1
|
Gao J, Lu W, Xin Y, Ma H, Sheng X, Gao G, Kang X, Jiang S, Zhao Y, Lv Y, Niu Y, Liang Y, Wang H. Liver-specific Bcl3 Knockout Alleviates Acetaminophen-induced Liver Injury by Activating Nrf2 Pathway in Male Mice. Cell Mol Gastroenterol Hepatol 2025; 19:101483. [PMID: 40015625 PMCID: PMC12003009 DOI: 10.1016/j.jcmgh.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with oxidative stress being a critical factor in this process. Glutathione (GSH) plays a vital defensive role. Activation of nuclear factor erythroid 2 like 2 (Nrf2) pathway mitigates APAP-induced liver damage by promoting GSH biosynthesis and enhancing drug detoxification. Although the role of B cell leukemia/lymphoma 3 (Bcl3) in regulating inflammatory responses, cellular oncogenesis, and immune balance is well-documented, its function in APAP-induced liver injury remains unclear. METHODS We employed liver-specific Bcl3 knockout (Bcl3hep-/-) mice and adeno-associated virus (AAV)-8-mediated Bcl3 overexpression (AAV-Bcl3) mice to model APAP-induced liver injury. Liver damage was assessed through hematoxylin and eosin staining and serum alanine aminotransferase and aspartate aminotransferase measurements. The interaction between Bcl3 and Nrf2 was examined using immunofluorescence and co-immunoprecipitation assays. RESULTS Our study reveals a significant upregulation of Bcl3 expression in the livers of male mice following APAP administration, suggesting Bcl3's potential involvement in this pathological process. In Bcl3hep-/- mice, a reduced severity of liver damage was observed at both 6 and 24 hours post-APAP treatment compared with controls. Notably, Bcl3-deficient mice exhibited accelerated GSH replenishment due to the rapid induction of Gclc and Gclm genes following 6 hours of APAP exposure. Through immunofluorescence and co-immunoprecipitation analyses, we identified an interaction between Bcl3 and Nrf2. The loss of Bcl3 enhanced Nrf2 translocation upon APAP challenge, leading to the upregulation of antioxidant gene expression. These findings suggest that Bcl3 knockout alleviates oxidative stress resulting from APAP overdose. CONCLUSION We uncovered a previously uncharacterized role of Bcl3 in APAP-induced liver injury, emphasizing the role of the Bcl3-Nrf2 axis in oxidative stress-related liver damage.
Collapse
Affiliation(s)
- Jingtao Gao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Xin
- Cardiac Center, Beijing Luhe Hospital Capital Medical University, Tongzhou, Beijing, China
| | - Haowen Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaohang Sheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue Kang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shan Jiang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuna Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China; Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, Playa-Albinyana H, Buhler MM, Clot G, Duran-Ferrer M, Lu J, Granada I, Baptista MJ, Navarro JT, Espinet B, Puiggros A, Tapia G, Bandiera L, De Canal G, Bonoldi E, Climent F, Ribera-Cortada I, Fernandez-Caballero M, De la Banda E, Do Nascimento J, Pineda A, Vela D, Rozman M, Aymerich M, Syrykh C, Brousset P, Perera M, Yanez L, Ortin JX, Tuset E, Zenz T, Cook JR, Swerdlow SH, Martin-Subero JI, Colomer D, Matutes E, Bea S, Costa D, Nadeu F, Campo E. BCL3 rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematologica 2024; 109:493-508. [PMID: 37560801 PMCID: PMC10828791 DOI: 10.3324/haematol.2023.283209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.
Collapse
Affiliation(s)
- Anna Carbo-Meix
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Luojun Wang
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona
| | - Gerard Frigola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Marco M Buhler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Marti Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Junyan Lu
- European Molecular Biology Laboratory, Heidelberg
| | - Isabel Granada
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Maria-Joao Baptista
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Jose-Tomas Navarro
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Gustavo Tapia
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona
| | - Laura Bandiera
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Gabriella De Canal
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Emanuela Bonoldi
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Fina Climent
- Department o f Pathology, H ospital Universitari d e Bellvitge, I nstitut d'Investigació B iomèdica d e Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | - Mariana Fernandez-Caballero
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Esmeralda De la Banda
- Laboratory of Hematology, Hospital Universitari Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | | | - Dolors Vela
- Hematologia Clínica, Hospital General de Granollers, Granollers
| | - Maria Rozman
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Charlotte Syrykh
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9
| | - Pierre Brousset
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9, France; INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France; Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse
| | - Miguel Perera
- Hematology Department, Hospital Dr Negrín, Las Palmas de Gran Canaria
| | - Lucrecia Yanez
- Hematology Department, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Santander
| | | | - Esperanza Tuset
- Hematology Department, Institut Català d'Oncologia, Hospital Dr. Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zurich
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Estella Matutes
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Silvia Bea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona.
| |
Collapse
|
3
|
Fang S, Cai C, Bai Y, Zhang L, Yang L. Early Pregnancy Regulates Expression of IkappaB Family in Ovine Spleen and Lymph Nodes. Int J Mol Sci 2023; 24:ijms24065156. [PMID: 36982231 PMCID: PMC10049502 DOI: 10.3390/ijms24065156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Early pregnancy modulates the maternal immune system, including the spleen and lymph nodes, which participate in maternal innate and adaptive immune responses. Methods: Ovine spleens and lymph nodes were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and qRT-PCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the IκB family, including BCL-3, IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. Early pregnancy induced expression of BCL-3, IκBα, IκBε, IKKγ and IκBζ, and expression of BCL-3, IκBβ and IκBNS peaked at day 16 of pregnancy in the spleen. However, early pregnancy suppressed the expression of BCL-3 and IκBNS, but stimulated the expression of IκBβ and IκBζ, and expression levels of IκBα, IκBβ, IκBε and IKKγ peaked in lymph nodes at days 13 and/or 16 of pregnancy. Early pregnancy changed the expression of the IκB family in the maternal spleen and lymph node in a tissue-specific manner, suggesting that the modulation of the IκB family may be involved in regulation of maternal functions of the spleen and lymph nodes, which are necessary for the establishment of maternal immune tolerance during early pregnancy in sheep.
Collapse
Affiliation(s)
- Shengya Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chunjiang Cai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
4
|
Wang F, Guo J, Wang Y, Hu Y, Zhang H, Chen J, Jing Y, Cao L, Chen X, Su J. Loss of Bcl-3 delays bone fracture healing through activating NF-κB signaling in mesenchymal stem cells. J Orthop Translat 2022; 35:72-80. [PMID: 36186660 PMCID: PMC9471962 DOI: 10.1016/j.jot.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Background Bone fracture healing is a postnatal regenerative process in which fibrocartilaginous callus formation and bony callus formation are important. Bony callus formation requires osteoblastic differentiation of MSCs. Materials and methods The formation of callus was assessed by μCT, Safranin-O, H&E and Masson trichrome staining. Osteogenesis of MSCs was analyzed by ALP staining, ARS staining, qRT-PCR and WB. And we also used IF and TOP/FOP Flash luciferase reporter to assess the nuclear translocation of PP65. Results In this study, we found Bcl-3 showed a significant correlation with bone fracture healing. Results of μCT showed that loss of Bcl-3 delays bone fracture healing. Safranin-O, H&E and Masson trichrome staining confirmed that loss of Bcl-3 impacted the formation of cartilage and woven bone in callus. Further experiments in vitro manifested that Bcl-3-knockdown could inhibit MSCs osteoblastic differentiation through releasing the inhibition on NF-κB signaling by Co-IP, IF staining and luciferase reporter assay. Conclusions We unveiled that loss of Bcl-3 could lead to inhibited osteogenic differentiation of MSCs via promoting PP65 nuclear translocation. The translational potential of this article Our data demonstrated that overexpression of Bcl-3 accelerates bone fracture healing, which serves as a promising therapeutic target for bone fracture treatment.
Collapse
|
5
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Huang Y, Yang X, Meng Y, Shao C, Liao J, Li F, Li R, Jing Y, Huang A. The hepatic senescence-associated secretory phenotype promotes hepatocarcinogenesis through Bcl3-dependent activation of macrophages. Cell Biosci 2021; 11:173. [PMID: 34530917 PMCID: PMC8447591 DOI: 10.1186/s13578-021-00683-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Liver cancer is one of the most common malignancies in the world with a poor prognosis. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, accounting for 80–90% of cases. The initiation and progression of HCC are closely associated with chronic liver inflammation. In addition, HCC is often accompanied by cell senescence. Senescent hepatocytes can secrete various inflammatory factors, collectively called the senescence-associated secretory phenotype (SASP). The SASP has been confirmed to promote the occurrence of liver cancer by affecting the inflammatory microenvironment. However, its role and the underlying mechanism of hepatic SASP in hepatocarcinogenesis are not clearly understood. Therefore, a better understanding of the pathogenic mechanisms of the effect of the hepatic SASP on the occurrence of HCC is still needed. Methods The study aims to explore the role of SASP factors and the underlying mechanism in tumorigenesis and the progression of HCC in vivo. We used diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) (DEN-CCl4) to establish liver cancer model in wild-type (WT) mice and Bcl3 knockout (Bcl3−/−) mice. β-galactosidase (β-gal) staining was performed to evaluate the degree of cellular senescence. Immunohistochemistry (IHC) were used to detect the degree of cellular senescence and the activation of macrophage. PCR chip and clinical tissue chip assays were used to estimate the RNA levels of SASP factors and NF-κB related genes, and their protein levels were examined by Western blot assays. Results DEN-CCl4 induced cellular senescence in mouse hepatocytes. In addition, senescent hepatocytes might release a variety of inflammatory factors that further activate macrophages, thereby changing the microenvironmental state and promoting the occurrence of HCC. Mechanistically, the NF-κB pathway is important because it regulates the SASP. Therefore, we used a PCR chip to detect the expression of NF-κB-related genes in senescent liver tissue. Our results showed that the expression of Bcl3 was increased in senescent hepatocytes, and knocking out Bcl3 significantly inhibited the secretion of hepatocyte SASP factors and the activation of macrophages, thereby inhibiting hepatocarcinogenesis. Finally, in clinical tissues adjacent to HCC tissues in patients, the expression of Bcl3 and IL-8 correlated with poor prognosis in HCC patients. Conclusion The hepatic SASP can further induce the activation of macrophages during hepatocarcinogenesis, thereby promoting the occurrence of HCC, and that this process is closely related to the expression of Bcl3 in hepatocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00683-5.
Collapse
Affiliation(s)
- Yihua Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Changchun Shao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China
| | - Fengwei Li
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China.
| |
Collapse
|
7
|
Jaiswal H, Ciucci T, Wang H, Tang W, Claudio E, Murphy PM, Bosselut R, Siebenlist U. The NF-κB regulator Bcl-3 restricts terminal differentiation and promotes memory cell formation of CD8+ T cells during viral infection. PLoS Pathog 2021; 17:e1009249. [PMID: 33508001 PMCID: PMC7872245 DOI: 10.1371/journal.ppat.1009249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
Bcl-3 is an atypical member of the IκB family that acts in the nucleus to modulate transcription of many NF-κB targets in a highly context-dependent manner. Accordingly, complete Bcl-3-/- mice have diverse defects in both innate and adaptive immune responses; however, direct effects of Bcl-3 action in individual immune cell types have not been clearly defined. Here, we document a cell-autonomous role for Bcl-3 in CD8+ T cell differentiation during the response to lymphocytic choriomeningitis virus infection. Single-cell RNA-seq and flow cytometric analysis of virus-specific Bcl3-/- CD8+ T cells revealed that differentiation was skewed towards terminal effector cells at the expense of memory precursor effector cells (MPECs). Accordingly, Bcl3-/- CD8+ T cells exhibited reduced memory cell formation and a defective recall response. Conversely, Bcl-3-overexpression in transgenic CD8+ T cells enhanced MPEC formation but reduced effector cell differentiation. Together, our results establish Bcl-3 as an autonomous determinant of memory/terminal effector cell balance during CD8+ T cell differentiation in response to acute viral infection. Our results provide proof-of-principle for targeting Bcl-3 pharmacologically to optimize adaptive immune responses to infectious agents, cancer cells, vaccines and other stimuli that induce CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Hemant Jaiswal
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongshan Wang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wanhu Tang
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Estefania Claudio
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ulrich Siebenlist
- Immune Activation Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Khoenkhoen S, Erikson E, Ádori M, Stark JM, Scholz JL, Cancro MP, Pedersen GK, Karlsson Hedestam GB. TACI expression and plasma cell differentiation are impaired in the absence of functional IκBNS. Immunol Cell Biol 2019; 97:485-497. [PMID: 30597621 PMCID: PMC6850186 DOI: 10.1111/imcb.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Impaired classical NF‐κB pathway signaling causes reduced antibody responses to T‐independent (TI) antigens. We investigated the potential reasons for defective TI responses in mice lacking the atypical inhibitory kappa B (IκB) protein of the NF‐κB pathway, IκBNS. Analyses of the plasma cell compartment in vitro and in vivo after challenge with lipopolysaccharide (LPS) showed significant decreases in the frequencies of plasma cells in the absence of IκBNS. In vitro activation of B cells via the B cell receptor or via Toll‐like receptor 4 revealed that early activation events were unaffected in IκBNS‐deficient B cells, while proliferation was reduced compared to in similarly stimulated wildtype (wt) B cells. IκBNS‐deficient B cells also displayed impaired upregulation of the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), which is essential for TI responses, and decreased sensitivity to TACI ligands upon stimulation. Furthermore, IκBNS‐deficient B cells, in contrast to wt B cells, displayed altered expression of IRF4, Blimp‐1 and Pax5 upon LPS‐induced differentiation, indicating impaired transcriptional regulation of plasma cell generation.
Collapse
Affiliation(s)
- Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
Leja-Szpak A, Góralska M, Link-Lenczowski P, Czech U, Nawrot-Porąbka K, Bonior J, Jaworek J. The Opposite Effect of L-kynurenine and Ahr Inhibitor Ch223191 on Apoptotic Protein Expression in Pancreatic Carcinoma Cells (Panc-1). Anticancer Agents Med Chem 2019; 19:2079-2090. [PMID: 30987575 DOI: 10.2174/1871520619666190415165212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND L-kynurenine, derivate of L-tryptophan, is synthetized by indoleamine 2,3-dioxygenase (IDO). The effects of L-kynurenine depend on its binding to an aryl hydrocarbon receptor (AhR). OBJECTIVE The aim of this study was to investigate the changes within the apoptotic pathway in PANC-1 cells subjected to L-kynurenine or L-tryptophan considering the production of anti-apoptotic proteins from the IAPs and Bcl-2 family, as well as the regulation of NF-κB signaling. METHODS The investigated substances were added alone or in combination with the AhR inhibitor (CH223191) to cultures of PANC-1 cells. Cytoplasmic and nuclear proteins were analyzed by immunoblotting and cells were incubated with the investigated substances to determine cytotoxicity and proliferative effects. RESULTS Incubation of PANC-1 cells with L-kynurenine or L-tryptophan resulted in the increase in antiapoptotic cIAP-1, cIAP-2, XIAP and Bcl-2 expression and a decrease in pro-apoptotic Bax. These changes were accompanied by the reduction of active caspases -9, -3 and PARP-1. The treatment leads to translocation and enhanced production of nuclear NF-κB p50 and Bcl-3. Incubation of the cells with AhR blocker either alone or together with L-kynurenine or L-tryptophan resulted in the opposite effect, leading to the downregulation of IAPs and Bcl-2, upregulation of Bax and caspases expression. CONCLUSION 1) L-kynurenine and its precursor promote anti-apoptotic effects through the modulation of IDOdependent pathway and regulation of IAPs, Bcl-2 and NF-κB family members in pancreatic carcinoma cells 2) inhibition of AhR by CH223191 exerts an apoptosis-promoting effect, and this observation might suggest the potential use of this compound in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Góralska
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Czech
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Nawrot-Porąbka
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
11
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
12
|
Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol 2016; 94:821-829. [PMID: 27121163 PMCID: PMC5073155 DOI: 10.1038/icb.2016.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ) B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.
Collapse
|
13
|
Regulation of the Adaptive Immune Response by the IκB Family Protein Bcl-3. Cells 2016; 5:cells5020014. [PMID: 27023613 PMCID: PMC4931663 DOI: 10.3390/cells5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023] Open
Abstract
Bcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells. Bcl-3 dysregulation can be observed in a number of autoimmune pathologies, and Bcl3-deficient animals are more susceptible to bacterial and parasitic infection. This review will describe our current understanding of the roles played by Bcl-3 in the development and regulation of the adaptive immune response, including lymphoid organogenesis, immune tolerance, lymphocyte function and dendritic cell biology.
Collapse
|
14
|
Atypical IκB proteins in immune cell differentiation and function. Immunol Lett 2016; 171:26-35. [DOI: 10.1016/j.imlet.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
15
|
Pedersen GK, Ádori M, Stark JM, Khoenkhoen S, Arnold C, Beutler B, Karlsson Hedestam GB. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens. Front Immunol 2016; 7:65. [PMID: 26973645 PMCID: PMC4771772 DOI: 10.3389/fimmu.2016.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Carrie Arnold
- Department of Genetics, The Scripps Research Institute , La Jolla, CA , USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | | |
Collapse
|
16
|
MaruYama T. The nuclear IκB family of proteins controls gene regulation and immune homeostasis. Int Immunopharmacol 2015; 28:836-40. [DOI: 10.1016/j.intimp.2015.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/28/2015] [Indexed: 01/12/2023]
|
17
|
Pedersen GK, Ádori M, Karlsson Hedestam GB. NF-κB signaling in B-1 cell development. Ann N Y Acad Sci 2015; 1362:39-47. [PMID: 26096766 DOI: 10.1111/nyas.12800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NF-κB transcription factors play essential roles in hematopoiesis. In this review, we summarize the requirements of different components of the NF-κB pathway for B-1 cell development and maintenance. The B-1 cell developmental steps are also reviewed, with particular emphasis on stages where NF-κB signaling may be critical.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Tartey S, Matsushita K, Imamura T, Wakabayashi A, Ori D, Mino T, Takeuchi O. Essential Function for the Nuclear Protein Akirin2 in B Cell Activation and Humoral Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:519-27. [DOI: 10.4049/jimmunol.1500373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
|
19
|
Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S, Siebenlist U. The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity 2015; 41:555-66. [PMID: 25367572 DOI: 10.1016/j.immuni.2014.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Bcl-3 is an atypical member of the IκB family that modulates transcription in the nucleus via association with p50 (NF-κB1) or p52 (NF-κB2) homodimers. Despite evidence attesting to the overall physiologic importance of Bcl-3, little is known about its cell-specific functions or mechanisms. Here we demonstrate a T-cell-intrinsic function of Bcl-3 in autoimmunity. Bcl-3-deficient T cells failed to induce disease in T cell transfer-induced colitis and experimental autoimmune encephalomyelitis. The protection against disease correlated with a decrease in Th1 cells that produced the cytokines IFN-γ and GM-CSF and an increase in Th17 cells. Although differentiation into Th1 cells was not impaired in the absence of Bcl-3, differentiated Th1 cells converted to less-pathogenic Th17-like cells, in part via mechanisms involving expression of the RORγt transcription factor. Thus, Bcl-3 constrained Th1 cell plasticity and promoted pathogenicity by blocking conversion to Th17-like cells, revealing a unique type of regulation that shapes adaptive immunity.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Tassi I, Claudio E, Wang H, Tang W, Ha HL, Saret S, Ramaswamy M, Siegel R, Siebenlist U. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:4303-11. [PMID: 25246497 DOI: 10.4049/jimmunol.1401505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bcl-3 is an atypical member of the IκB family and modulates gene expression via interaction with p50/NF-κB1 or p52/NF-κB2 homodimers. We report in the present study that Bcl-3 is required in dendritic cells (DCs) to assure effective priming of CD4 and CD8 T cells. Lack of Bcl-3 in bone marrow-derived DCs blunted their ability to expand and promote effector functions of T cells upon Ag/adjuvant challenge in vitro and after adoptive transfers in vivo. Importantly, the critical role of Bcl-3 for priming of T cells was exposed upon Ag/adjuvant challenge of mice specifically ablated of Bcl-3 in DCs. Furthermore, Bcl-3 in endogenous DCs was necessary for contact hypersensitivity responses. Bcl-3 modestly aided maturation of DCs, but most consequentially, Bcl-3 promoted their survival, partially inhibiting expression of several antiapoptotic genes. Loss of Bcl-3 accelerated apoptosis of bone marrow-derived DCs during Ag presentation to T cells, and DC survival was markedly impaired in the context of inflammatory conditions in mice specifically lacking Bcl-3 in these cells. Conversely, selective overexpression of Bcl-3 in DCs extended their lifespan in vitro and in vivo, correlating with increased capacity to prime T cells. These results expose a previously unidentified function for Bcl-3 in DC survival and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
21
|
B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS. Proc Natl Acad Sci U S A 2014; 111:E4119-26. [PMID: 25228759 DOI: 10.1073/pnas.1415866111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93(+)IgM(+)CD5(+)) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93(+)IgM(+)CD5(-) cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS.
Collapse
|
22
|
Abstract
B cells can be activated by cognate antigen, anti-B-cell receptor antibody, complement receptors, or polyclonal stimulators like lipopolysaccharide; the overall result is a large shift in RNA processing to the secretory-specific form of immunoglobulin (Ig) heavy chain mRNA and an upregulation of Igh mRNA amounts. Associated with this shift is the large-scale induction of Ig protein synthesis and the unfolded protein response to accommodate the massive quantity of secretory Ig that results. Stimulation to secretion also produces major structural accommodations and stress, with extensive generation of endoplasmic reticulum and Golgi as part of the cellular architecture. Reactive oxygen species can lead to either activation or apoptosis based on context and the high or low oxygen tension surrounding the cells. Transcription elongation factor ELL2 plays an important role in the induction of Ig secretory mRNA production, the unfolded protein response, and gene expression during hypoxia. After antigen stimulation, activated B cells from either the marginal zones or follicles can produce short-lived antibody secreting cells; it is not clear whether cells from both locations can become long-lived plasma cells. Autophagy is necessary for plasma cell long-term survival through the elimination of some of the accumulated damage to the ER from producing so much protein. Survival signals from the bone marrow stromal cells also contribute to plasma cell longevity, with BCMA serving a potentially unique survival role. Integrating the various information pathways converging on the plasma cell is crucial to the development of their long-lived, productive immune response.
Collapse
Affiliation(s)
- Ian Bayles
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
23
|
ZHANG ZHIQIANG, FANG YONGCHAO, WANG QIANG, SUN YU, XIONG CHUANZHI, CAO LI, WANG BEIYUE, BAO NIRONG, ZHAO JIANNING. Tumor necrosis factor-like weak inducer of apoptosis regulates particle-induced inflammatory osteolysis via the p38 mitogen-activated protein kinase signaling pathway. Mol Med Rep 2012; 12:1499-505. [DOI: 10.3892/mmr.2015.3529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 01/23/2015] [Indexed: 11/06/2022] Open
|