1
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
2
|
Ramji DP, Ismail A, Chen J, Alradi F, Al Alawi S. Survey of In Vitro Model Systems for Investigation of Key Cellular Processes Associated with Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:39-56. [PMID: 35237957 DOI: 10.1007/978-1-0716-1924-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atherosclerosis progression is associated with a complex array of cellular processes in the arterial wall, including endothelial cell activation/dysfunction, chemokine-driven recruitment of immune cells, differentiation of monocytes to macrophages and their subsequent transformation into lipid laden foam cells, activation of inflammasome and pro-inflammatory signaling, and migration of smooth muscle cells from the media to the intima. The use of in vitro model systems has considerably advanced our understanding of these atherosclerosis-associated processes and they are also often used in drug discovery and other screening platforms. This chapter will describe key in vitro model systems employed frequently in atherosclerosis research.
Collapse
Affiliation(s)
- Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | - Alaa Ismail
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Jing Chen
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Fahad Alradi
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
3
|
Kothari V, Tang J, He Y, Kramer F, Kanter JE, Bornfeldt KE. ADAM17 Boosts Cholesterol Efflux and Downstream Effects of High-Density Lipoprotein on Inflammatory Pathways in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:1854-1873. [PMID: 33882688 PMCID: PMC8159900 DOI: 10.1161/atvbaha.121.315145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Yi He
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Jenny E. Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109
| |
Collapse
|
4
|
Chilunda V, Martinez-Aguado P, Xia LC, Cheney L, Murphy A, Veksler V, Ruiz V, Calderon TM, Berman JW. Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Front Immunol 2021; 12:665773. [PMID: 34108966 PMCID: PMC8181441 DOI: 10.3389/fimmu.2021.665773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has caused more than three million deaths globally. The severity of the disease is characterized, in part, by a dysregulated immune response. CD16+ monocytes are innate immune cells involved in inflammatory responses to viral infections, and tissue repair, among other functions. We characterized the transcriptional changes in CD16+ monocytes from PBMC of people with COVID-19, and from healthy individuals using publicly available single cell RNA sequencing data. CD16+ monocytes from people with COVID-19 compared to those from healthy individuals expressed transcriptional changes indicative of increased cell activation, and induction of a migratory phenotype. We also analyzed COVID-19 cases based on severity of the disease and found that mild cases were characterized by upregulation of interferon response and MHC class II related genes, whereas the severe cases had dysregulated expression of mitochondrial and antigen presentation genes, and upregulated inflammatory, cell movement, and apoptotic gene signatures. These results suggest that CD16+ monocytes in people with COVID-19 contribute to a dysregulated host response characterized by decreased antigen presentation, and an elevated inflammatory response with increased monocytic infiltration into tissues. Our results show that there are transcriptomic changes in CD16+ monocytes that may impact the functions of these cells, contributing to the pathogenesis and severity of COVID-19.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Li C. Xia
- Department of Epidemiology and Public Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aniella Murphy
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Veronica Veksler
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Ruiz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina M. Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Morsing SKH, Rademakers T, Brouns SLN, van Stalborch AMD, Donners MMPC, van Buul JD. ADAM10-Mediated Cleavage of ICAM-1 Is Involved in Neutrophil Transendothelial Migration. Cells 2021; 10:cells10020232. [PMID: 33504031 PMCID: PMC7911467 DOI: 10.3390/cells10020232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
To efficiently cross the endothelial barrier during inflammation, neutrophils first firmly adhere to the endothelial surface using the endothelial adhesion molecule ICAM-1. Upon actual transmigration, the release from ICAM-1 is required. While Integrin LFA1/Mac1 de-activation is one described mechanism that leads to this, direct cleavage of ICAM-1 from the endothelium represents a second option. We found that a disintegrin and metalloprotease 10 (ADAM10) cleaves the extracellular domain of ICAM-1 from the endothelial surface. Silencing or inhibiting endothelial ADAM10 impaired the efficiency of neutrophils to cross the endothelium, suggesting that neutrophils use endothelial ADAM10 to dissociate from ICAM-1. Indeed, when measuring transmigration kinetics, neutrophils took almost twice as much time to finish the diapedesis step when ADAM10 was silenced. Importantly, we found increased levels of ICAM-1 on the transmigrating neutrophils when crossing an endothelial monolayer where such increased levels were not detected when neutrophils crossed bare filters. Using ICAM-1-GFP-expressing endothelial cells, we show that ICAM-1 presence on the neutrophils can also occur by membrane transfer from the endothelium to the neutrophil. Based on these findings, we conclude that endothelial ADAM10 contributes in part to neutrophil transendothelial migration by cleaving ICAM-1, thereby supporting the release of neutrophils from the endothelium during the final diapedesis step.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Timo Rademakers
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Sanne L. N. Brouns
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Anne-Marieke D. van Stalborch
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Marjo M. P. C. Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (M.M.P.C.D.); (J.D.v.B.); Tel.: +31-43-3877167 (M.M.P.C.D.); +31-20-5121219 (J.D.v.B.); Fax: +31-20-5123310 (J.D.v.B.)
| | - Jaap D. van Buul
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Correspondence: (M.M.P.C.D.); (J.D.v.B.); Tel.: +31-43-3877167 (M.M.P.C.D.); +31-20-5121219 (J.D.v.B.); Fax: +31-20-5123310 (J.D.v.B.)
| |
Collapse
|
7
|
Otto NA, Butler JM, Ramirez-Moral I, van Weeghel M, van Heijst JWJ, Scicluna BP, Houtkooper RH, de Vos AF, van der Poll T. Adherence Affects Monocyte Innate Immune Function and Metabolic Reprogramming after Lipopolysaccharide Stimulation In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 206:827-838. [PMID: 33408258 DOI: 10.4049/jimmunol.2000702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
Circulating nonadherent monocytes can migrate to extravascular sites by a process that involves adherence. Alterations in intracellular metabolism shape the immunological phenotype of phagocytes upon activation. To determine the effect of adherence on their metabolic and functional response human monocytes were stimulated with LPS under nonadherent and adherent conditions. Adherent monocytes (relative to nonadherent monocytes) produced less TNF and IL-1β (proinflammatory) and more IL-10 (anti-inflammatory) upon LPS stimulation and had an increased capacity to phagocytose and produce reactive oxygen species. RNA sequencing analysis confirmed that adherence modified the LPS-induced response of monocytes, reducing expression of proinflammatory genes involved in TLR signaling and increasing induction of genes involved in pathogen elimination. Adherence resulted in an increased glycolytic response as indicated by lactate release, gene set enrichment, and [13C]-glucose flux analysis. To determine the role of glycolysis in LPS-induced immune responses, this pathway was inhibited by glucose deprivation or the glucose analogue 2-deoxy-d-glucose (2DG). Although both interventions equally inhibited glycolysis, only 2DG influenced monocyte functions, inhibiting expression of genes involved in TLR signaling and pathogen elimination, as well as cytokine release. 2DG, but not glucose deprivation, reduced expression of genes involved in oxidative phosphorylation. Inhibition of oxidative phosphorylation affected TNF and IL-10 release in a similar way as 2DG. Collectively, these data suggest that adherence may modify the metabolic and immunological profile of monocytes and that inhibition of glycolysis and oxidative phosphorylation, but not inhibition of glycolysis alone, has a profound effect on immune functions of monocytes exposed to LPS.
Collapse
Affiliation(s)
- Natasja A Otto
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; .,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ivan Ramirez-Moral
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Core Facility Metabolomics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | | | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
8
|
Hernandez AA, Foster GA, Soderberg SR, Fernandez A, Reynolds MB, Orser MK, Bailey KA, Rogers JH, Singh GD, Wu H, Passerini AG, Simon SI. An Allosteric Shift in CD11c Affinity Activates a Proatherogenic State in Arrested Intermediate Monocytes. THE JOURNAL OF IMMUNOLOGY 2020; 205:2806-2820. [PMID: 33055281 DOI: 10.4049/jimmunol.2000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Intermediate monocytes (iMo; CD14+CD16+) increase in number in the circulation of patients with unstable coronary artery disease (CAD), and their recruitment to inflamed arteries is implicated in events leading to mortality following MI. Monocyte recruitment to inflamed coronary arteries is initiated by high affinity β2-integrin (CD11c/CD18) that activates β1-integrin (VLA-4) to bind endothelial VCAM-1. How integrin binding under shear stress mechanosignals a functional shift in iMo toward an inflammatory phenotype associated with CAD progression is unknown. Whole blood samples from patients treated for symptomatic CAD including non-ST elevation MI, along with healthy age-matched subjects, were collected to assess chemokine and integrin receptor levels on monocytes. Recruitment on inflamed human aortic endothelium or rVCAM-1 under fluid shear stress was assessed using a microfluidic-based artery on a chip (A-Chip). Membrane upregulation of high affinity CD11c correlated with concomitant activation of VLA-4 within focal adhesive contacts was required for arrest and diapedesis across inflamed arterial endothelium to a greater extent in non-ST elevation MI compared with stable CAD patients. The subsequent conversion of CD11c from a high to low affinity state under fluid shear activated phospho-Syk- and ADAM17-mediated proteolytic cleavage of CD16. This marked the conversion of iMo to an inflammatory phenotype associated with nuclear translocation of NF-κB and production of IL-1β+ We conclude that CD11c functions as a mechanoregulator that activates an inflammatory state preferentially in a majority of iMo from cardiac patients but not healthy patients.
Collapse
Affiliation(s)
- Alfredo A Hernandez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Greg A Foster
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Stephanie R Soderberg
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Andrea Fernandez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Mack B Reynolds
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Mable K Orser
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Keith A Bailey
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Jason H Rogers
- Department of Cardiovascular and Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817; and
| | - Gagan D Singh
- Department of Cardiovascular and Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817; and
| | - Huaizhu Wu
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616;
| |
Collapse
|
9
|
Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation. Mol Cell Biol 2018; 38:MCB.00103-18. [PMID: 29891514 DOI: 10.1128/mcb.00103-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/06/2018] [Indexed: 02/04/2023] Open
Abstract
Macrophages are prominent cells in acute and chronic inflammatory diseases. Recent studies highlight a role for macrophage proliferation post-monocyte recruitment under inflammatory conditions. Using an acute peritonitis model, we identify a significant defect in macrophage proliferation in mice lacking the leukocyte transmembrane protease ADAM17. The defect is associated with decreased levels of macrophage colony-stimulating factor 1 (CSF-1) in the peritoneum and is rescued by intraperitoneal injection of CSF-1. Cell surface CSF-1 (csCSF-1) is one of the substrates of ADAM17. We demonstrate that both infiltrated neutrophils and macrophages are major sources of csCSF-1. Furthermore, acute shedding of csCSF-1 following neutrophil extravasation is associated with elevated expression of iRhom2, a member of the rhomboid-like superfamily, which promotes ADAM17 maturation and trafficking to the neutrophil surface. Accordingly, deletion of hematopoietic iRhom2 is sufficient to prevent csCSF-1 release from neutrophils and macrophages and to prevent macrophage proliferation. In acute inflammation, csCSF-1 release and macrophage proliferation are self-limiting due to transient leukocyte recruitment and temporally restricted csCSF-1 expression. In chronic inflammation, such as atherosclerosis, the ADAM17-mediated lesional macrophage proliferative response is prolonged. Our results demonstrate a novel mechanism whereby ADAM17 promotes macrophage proliferation in states of acute and chronic inflammation.
Collapse
|
10
|
Matthews AL, Koo CZ, Szyroka J, Harrison N, Kanhere A, Tomlinson MG. Regulation of Leukocytes by TspanC8 Tetraspanins and the "Molecular Scissor" ADAM10. Front Immunol 2018; 9:1451. [PMID: 30013551 PMCID: PMC6036176 DOI: 10.3389/fimmu.2018.01451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a "molecular scissor" to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function. ADAM10 cleaves many other leukocyte-expressed substrates. On B-cells, ADAM10 cleavage of the low-affinity IgE receptor CD23 promotes allergy and asthma, cleavage of ICOS ligand impairs antibody responses, and cleavage of the BAFF-APRIL receptor transmembrane activator and CAML interactor, and BAFF receptor, reduce B-cell survival. On microglia, increased ADAM10 cleavage of a rare variant of the scavenger receptor triggering receptor expressed on myeloid cells 2 may increase susceptibility to Alzheimer's disease. We and others recently showed that ADAM10 interacts with one of six different regulatory tetraspanin membrane proteins, which we termed the TspanC8 subgroup, comprising Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. The TspanC8s are required for ADAM10 exit from the endoplasmic reticulum, and emerging evidence suggests that they dictate ADAM10 subcellular localization and substrate specificity. Therefore, we propose that ADAM10 should not be regarded as a single scissor, but as six different scissors with distinct substrate specificities, depending on the associated TspanC8. In this review, we collate recent transcriptomic data to present the TspanC8 repertoires of leukocytes, and we discuss the potential role of the six TspanC8/ADAM10 scissors in leukocyte development and function.
Collapse
Affiliation(s)
- Alexandra L Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chek Ziu Koo
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Justyna Szyroka
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Reyat JS, Chimen M, Noy PJ, Szyroka J, Rainger GE, Tomlinson MG. ADAM10-Interacting Tetraspanins Tspan5 and Tspan17 Regulate VE-Cadherin Expression and Promote T Lymphocyte Transmigration. THE JOURNAL OF IMMUNOLOGY 2017; 199:666-676. [PMID: 28600292 PMCID: PMC5502317 DOI: 10.4049/jimmunol.1600713] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
Abstract
The recruitment of blood leukocytes across the endothelium to sites of tissue infection is central to inflammation, but also promotes chronic inflammatory diseases. A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane molecular scissor that is implicated in leukocyte transmigration by proteolytically cleaving its endothelial substrates. These include VE-cadherin, a homotypic adhesion molecule that regulates endothelial barrier function, and transmembrane chemokines CX3CL1 and CXCL16, which have receptors on leukocytes. However, a definitive role for endothelial ADAM10 in transmigration of freshly isolated primary leukocytes under flow has not been demonstrated, and the relative importance of distinct ADAM10 substrates is unknown. Emerging evidence suggests that ADAM10 can be regarded as six different molecular scissors with different substrate specificities, depending on which of six TspanC8 tetraspanins it is associated with, but TspanC8s remain unstudied in leukocyte transmigration. In the current study, ADAM10 knockdown on primary HUVECs was found to impair transmigration of freshly isolated human peripheral blood T lymphocytes, but not neutrophils or B lymphocytes, in an in vitro flow assay. This impairment was due to delayed transmigration rather than a complete block, and was overcome in the presence of neutrophils. Transmigration of purified lymphocytes was dependent on ADAM10 regulation of VE-cadherin, but not CX3CL1 and CXCL16. Tspan5 and Tspan17, the two most closely related TspanC8s by sequence, were the only TspanC8s that regulated VE-cadherin expression and were required for lymphocyte transmigration. Therefore endothelial Tspan5- and Tspan17-ADAM10 complexes may regulate inflammation by maintaining normal VE-cadherin expression and promoting T lymphocyte transmigration.
Collapse
Affiliation(s)
- Jasmeet S Reyat
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Peter J Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Justyna Szyroka
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| |
Collapse
|
12
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
13
|
Dopamine Increases CD14 +CD16 + Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol 2017; 12:353-370. [PMID: 28133717 DOI: 10.1007/s11481-017-9726-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Collapse
|
14
|
Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015; 107:321-30. [PMID: 25990461 PMCID: PMC4592323 DOI: 10.1093/cvr/cvv147] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/06/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Monocytes fundamentally contribute to immune surveillance and the inflammatory response in immunoinflammatory diseases like atherosclerosis. Recruitment of these cells to the site of injury requires their trafficking across the blood vessel wall. A series of events, including capture, rolling, slow rolling, arrest, adhesion strengthening, and lateral locomotion, precede monocyte transmigration. Recent investigations have revealed new aspects of this cascade. This article revisits some conventional paradigms and selectively highlights new findings, including novel insights into monocyte differentiation and recently identified functional mediators, signalling pathways, and new structural aspects of monocyte extravasation. The emerging roles of endothelial junctional molecules like vascular endothelial-cadherin and the junctional adhesion molecule family, adhesion molecules such as intercellular adhesion molecule-1, molecules localized to the lateral border recycling compartment like cluster of differentiation 99, platelet/endothelial cell adhesion molecule-1, and poliovirus receptor (CD155), as well as other cell surface molecules such as cluster of differentiation 146 and ephrins in transendothelial migration are discussed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Mężyk-Kopeć R, Wyroba B, Stalińska K, Próchnicki T, Wiatrowska K, Kilarski WW, Swartz MA, Bereta J. ADAM17 Promotes Motility, Invasion, and Sprouting of Lymphatic Endothelial Cells. PLoS One 2015; 10:e0132661. [PMID: 26176220 PMCID: PMC4503755 DOI: 10.1371/journal.pone.0132661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 02/04/2023] Open
Abstract
Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFβ2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Renata Mężyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Institute of Bioengineering and Swiss Institute for Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara Wyroba
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Tomasz Próchnicki
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Karolina Wiatrowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Witold W. Kilarski
- Institute of Bioengineering and Swiss Institute for Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Melody A. Swartz
- Institute of Bioengineering and Swiss Institute for Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- * E-mail:
| |
Collapse
|
16
|
Yousif AM, Minopoli M, Bifulco K, Ingangi V, Di Carluccio G, Merlino F, Motti ML, Grieco P, Carriero MV. Cyclization of the urokinase receptor-derived ser-arg-ser-arg-tyr Peptide generates a potent inhibitor of trans-endothelial migration of monocytes. PLoS One 2015; 10:e0126172. [PMID: 25938482 PMCID: PMC4418665 DOI: 10.1371/journal.pone.0126172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/30/2015] [Indexed: 02/02/2023] Open
Abstract
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility. We and others have previously documented that the uPAR88-92 sequence, even in the form of synthetic linear peptide (SRSRY), interacts with the formyl peptide receptor type 1 (FPR1), henceforth inducing cell migration of several cell lines, including monocytes. FPR1 is mainly expressed by mammalian phagocytic leukocytes and plays a crucial role in chemotaxis. In this study, we present evidence that the cyclization of the SRSRY sequence generates a new potent and stable inhibitor of monocyte trafficking. In rat basophilic leukaemia RBL-2H3/ETFR cells expressing high levels of constitutively activated FPR1, the cyclic SRSRY peptide ([SRSRY]) blocks FPR1 mediated cell migration by interfering with both internalization and ligand-uptake of FPR1. Similarly to RBL-2H3/ETFR cells, [SRSRY] competes with fMLF for binding to FPR1 and prevents agonist-induced FPR1 internalization in human monocyte THP-1 cells. Unlike scramble [RSSYR], [SRSRY] inhibits fMLF-directed migration of monocytes in a dose-dependent manner, with IC50 value of 0.01 nM. PMA-differentiated THP-1 cell exposure to fMLF gradient causes a marked cytoskeletal re-organization with the formation of F-actin rich pseudopodia that are prevented by the addition of [SRSRY]. Furthermore, [SRSRY] prevents migration of human primary monocytes and trans-endothelial migration of monocytes. Our findings indicate that [SRSRY] is a new FPR1 inhibitor which may suggest the development of new drugs for treating pathological conditions sustained by increased motility of monocytes, such as chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Michele Minopoli
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Katia Bifulco
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Vincenzo Ingangi
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
- SUN Second University of Naples, Italy
| | - Gioconda Di Carluccio
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | | | | | - Paolo Grieco
- Department of Pharmacy, University Federico II, Naples, Italy
- CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging—CNR, 80134, Naples, Italy
| | - Maria Vincenza Carriero
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
17
|
L-selectin shedding is activated specifically within transmigrating pseudopods of monocytes to regulate cell polarity in vitro. Proc Natl Acad Sci U S A 2015; 112:E1461-70. [PMID: 25775539 DOI: 10.1073/pnas.1417100112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
L-selectin is a cell adhesion molecule that tethers free-flowing leukocytes from the blood to luminal vessel walls, facilitating the initial stages of their emigration from the circulation toward an extravascular inflammatory insult. Following shear-resistant adhesion to the vessel wall, L-selectin has frequently been reported to be rapidly cleaved from the plasma membrane (known as ectodomain shedding), with little knowledge of the timing or functional consequence of this event. Using advanced imaging techniques, we observe L-selectin shedding occurring exclusively as primary human monocytes actively engage in transendothelial migration (TEM). Moreover, the shedding was localized to transmigrating pseudopods within the subendothelial space. By capturing monocytes in midtransmigration, we could monitor the subcellular distribution of L-selectin and better understand how ectodomain shedding might contribute to TEM. Mechanistically, L-selectin loses association with calmodulin (CaM; a negative regulator of shedding) specifically within transmigrating pseudopods. In contrast, L-selectin/CaM interaction remained intact in nontransmigrated regions of monocytes. We show phosphorylation of L-selectin at Ser 364 is critical for CaM dissociation, which is also restricted to the transmigrating pseudopod. Pharmacological or genetic inhibition of L-selectin shedding significantly increased pseudopodial extensions in transmigrating monocytes, which potentiated invasive behavior during TEM and prevented the establishment of front/back polarity for directional migration persistence once TEM was complete. We conclude that L-selectin shedding directly regulates polarity in transmigrated monocytes, which affirms an active role for this molecule in driving later stages of the multistep adhesion cascade.
Collapse
|
18
|
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2014; 308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Lisi S, D'Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunol Lett 2014; 162:159-69. [PMID: 25171914 DOI: 10.1016/j.imlet.2014.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
The discovery of the disintegrin and metalloproteinase 17 (ADAM17), originally identified as tumor necrosis factor-a converting enzyme (TACE) for its ability as sheddase of TNF-α inspired scientists to attempt to elucidate the molecular mechanisms underlying ADAM17 implication in diseased conditions. In recent years, it has become evident that this protease can modify many non matrix substrates, such as cytokines (e.g. TNF-α), cytokine receptors (e.g. IL-6R and TNF-R), ligands of ErbB (e.g. TGF-α and amphiregulin) and adhesion proteins (e.g. Lselectin and ICAM-1). Several recent studies have described experimental model system to better understand the role of specific signaling molecules, the interplay of different signals and tissue interactions in regulating ADAM17-dependent cleavage of most relevant substrates in inflammatory diseases. The central question is whether ADAM17 can influence the outcome of inflammation and if so, how it performs this regulation in autoimmunity, since inflammatory autoimmune diseases are often characterized by deregulated metalloproteinase activities. This review will explore the latest research on the influence of ADAM17 on the progression of inflammatory processes linked to autoimmunity and its role as modulator of inflammation.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| | - Massimo D'Amore
- Department of Interdisciplinary Medicine, Section of Rheumatology, University of Bari Medical School, Bari, Italy
| | - Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
20
|
Stöhr R, Cavalera M, Menini S, Mavilio M, Casagrande V, Rossi C, Urbani A, Cardellini M, Pugliese G, Menghini R, Federici M. Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis 2014; 235:438-43. [DOI: 10.1016/j.atherosclerosis.2014.05.946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
|
21
|
Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood 2014; 123:4077-88. [PMID: 24833351 DOI: 10.1182/blood-2013-09-511543] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inflammation is a key process in various diseases, characterized by leukocyte recruitment to the inflammatory site. This study investigates the role of a disintegrin and a metalloproteinase (ADAM) 10 and ADAM17 for leukocyte migration in vitro and in a murine model of acute pulmonary inflammation. Inhibition experiments or RNA knockdown indicated that monocytic THP-1 cells and primary human neutrophils require ADAM10 but not ADAM17 for efficient chemokine-induced cell migration. Signaling and adhesion events that are linked to cell migration such as p38 and ρ GTPase-family activation, F-actin polymerization, adhesion to fibronectin, and up-regulation of α5 integrin were also dependent on ADAM10 but not ADAM17. This was confirmed with leukocytes isolated from mice lacking either ADAM10 or ADAM17 in all hematopoietic cells (vav 1 guanine nucleotide exchange factor [Vav]-Adam10(-/-) or Vav-Adam17(-/-) mice). In lipopolysaccharide-induced acute pulmonary inflammation, alveolar recruitment of neutrophils and monocytes was transiently increased in Vav-Adam17(-/-) but steadily reduced in Vav-Adam10(-/-) mice. This deficit in alveolar leukocyte recruitment was also observed in LysM-Adam10(-/-) mice lacking ADAM10 in myeloid cells and correlated with protection against edema formation. Thus, with regard to leukocyte migration, leukocyte-expressed ADAM10 but not ADAM17 displays proinflammatory activities and may therefore serve as a target to limit inflammatory cell recruitment.
Collapse
|
22
|
Ectoenzymes in leukocyte migration and their therapeutic potential. Semin Immunopathol 2014; 36:163-76. [PMID: 24638888 DOI: 10.1007/s00281-014-0417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Inflammation causes or accompanies a huge variety of diseases. Migration of leukocytes from the blood into the tissues, in the tissues, and from the tissues to lymphatic vasculature is crucial in the formation and resolution of inflammatory infiltrates. In addition to classical adhesion and activation molecules, several other molecules are known to contribute to the leukocyte traffic. Several of them belong to ectoenzymes, which are cell surface molecules having catalytically active sites outside the cell. We will review here how several ectoenzymes present on leukocytes or endothelial cell surface function as adhesins and/or modulate the extravasation cascade through their enzymatic activities. Moreover, their therapeutic potential as immune modulators in different experimental inflammation models and in clinical trials will be discussed.
Collapse
|
23
|
Ueno N, Harker KS, Clarke EV, McWhorter FY, Liu WF, Tenner AJ, Lodoen MB. Real-time imaging of Toxoplasma-infected human monocytes under fluidic shear stress reveals rapid translocation of intracellular parasites across endothelial barriers. Cell Microbiol 2013; 16:580-95. [PMID: 24245749 DOI: 10.1111/cmi.12239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 10/15/2013] [Accepted: 11/11/2013] [Indexed: 12/24/2022]
Abstract
Peripheral blood monocytes are actively infected by Toxoplasma gondii and can function as 'Trojan horses' for parasite spread in the bloodstream. Using dynamic live-cell imaging, we visualized the transendothelial migration (TEM) of T. gondii-infected primary human monocytes during the initial minutes following contact with human endothelium. On average, infected and uninfected monocytes required only 9.8 and 4.1 min, respectively, to complete TEM. Infection increased monocyte crawling distances and velocities on endothelium, but overall TEM frequencies were comparable between infected and uninfected cells. In the vasculature, monocytes adhere to endothelium under the conditions of shear stress found in rapidly flowing blood. Remarkably, the addition of fluidic shear stress increased the TEM frequency of infected monocytes 4.5-fold compared to static conditions (to 45.2% from 10.3%). Infection led to a modest increase in expression of the high-affinityconformation of the monocyte integrin Mac-1 (CD11b/CD18), and Mac-1 accumulated near endothelial junctions during TEM. Blocking Mac-1 inhibited the crawling and TEM of infected monocytes to a greater degree than uninfected monocytes, and blocking the Mac-1 ligand, ICAM-1, dramatically reduced crawling and TEM for both populations. These findings contribute to a greater understanding of parasite dissemination from the vasculature into tissues.
Collapse
Affiliation(s)
- Norikiyo Ueno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Tsubota Y, Frey JM, Raines EW. Novel ex vivo culture method for human monocytes uses shear flow to prevent total loss of transendothelial diapedesis function. J Leukoc Biol 2013; 95:191-5. [PMID: 24006509 DOI: 10.1189/jlb.0513272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.
Collapse
Affiliation(s)
- Yoshiaki Tsubota
- 1.Dept. of Pathology, 325 Ninth Ave., Seattle, WA 98104-2499, USA.
| | | | | |
Collapse
|