ~30% of (mostly poor prognosis) patients can be classified into "stereotyped" subsets, each defined by HCDR3 similarity, suggesting selection, possibly for a self-antigen. We analyzed >1000 IGHV genes from CLL patients and found a highly significant statistical relationship between the number of WGCW hotspots in the germline V-region and the observed mutation frequency in patients. However, paradoxically, this correlation was inverse, with V-regions with more WGCW hotspots being less likely to be mutated, i.e., more likely to be U-CLL. The number of WGCW hotspots in particular, are more strongly correlated with mutation frequency than either non-overlapping (WRC) hotspots or more general models of mutability derived from somatic hypermutation data. Furthermore, this correlation is not observed in sequences from the B cell repertoires of normal individuals and those with autoimmune diseases.
Collapse
Affiliation(s)
- Chaohui Yuan
- Department of Applied Mathematics and Statistics, Stony Brook University, NY, United States of America
| | - Charles C Chu
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Departments of Medicine and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Davide Bagnara
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Departments of Medicine and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, NY, United States of America
| |
Collapse
|
15
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Cortizas EM, Zahn A, Safavi S, Reed JA, Vega F, Di Noia JM, Verdun RE. UNG protects B cells from AID-induced telomere loss. J Exp Med 2016; 213:2459-2472. [PMID: 27697833 PMCID: PMC5068241 DOI: 10.1084/jem.20160635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023] Open
Abstract
Verdun and colleagues find that the uracil-DNA glycosylase UNG, which promotes DNA breaks in the immunoglobulin genes during class switch recombination and is required for AID-induced chromosomal translocations, protects telomeres from AID-induced DNA damage and subsequent dysfunction. Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair.
Collapse
Affiliation(s)
- Elena M Cortizas
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Joseph A Reed
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Francisco Vega
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada .,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ramiro E Verdun
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 .,Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, FL 33125
| |
Collapse
|
17
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
18
|
Montamat-Sicotte D, Liztler LC, Abreu C, Safavi S, Zahn A, Orthwein A, Muschen M, Oppezzo P, Muñoz DP, Di Noia JM. HSP90 inhibitors decrease AID levels and activity in mice and in human cells. Eur J Immunol 2015; 45:2365-76. [PMID: 25912253 PMCID: PMC4536124 DOI: 10.1002/eji.201545462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/26/2015] [Accepted: 04/25/2015] [Indexed: 01/25/2023]
Abstract
Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications.
Collapse
Affiliation(s)
| | - Ludivine C Liztler
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | | | - Markus Muschen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco,USA
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Denise P Muñoz
- UCSF Benioff Children’s Hospital and Research Institute at Oakland, Oakland, USA
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
19
|
Collin R, Dugas V, Chabot-Roy G, Salem D, Zahn A, Di Noia JM, Rauch J, Lesage S. Autoimmunity and antibody affinity maturation are modulated by genetic variants on mouse chromosome 12. J Autoimmun 2015; 58:90-9. [PMID: 25623266 DOI: 10.1016/j.jaut.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Autoimmune diseases result from a break in immune tolerance leading to an attack on self-antigens. Autoantibody levels serve as a predictive tool for the early diagnosis of many autoimmune diseases, including type 1 diabetes. We find that a genetic locus on mouse chromosome 12 influences the affinity maturation of antibodies as well as autoantibody production. Thus, we generated a NOD.H2(k) congenic strain bearing B10 alleles at the locus comprised within the D12Mit184 and D12Mit12 markers, which we named NOD.H2(k)-Chr12. We determined the biological relevance of the Chr12 locus on the autoimmune process using an antigen-specific TCR transgenic autoimmune mouse model. Specifically, the 3A9 TCR transgene, which recognizes a peptide from hen egg lysozyme (HEL) in the context of I-A(k), and the HEL transgene, which is expressed under the rat-insulin promoter (iHEL), were bred into the NOD.H2(k)-Chr12 congenic strain. In the resulting 3A9 TCR:iHEL NOD.H2(k)-Chr12 mice, we observed a significant decrease in diabetes incidence as well as a decrease in both the quantity and affinity of HEL-specific IgG autoantibodies relative to 3A9 TCR:iHEL NOD.H2(k) mice. Notably, the decrease in autoantibodies due to the Chr12 locus was not restricted to the TCR transgenic model, as it was also observed in the non-transgenic NOD.H2(k) setting. Of importance, antibody affinity maturation upon immunization and re-challenge was also impeded in NOD.H2(k)-Chr12 congenic mice relative to NOD.H2(k) mice. Together, these results demonstrate that a genetic variant(s) present within the Chr12 locus plays a global role in modulating antibody affinity maturation.
Collapse
Affiliation(s)
- Roxanne Collin
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| | - Véronique Dugas
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Mitacs, Computer Research Institute of Montreal, Montréal, Québec, H3N 1M3, Canada.
| | - Geneviève Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada.
| | - David Salem
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada.
| | - Astrid Zahn
- Division of Immunology and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.
| | - Javier M Di Noia
- Division of Immunology and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada.
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
20
|
APE1 is dispensable for S-region cleavage but required for its repair in class switch recombination. Proc Natl Acad Sci U S A 2014; 111:17242-7. [PMID: 25404348 DOI: 10.1073/pnas.1420221111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for antibody diversification, namely somatic hypermutation (SHM) and class switch recombination (CSR). The deficiency of apurinic/apyrimidinic endonuclease 1 (Ape1) in CH12F3-2A B cells reduces CSR to ∼20% of wild-type cells, whereas the effect of APE1 loss on SHM has not been examined. Here we show that, although APE1's endonuclease activity is important for CSR, it is dispensable for SHM as well as IgH/c-myc translocation. Importantly, APE1 deficiency did not show any defect in AID-induced S-region break formation, but blocked both the recruitment of repair protein Ku80 to the S region and the synapse formation between Sμ and Sα. Knockdown of end-processing factors such as meiotic recombination 11 homolog (MRE11) and carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) further reduced the remaining CSR in Ape1-null CH12F3-2A cells. Together, our results show that APE1 is dispensable for SHM and AID-induced DNA breaks and may function as a DNA end-processing enzyme to facilitate the joining of broken ends during CSR.
Collapse
|
21
|
Yousif AS, Stanlie A, Begum NA, Honjo T. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination. Int Immunol 2014; 26:575-8. [PMID: 24994819 DOI: 10.1093/intimm/dxu071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR.
Collapse
Affiliation(s)
- Ashraf S Yousif
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Andre Stanlie
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Dingler FA, Kemmerich K, Neuberger MS, Rada C. Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation. Eur J Immunol 2014; 44:1925-35. [PMID: 24771041 PMCID: PMC4158878 DOI: 10.1002/eji.201444482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022]
Abstract
Excision of uracil introduced into the immunoglobulin loci by AID is central to antibody diversification. While predominantly carried out by the UNG uracil‐DNA glycosylase as reflected by deficiency in immunoglobulin class switching in Ung−/− mice, the deficiency is incomplete, as evidenced by the emergence of switched IgG in the serum of Ung−/− mice. Lack of switching in mice deficient in both UNG and MSH2 suggested that mismatch repair initiated a backup pathway. We now show that most of the residual class switching in Ung−/− mice depends upon the endogenous SMUG1 uracil‐DNA glycosylase, with in vitro switching to IgG1 as well as serum IgG3, IgG2b, and IgA greatly diminished in Ung−/−Smug1−/− mice, and that Smug1 partially compensates for Ung deficiency over time. Nonetheless, using a highly MSH2‐dependent mechanism, Ung−/−Smug1−/− mice can still produce detectable levels of switched isotypes, especially IgG1. While not affecting the pattern of base substitutions, SMUG1 deficiency in an Ung−/− background further reduces somatic hypermutation at A:T base pairs. Our data reveal an essential requirement for uracil excision in class switching and in facilitating noncanonical mismatch repair for the A:T phase of hypermutation presumably by creating nicks near the U:G lesion recognized by MSH2.
Collapse
|
23
|
Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:235-244. [PMID: 24384471 DOI: 10.1016/j.dci.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The current review focuses on pre- and post-natal development of intestinal immunoglobulin A (IgA) production in pig. IgA production is influenced by intrinsic genetic factors in the foetus as well as extrinsic environmental factors during the post-natal period. At birth, piglets are exposed to new antigens through maternal colostrums/milk as well as exogenous microbiota. This exposure to new antigens is critical for the proper development of the gut mucosal immune system and is characterized mainly by the establishment of IgA response. A second critical period for neonatal intestinal immune system development occurs at weaning time when the gut environment is exposed to new dietary antigens. Neonate needs to establish oral tolerance and in the absence of protective milk need to fight potential new pathogens. To improve knowledge about the immune response in the neonates, it is important to identify intrinsic and extrinsic factors which influence the intestinal immune system development and to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - François Meurens
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| |
Collapse
|
24
|
Rouaud P, Saintamand A, Saad F, Carrion C, Lecardeur S, Cogné M, Denizot Y. Elucidation of the enigmatic IgD class-switch recombination via germline deletion of the IgH 3' regulatory region. ACTA ACUST UNITED AC 2014; 211:975-85. [PMID: 24752300 DOI: 10.1084/jem.20131385] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Classical class-switch recombination (cCSR) substitutes the Cμ gene with Cγ, Cε, or Cα, thereby generating IgG, IgE, or IgA classes, respectively. This activation-induced deaminase (AID)-driven process is controlled by the IgH 3' regulatory region (3'RR). Regulation of rare IgD CSR events has been enigmatic. We show that μδCSR occurs in mouse mesenteric lymph node (MLN) B cells and is AID-dependent. AID attacks differ from those in cCSR because they are not accompanied by extensive somatic hypermutation (SHM) of targeted regions and because repaired junctions exhibit features of the alternative end-joining (A-EJ) pathway. In contrast to cCSR and SHM, μδCSR is 3'RR-independent, as its absence affects neither breakpoint locations in Sμ- and Sδ-like (σ(δ)) nor mutation patterns at Sμ-σ(δ) junctions. Although mutations occur in the immediate proximity of the μδ junctions, SHM is absent distal to the junctions within both Sμ and rearranged VDJ regions. In conclusion, μδCSR is active in MLNs, occurs independently of 3'RR-driven assembly, and is even dramatically increased in 3'RR-deficient mice, further showing that its regulation differs from cCSR.
Collapse
Affiliation(s)
- Pauline Rouaud
- UMR CNRS 7276, Centre National de la Recherche Scientifique, Université de Limoges, 87025 Limoges, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci U S A 2014; 111:E988-97. [PMID: 24591601 DOI: 10.1073/pnas.1320486111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.
Collapse
|
26
|
Differential regulation of S-region hypermutation and class-switch recombination by noncanonical functions of uracil DNA glycosylase. Proc Natl Acad Sci U S A 2014; 111:E1016-24. [PMID: 24591630 DOI: 10.1073/pnas.1402391111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential to class-switch recombination (CSR) and somatic hypermutation (SHM) in both V region SHM and S region SHM (s-SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair (BER) complex, is required for CSR. Strikingly, however, UNG deficiency causes augmentation of SHM, suggesting involvement of distinct functions of UNG in SHM and CSR. Here, we show that noncanonical scaffold functions of UNG regulate s-SHM negatively and CSR positively. The s-SHM suppressive function of UNG is attributed to the recruitment of faithful BER components at the cleaved DNA locus, with competition against error-prone polymerases. By contrast, the CSR-promoting function of UNG enhances AID-dependent S-S synapse formation by recruiting p53-binding protein 1 and DNA-dependent protein kinase, catalytic subunit. Several loss-of-catalysis mutants of UNG discriminated CSR-promoting activity from s-SHM suppressive activity. Taken together, the noncanonical function of UNG regulates the steps after AID-induced DNA cleavage: error-prone repair suppression in s-SHM and end-joining promotion in CSR.
Collapse
|
27
|
Schrader CE, Linehan EK, Ucher AJ, Bertocci B, Stavnezer J. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations. DNA Repair (Amst) 2013; 12:1087-93. [PMID: 24084171 DOI: 10.1016/j.dnarep.2013.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 11/28/2022]
Abstract
During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3' flanking region in Peyer's patch germinal center (GC) B cells from polβ(-/-)polλ(-/-), polλ(-/-), and polβ(-/-) mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | | | | | | | | |
Collapse
|