1
|
Xu H, Zhang F, Che Y, Sun T, Che K, Cui Y, Zhou N, Wan J, Chang W, Guan Y, Huang Y, Chen H. Thesium chinense Turcz. and its compound astragalin alleviate lipopolysaccharide-induced acute lung injury via the PI3K/AKT/p53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119691. [PMID: 40139580 DOI: 10.1016/j.jep.2025.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz. (TCT) is a traditional Chinese medicinal plant commonly used in clinical practice for respiratory diseases, known for its anti-inflammatory and antioxidant properties. However, the mechanisms by which TCT alleviates acute lung injury (ALI) remain not fully understood. AIM OF THE STUDY This study aims to validate the efficacy and elucidate the mechanisms of TCT in the treating ALI through experimental and network pharmacology approaches. MATERIALS AND METHODS To find the bioactive substances in TCT, ultra-high-performance liquid chromatography in conjunction with quadrupole-exactive mass spectrometry (UHPLC-QE-MS) was employed. The therapeutic effects of TCT were assessed by oxidative stress assessments, histological analysis (HE staining), inflammatory cytokine evaluations (RT-qPCR, immunofluorescence, immunohistochemistry), and TUNEL apoptotic staining in mice with lipopolysaccharide-induced ALI models. TP53 was identified as a crucial therapeutic target and astragalin as a pivotal drug by network pharmacology analysis. Their binding properties were verified by molecular dynamics simulations using GROMACS. The effects of astragalin on cell apoptosis (flow cytometry), cytokine expression (RT-qPCR), and protein expression (Western blot) were examined in vitro using LPS-stimulated RAW264.7 macrophages. RESULTS In TCT, 24 key bioactive chemicals were found using UHPLC-QE-MS. TCT significantly reduced LPS-induced ALI, decreased levels of inflammatory cytokines TNF-α, IL-6, and IL-1β, decreased NFκB expression, increased superoxide dismutase (SOD) activity, decreased malondialdehyde (MDA) content, and reduced lung tissue cell apoptosis, according to the pharmacological results. The PI3K/AKT/p53 signaling pathway is essential for treating ALI, and astragalin was identified as the main drug and TP53 as the critical target by network pharmacology analysis. Strong binding and stability between astragalin and TP53 were demonstrated by molecular docking and dynamics simulations. Astragalin dramatically decreased early and late apoptosis, blocked p-PI3K and p-AKT activation, activated p53, and repressed the production of TNF-α, IL-6, and IL-1β in vitro. CONCLUSION This study suggests that TCT and its active compound astragalin alleviate LPS-induced ALI by modulating the PI3K/AKT/p53 signaling pathway, offering a potential therapeutic approach for treating ALI.
Collapse
Affiliation(s)
- Haonan Xu
- College of Animal Science, Anhui Science and Technology University, 9 Donghua Road, Fengyang, 233100, China
| | - Fang Zhang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang, 233100, China
| | - Yan Che
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang, 233100, China
| | - Tingting Sun
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang, 233100, China
| | - Ke Che
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang, 233100, China
| | - Yu Cui
- College of Animal Science, Anhui Science and Technology University, 9 Donghua Road, Fengyang, 233100, China
| | - Niannian Zhou
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jun Wan
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Wenlong Chang
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yueqin Guan
- Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, 239064, China
| | - Yuying Huang
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China.
| | - Hao Chen
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
2
|
Wang Y, Yang Q, Dong Y, Wang L, Zhang Z, Niu R, Wang Y, Bi Y, Liu G. Piezo1-directed neutrophil extracellular traps regulate macrophage differentiation during influenza virus infection. Cell Death Dis 2025; 16:60. [PMID: 39890818 PMCID: PMC11785962 DOI: 10.1038/s41419-025-07395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Neutrophils and macrophages are critical for antiviral immunity, but their reciprocal regulatory roles and mechanisms in the response to viral infection remain unclear. Herein, we found that the ion channel Piezo1 directs neutrophil extracellular trap (NET) formation and regulates macrophage functional differentiation in anti-influenza virus immunity. Genetic deletion of Piezo1 in neutrophils inhibited the generation of NETs and M1 macrophage differentiation while driving the development of M2 macrophages during viral infection. Piezo1-directed neutrophil NET DNA directly regulates macrophage differentiation in vitro and in vivo. Mechanistically, neutrophil Piezo1 deficiency inhibited NET DNA production, leading to decreased TLR9 and cGAS-STING signalling activity while inducing reciprocal differentiation from M1 to M2 macrophages. In addition, Piezo1 integrates magnesium signalling and the SIRT2-hypoxia-inducible factor-1 alpha (HIF1α)-dependent pathway to orchestrate reciprocal M1 and M2 macrophage lineage commitment through neutrophil-derived NET DNA. Our studies provide critical insight into the role of neutrophil-based mechanical regulation of immunopathology in directing macrophage lineage commitment during the response to influenza virus infection.
Collapse
Affiliation(s)
- Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 100080, Beijing, China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 100080, Beijing, China.
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
3
|
Zhang Z, Yang Q, Dong Y, Wang L, Niu R, Xia J, Bi Y, Liu G. Sirtuin 2 regulates neutrophil functions through NAD + synthesis pathway in virus infection. iScience 2024; 27:110184. [PMID: 38974970 PMCID: PMC11226967 DOI: 10.1016/j.isci.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Neutrophils play an important role in antiviral immunity, but the underlying mechanisms remain unclear. Here, we found that SIRT2 deficiency inhibited the infiltration of neutrophils, as well as the secretion of inflammatory cytokines and the formation of neutrophil extracellular traps (NETs), ameliorating disease symptoms during acute respiratory virus infection. Mechanistically, SIRT2 deficiency upregulates quinolinic acid (QA)-producing enzyme 3-hydroxyanthranilate oxygenase (3-HAO) and leads to expression of quinolinate phosphoribosyltransferase (QPRT), which promotes the synthesis of QA for NAD+ and limits viral infection when de novo NAD+ synthesis is blocked. Tryptophan-2,3-oxygenase expressed in epithelial cells metabolizes tryptophan to produce kynurenine and 3-hydroxyaminobenzoic acid, which is a source of intracellular QA in neutrophils. Thus, our findings reveal a previously unrecognized QPRT-mediated switch in NAD+ metabolism by exploiting neutrophil-derived QA as an alternative source of replenishing intracellular NAD+ pools induced by SIRT2 to regulate neutrophil functions during virus infection, with implications for future immunotherapy approaches.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jingxuan Xia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Chen S, Zhai D, Li Y, Tan Y, Tang X, Pu X, Chai Y, Li L. Study on the mechanism of inhibition of Escherichia coli by Polygonum capitatum based on network pharmacology and molecular docking technology: A review. Medicine (Baltimore) 2024; 103:e38536. [PMID: 38875382 PMCID: PMC11175921 DOI: 10.1097/md.0000000000038536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
This study aims to analyze the effective components of Polygonum capitatum (PC) inhibiting Escherichia coli based on network pharmacology methods and predict its molecular mechanism of action. PC compounds and targets were collected from the TCMSP database, Swiss Target Prediction, and the literature. E coli targets were searched using the GeneCards database. The targets of E coli and the targets of the active ingredients of PC were taken as intersections to obtain the intersecting targets. The resulting overlapping targets were uploaded to the STRING database to construct the protein interaction network diagram of E coli target inhibition. The key targets for the inhibitory effect of PC on E coli were obtained. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by uploading key targets into the DAVID database. The results showed that there were 50 targets for PC to inhibit E coli. Among them, there are 5 core targets, mainly including AKT1, TNF, EGFR, JUN, and ESR1. A total of 196 gene ontology functional analysis results and 126 Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results were obtained. These include cellular response to cadmium-ion, cellular response to reactive oxygen species, pathways in cancer, prostate cancer, and PI3K-Akt signaling pathway. Molecular docking results indicate that Lutedin, Hirsutin, Flazin, and Ellagic acid in PC have high affinity for the target genes AKT1, TNF, MAPK3 and EGFR. PC exerts its inhibitory effect on E coli through multi-targets and multi-pathways, which provides a new basis for the new use of PC as an old medicine.
Collapse
Affiliation(s)
- Shunhuan Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Dongyan Zhai
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuan Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yong Tan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiaoke Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lailai Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Huang YC, Tung CL, Ho ST, Li WS, Li S, Tung YT, Wu JH. Nutraceutical Potential of Djulis ( Chenopodium formosanum) Hull: Phytochemicals, Antioxidant Activity, and Liver Protection. Antioxidants (Basel) 2024; 13:721. [PMID: 38929160 PMCID: PMC11201270 DOI: 10.3390/antiox13060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Djulis (Chenopodium formosanum), a traditional Taiwanese crop enriched with phenolic compounds and betalain pigments, is associated with various health benefits, including antioxidant and hepatoprotective effects. This study analysed the phytochemical content and antioxidant capacity of extracts from both the hull and kernel of Djulis. The hull extract, which contained higher levels of flavonoids and exhibited superior antioxidant activity compared to the kernel extract, was selected for further in vivo studies. These experiments showed that oral administration of the Djulis hull crude extract significantly mitigated lipopolysaccharide (LPS)-induced acute liver injury (ALI) in mice by increasing the activity of the antioxidant enzyme glutathione peroxidase (GPx), reducing plasma levels of pro-inflammatory cytokine interferon gamma (IFN-γ), and enhancing liver levels of the anti-inflammatory cytokine interleukin-4 (IL-4). Additionally, the extract demonstrated potential in inhibiting the TLR4/NF-κB pathway, a critical signalling pathway in inflammation and apoptosis, offering insights into its protective mechanisms. These findings underscore Djulis hull's potential as a functional food ingredient for ALI prevention and propose a valuable application for agricultural by-products.
Collapse
Affiliation(s)
- Yu-Chen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan;
| | - Wei-Sung Li
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413, Taiwan;
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Jyh-Horng Wu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Hino T, Nakahara F, Miyauchi M, Ito Y, Masamoto Y, Morita K, Kagoya Y, Kojima H, Kurokawa M. AKT2 inhibition accelerates the acquisition of phagocytic ability in induced pluripotent stem cell-derived neutrophils. Exp Hematol 2024; 130:104137. [PMID: 38103826 DOI: 10.1016/j.exphem.2023.104137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Neutrophils are key components of the immune system that inhibit bacterial infections. Systemic bacterial infections can cause lethal conditions, especially in patients with neutropenia associated with chemotherapy or other systemic illnesses; hence, early detection of the symptoms and prompt management are crucial in such cases. Previously, we established expandable engineered neutrophil-primed progenitors (NeuPs-XL) using human-induced pluripotent stem cells (iPSCs), which can produce neutrophil-like cells at a clinically suitable scale within 4 days of inducing myeloid differentiation. In this study, using small-molecule compound-based screening, we detected that MK-2206, a selective pan-AKT inhibitor, can accelerate this differentiation process, promote phagocytic ability in neutrophils, and enhance cytokine and chemokine expression in response to lipopolysaccharides. The inhibition of AKT2 has been identified as the key mechanism underlying this acceleration. These results can make a substantial contribution to the development of strategies for the prompt production of clinically applicable iPSC-derived neutrophils, which can potentially lead to the management of severe infections associated with life-threatening neutropenia and the effective treatment of related health conditions in the future.
Collapse
Affiliation(s)
- Toshiya Hino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumio Nakahara
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Miyauchi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Ito
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Morita
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
7
|
You H, Song S, Liu D, Ren T, Yin SJ, Wu P, Mao J. Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:59-72. [PMID: 38154965 PMCID: PMC10762491 DOI: 10.4196/kjpp.2024.28.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.
Collapse
Affiliation(s)
- Hankun You
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Siyuan Song
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Deren Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Tongsen Ren
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Song Jiang Yin
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Peng Wu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jun Mao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| |
Collapse
|
8
|
Min S, Tao W, Miao Y, Li Y, Wu T, He X, Zhang Y, Liu B, Meng Z, Han K, Liu S, Li L, Chen J, Zhao S, Zhang J, Zhang X. Dual Delivery of Tetramethylpyrazine and miR-194-5p Using Soft Mesoporous Organosilica Nanoparticles for Acute Lung Injury Therapy. Int J Nanomedicine 2023; 18:6469-6486. [PMID: 38026537 PMCID: PMC10640848 DOI: 10.2147/ijn.s420802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.
Collapse
Affiliation(s)
- Simin Min
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
- Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, 234000, People’s Republic of China
| | - Weiting Tao
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Yuchen Miao
- Department of Chemistry, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Yan Li
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Tianyu Wu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Xiaoyu He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Yijing Zhang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Bangye Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Zixin Meng
- School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Ke Han
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Saisai Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Li Li
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Jie Chen
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Shidi Zhao
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Junjie Zhang
- Department of Chemistry, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| | - Xiaonan Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| |
Collapse
|
9
|
Wang L, Li Z, Lu T, Su L, Mao C, Zhang Y, Zhang X, Jiang X, Xie H, Yu X. The potential mechanism of Choulingdan mixture in improving acute lung injury based on HPLC-Q-TOF-MS, network pharmacology and in vivo experiments. Biomed Chromatogr 2023; 37:e5709. [PMID: 37533317 DOI: 10.1002/bmc.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Choulingdan mixture (CLDM) is an empirical clinical prescription for the adjuvant treatment of acute lung injury (ALI). CLDM has been used for almost 30 years in the clinic. However, its mechanism for improving ALI still needs to be investigated. In this study, high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) was applied to characterize the overall chemical composition of CLDM. A total of 93 ingredients were characterized, including 25 flavonoids, 20 organic acids, 11 saponins, nine terpenoids, seven tannins and 21 other compounds. Then network pharmacology was applied to predict the potential bioactive components, target genes and signaling pathways of CLDM in improving ALI. Additionally, molecular docking was performed to demonstrate the interaction between the active ingredients and the disease targets. Finally, animal experiments further confirmed that CLDM significantly inhibits pulmonary inflammation, pulmonary edema and oxidative stress in lipopolysaccharide-induced ALI mice by inhibiting the PI3K-AKT signaling pathway. This study enhanced the amount and accuracy of compounds of CLDM and provided new insights into CLDM preventing and treating ALI.
Collapse
Affiliation(s)
- Lili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyan Li
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinrui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Yu
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
10
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Li L, Rao J, Lan J, Zhu Y, Gong A, Chu L, Feng F, Xue C. Association between the AKT1 single nucleotide polymorphism (rs2498786, rs2494752 and rs5811155) and microscopic polyangiitis risk in a Chinese population. Mol Genet Genomics 2023; 298:767-776. [PMID: 37029297 PMCID: PMC10133348 DOI: 10.1007/s00438-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Microscopic polyangiitis (MPA) is an autoimmune disease, characterized by ANCA in blood and necrotizing inflammation of small and medium-sized vessels, one of the three clinical phenotypes of ANCA-associated vasculitis (AAV). Autophagy has been confirmed to be involved in the pathogenesis of AAV. AKT1 is one of the autophagy-regulated proteins. Its single nucleotide polymorphisms (SNPs) are associated with multiple immune-related diseases, but there are rarely studies in AAV. The incidence rate of AAV has a notable geographic difference, and MPA is predominant in China. The aim of this study was to investigate the association between AKT1 SNP and MPA risk. Genotypes of 8 loci in AKT1 were evaluated by multiplex polymerase chain reaction (PCR) and high-throughput sequencing in 416 people, including 208 MPA patients and 208 healthy volunteers from Guangxi in China. Additionally, data of 387 healthy volunteers from China were obtained from the 1000Genomes Project on public database. Differences were observed between the loci (rs2498786, rs2494752, and rs5811155) genotypes in AKT1 and MPA risk (P = 7.0 × 10-4, P = 3.0 × 10-4, and P = 5.9 × 10-5, respectively). A negative association was detected in the Dominant model (P = 1.2 × 10-3, P = 2.0 × 10-4 and P = 3.6 × 10-5, respectively). A haplotype (G-G-T) was associated with MPA risk negatively (P = 7.0 × 10-4). This study suggests that alleles (rs2498786 G, rs2494752 G and rs5811155 insT) are protective factors for MPA and alleles (rs2494752 G and rs5811155 insT) for MPO-ANCA in patients with MPA. There is a haplotype (G-G-T), which is a protective factor for MPA. It suggests that the role of AKT1 in MPA/AAV needs further study to provide more intervention targets for MPA/AAV.
Collapse
Affiliation(s)
- Lizhen Li
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Nephrology, Laboratory of Kidney Disease of Hunan Provincial People's Hospital, the First-Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Jinlan Rao
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Nephrology, the First Hospital of Foshan City, Foshan, China
| | - Jingjing Lan
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Zhu
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Nephrology, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Aimei Gong
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Liepeng Chu
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Feng
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Xue
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Bi Y, Yang Q, Li Z, Wang Y, Wang Y, Jia A, Pan Z, Yang R, Liu G. Aryl hydrocarbon receptor nuclear translocator limits the recruitment and function of regulatory neutrophils against colorectal cancer by regulating the gut microbiota. J Exp Clin Cancer Res 2023; 42:53. [PMID: 36859266 PMCID: PMC9976387 DOI: 10.1186/s13046-023-02627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Although the role and mechanism of neutrophils in tumors have been widely studied, the precise effects of aryl hydrocarbon receptor nuclear translocator (ARNT) on neutrophils remain unclear. In this study, we investigated the roles of ARNT in the function of CD11b+Gr1+ neutrophils in colitis-associated colorectal cancer. METHODS Wild-type (WT), ARNT myeloid-specific deficient mice and a colitis-associated colorectal cancer mouse model were used in this study. The level and functions of CD11b+Gr1+ cells were evaluated by flow cytometry and confocal microscopy. RESULTS We found that ARNT deficiency drives neutrophils recruitment, neutrophil extracellular trap (NET) development, inflammatory cytokine secretion and suppressive activities when cells enter the periphery from bone marrow upon colorectal tumorigenesis. ARNT deficiency displays similar effects to aryl hydrocarbon receptor (AHR) deficiency in neutrophils. CXCR2 is required for NET development, cytokine production and recruitment of neutrophils but not the suppressive activities induced by Arnt-/- in colorectal cancer. The gut microbiota is essential for functional alterations in Arnt-/- neutrophils to promote colorectal cancer growth. The colorectal cancer effects of Arnt-/- neutrophils were significantly restored by mouse cohousing or antibiotic treatment. Intragastric administration of the feces of Arnt-/- mice phenocopied their colorectal cancer effects. CONCLUSION Our results defined a new role for the transcription factor ARNT in regulating neutrophils recruitment and function and the gut microbiota with implications for the future combination of gut microbiota and immunotherapy approaches in colorectal cancer.
Collapse
Affiliation(s)
- Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Zhengchao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
13
|
Dong L, Cao Y, Yang H, Hou Y, He Y, Wang Y, Yang Q, Bi Y, Liu G. The hippo kinase MST1 negatively regulates the differentiation of follicular helper T cells. Immunology 2023; 168:511-525. [PMID: 36210514 DOI: 10.1111/imm.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Follicular helper T (TFH ) cells are essential for inducing germinal centre (GC) reactions to mediate humoral adaptive immunity and antiviral effects, but the mechanisms of TFH cell differentiation remain unclear. Here, we found that the hippo kinase MST1 is critical for TFH cell differentiation, GC formation, and antibody production under steady-state conditions and viral infection. MST1 deficiency intrinsically enhanced TFH cell differentiation and GC reactions in vivo and in vitro. Mechanistically, mTOR and HIF1α signalling is involved in glucose metabolism and increased glycolysis and decreased OXPHOS, which are critically required for MST1 deficiency-directed TFH cell differentiation. Moreover, upregulated Foxo3 expression is critically responsible for TFH cell differentiation induced by Mst1-/- . Thus, our findings identify a previously unrecognized relationship between hippo kinase MST1 signalling and mTOR-HIF1α-metabolic reprogramming coupled with Foxo3 signalling in reprogramming TFH cell differentiation.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Akt Inhibition Promotes Autophagy and Clearance of Group B Streptococcus from the Alveolar Epithelium. Pathogens 2022; 11:pathogens11101134. [PMID: 36297190 PMCID: PMC9611837 DOI: 10.3390/pathogens11101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Group B Streptococcus (GBS) is a gram-positive bacterium that is harmless for healthy individuals but may provoke invasive disease in young infants and immunocompromised hosts. GBS invades the epithelial barriers to enter the bloodstream, and thus strategies that enhance epithelial cell responses may hamper GBS invasion. In the present study, we sought to investigate whether the inhibition of Akt, a kinase that regulates host inflammatory responses and autophagy via suppression of mTOR, can enhance the response of non-phagocytic alveolar epithelial cells against GBS. Treatment of the alveolar epithelial cell line A549 with the Akt inhibitor MK-2206 resulted in the enhanced production of reactive oxygen species and inflammatory mediators in response to GBS. Additionally, Akt inhibition via MK-2206 resulted in elevated LC3II/I ratios and increased autophagic flux in alveolar epithelial cells. Importantly, the inhibition of Akt promoted GBS clearance both in alveolar epithelial cells in vitro and in lung tissue in vivo in a murine model of GBS pneumonia. The induction of autophagy was essential for GBS clearance in MK-2206 treated cells, as knockdown of ATG5, a critical component of autophagy, abrogated the effect of Akt inhibition on GBS clearance. Our findings highlight the role of Akt kinase inhibition in promoting autophagy and GBS clearance in the alveolar epithelium. The inhibition of Akt may serve as a promising measure to strengthen epithelial barriers and prevent GBS invasion in susceptible hosts.
Collapse
|
15
|
High stability of blood parameters during mouse lifespan: sex-specific effects of every-other-day fasting. Biogerontology 2022; 23:559-570. [PMID: 35915171 DOI: 10.1007/s10522-022-09982-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.
Collapse
|
16
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component-target-pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound-target-pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin-angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
17
|
Yang R, Yang H, Wei J, Li W, Yue F, Song Y, He X, Hu K. Mechanisms Underlying the Effects of Lianhua Qingwen on Sepsis-Induced Acute Lung Injury: A Network Pharmacology Approach. Front Pharmacol 2021; 12:717652. [PMID: 34721017 PMCID: PMC8551812 DOI: 10.3389/fphar.2021.717652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose: Sepsis is a life-threatening condition associated with secondary multiple organ injury. Acute lung injury (ALI) caused by sepsis has high morbidity and mortality in critical care units. Lianhua Qingwen (LHQW) is a traditional Chinese medicine composing of 11 herbs and 2 medicinal minerals. LHQW exhibits anti-inflammatory activity and is effective in treating pneumonia. Our study aimed to evaluate the effect of LHQW on sepsis-induced ALI and its underlying mechanism. Materials and Methods: A network pharmacology approach was used to predict the bioactive components and effective targets of LHQW in treating ALI. We established ALI model C57/BL6 mice via an intraperitoneal injection of LPS and inhibited p53 expression by pifithrin-α, in order to validate the mechanism by which LHQW exerted protective role in ALI. Hematoxylin-eosin staining was conducted to assess the severity of lung injury. The severity of inflammation was evaluated based on MPO (myeloperoxidase) activity. TUNEL assay was employed to detect apoptotic cells. The levels of p53 and caspase-3 were tested by immunohistochemical staining and Western blotting. The expression levels of Bcl-2, Bax, cytochrome C and caspase-9 were detected by Western blotting. Results: A total of 80 genes were associated with LHQW in the treatment of ALI. After PPI network construction, four active components (quercetin, luteolin, kaempferol and wogonin) and 10 target genes (AKT1, TP53, IL6, VEGFA, TNF, JUN, STAT3, MAPK8, MAPK1, and EGF) were found to be essential for ALI treatment. GO and KEGG analyses indicated that apoptosis pathway was mainly involved in the LHQW-ALI network. Animal experiments showed that LHQW was able to attenuate LPS-induced ALI, and medium-dose LHQW exhibited the most prominent effect. LHQW could inhibit the overexpression of p53 induced by LPS and suppress p53-mediated intrinsic apoptotic pathways by decreasing the levels of Bax, caspase-3 and caspase-9, increasing the expression of Bcl-2, and attenuating the release of cytochrome C in ALI mice. Conclusion: This study reveals that LHQW may alleviate LPS-induced ALI via inhibiting p53-mediated intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Ruhao Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haizhen Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Song
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Nadolni W, Immler R, Hoelting K, Fraticelli M, Ripphahn M, Rothmiller S, Matsushita M, Boekhoff I, Gudermann T, Sperandio M, Zierler S. TRPM7 Kinase Is Essential for Neutrophil Recruitment and Function via Regulation of Akt/mTOR Signaling. Front Immunol 2021; 11:606893. [PMID: 33658993 PMCID: PMC7917126 DOI: 10.3389/fimmu.2020.606893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
During inflammation, neutrophils are one of the first responding cells of innate immunity, contributing to a fast clearance of infection and return to homeostasis. However, excessive neutrophil infiltration accelerates unsolicited disproportionate inflammation for instance in autoimmune diseases such as rheumatoid arthritis. The transient-receptor-potential channel-kinase TRPM7 is an essential regulator of immune system homeostasis. Naïve murine T cells with genetic inactivation of the TRPM7 enzyme, due to a point mutation at the active site, are unable to differentiate into pro-inflammatory T cells, whereas regulatory T cells develop normally. Moreover, TRPM7 is vital for lipopolysaccharides (LPS)-induced activation of murine macrophages. Within this study, we show that the channel-kinase TRPM7 is functionally expressed in neutrophils and has an important impact on neutrophil recruitment during inflammation. We find that human neutrophils cannot transmigrate along a CXCL8 chemokine gradient or produce reactive oxygen species in response to gram-negative bacterial lipopolysaccharide LPS, if TRPM7 channel or kinase activity are blocked. Using a recently identified TRPM7 kinase inhibitor, TG100-115, as well as murine neutrophils with genetic ablation of the kinase activity, we confirm the importance of both TRPM7 channel and kinase function in murine neutrophil transmigration and unravel that TRPM7 kinase affects Akt1/mTOR signaling thereby regulating neutrophil transmigration and effector function. Hence, TRPM7 represents an interesting potential target to treat unwanted excessive neutrophil invasion.
Collapse
Affiliation(s)
- Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kilian Hoelting
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Fraticelli
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Myriam Ripphahn
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
19
|
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y, Liu G. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol 2020; 10:287. [PMID: 32596169 PMCID: PMC7303283 DOI: 10.3389/fcimb.2020.00287] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
Macrophages differentiated into a classically activated (M1) or alternatively activated phenotype (M2) in infection and tumor, but the precise effects of glycolysis and oxidative phosphorylation (OXPHOS) metabolic pathway remain unclear. Herein, the effects of glycolysis or OXPHOS on macrophage polarizations were investigated using a pharmacological approach in mice. 2-Deoxy-D-glucose (2-DG) treatments, which blocks the key enzyme hexokinase of glycolysis, efficiently inhibits a specific switch to M1 lineage, decreasing the secretion of pro-inflammatory cytokines and expressions of co-stimulatory molecules associated with relieving infectious inflammation in vitro and in vivo. Glycolytic activation through the hypoxia-inducible factor-1α (HIF-1α) pathway was required for differentiation to the M1 phenotype, which conferred protection against infection. Dimethyl malonate (DMM) treatment, which blocks the key element succinate of OXPHOS, efficiently inhibits a specific switch to M2 lineage when macrophages receiving M2 stimulation, decreasing the secretion of anti-inflammatory cytokine and CD206 expressions. Mitochondrial dynamic alterations including mitochondrial mass, mitochondrial membrane potential (Dym) and ROS productions were critically for differentiation to the M2 phenotype, which conferred protection against anti-tumor immunity. Glycolysis is also required for macrophage M2 differentiation. Thus, these data provide a basis for a comprehensively understanding the role of glycolysis and OXPHOS in macrophage differentiation during anti-infection and anti-tumor inflammation.
Collapse
Affiliation(s)
- Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
20
|
Yeo IC, Devarenne TP. Screening for potential nuclear substrates for the plant cell death suppressor kinase Adi3 using peptide microarrays. PLoS One 2020; 15:e0234011. [PMID: 32484825 PMCID: PMC7266335 DOI: 10.1371/journal.pone.0234011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The tomato AGC protein kinase Adi3 is a Ser/Thr kinase that functions as a negative regulator of programmed cell death through cell death suppression (CDS) activity in the nucleus. In this study, to understand the mechanism of Adi3 CDS, peptide microarrays containing random Ser- and Thr-peptide phosphorylation substrates were used to screen for downstream phosphorylation substrates. In the microarray phosphorylation assay, Adi3 showed promiscuous kinase activity more toward Ser-peptides compared to Thr-peptides, and a preference for aromatic and cyclic amino acids on both Ser- and Thr-peptides was seen. The 63 highest phosphorylated peptide sequences from the Ser-peptide microarray were selected as queries for a BLAST search against the tomato proteome. As a result, 294 candidate nuclear Adi3 substrates were selected and categorized based on their functions. Many of these proteins were classified as DNA/RNA polymerases or regulators involved in transcription and translation events. The list of potential Adi3 substrates was narrowed to eleven and four candidates were tested for phosphorylation by Adi3. Two of these candidates, RNA polymerase II 2nd largest subunit (RPB2) and the pathogen defense related transcription factor Pti5, were confirmed as Adi3 phosphorylation substrates by in vitro kinase assays. Using a mutational approach two residues, Thr675 and Thr676, were identified as Adi3 phosphorylation sites on RPB2. This study provides the foundation for understanding Adi3 CDS mechanisms in the nucleus as well as other cellular functions.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
21
|
Zhang Z, Dong L, Jia A, Chen X, Yang Q, Wang Y, Wang Y, Liu R, Cao Y, He Y, Bi Y, Liu G. Glucocorticoids Promote the Onset of Acute Experimental Colitis and Cancer by Upregulating mTOR Signaling in Intestinal Epithelial Cells. Cancers (Basel) 2020; 12:cancers12040945. [PMID: 32290362 PMCID: PMC7254274 DOI: 10.3390/cancers12040945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effects of glucocorticoids on colitis and colitis-associated cancer are unclear. In this study, we investigated the therapeutic roles of glucocorticoids in acute experimental ulcerative colitis and colitis-associated cancer in mice and their immunoregulatory mechanisms. Murine acute ulcerative colitis was induced by dextran sulfate sodium (DSS) and treated with dexamethasone (Dex) at different doses. Dex significantly exacerbated the onset and severity of DSS-induced colitis and potentiated mucosal inflammatory macrophage and neutrophil infiltration, as well as cytokine production. Furthermore, under inflammatory conditions, the expression of the glucocorticoid receptor (GR) did not change significantly, while mammalian target of rapamycin (mTOR) signaling was higher in colonic epithelial cells than in colonic immune cells. The deletion of mTOR in intestinal epithelial cells, but not that in myeloid immune cells, in mice significantly ameliorated the severe course of colitis caused by Dex, including weight loss, clinical score, colon length, pathological damage, inflammatory cell infiltration and pro-inflammatory cytokine production. These data suggest that mTOR signaling in intestinal epithelial cells, mainly mTORC1, plays a critical role in the Dex-induced exacerbation of acute colitis and colitis-associated cancer. Thus, these pieces of evidence indicate that glucocorticoid-induced mTOR signaling in epithelial cells is required in the early stages of acute ulcerative colitis by modulating the dynamics of innate immune cell recruitment and activation.
Collapse
Affiliation(s)
- Zhengguo Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Xi Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (Y.B.); (G.L.); Tel.: +86-10-6694-8562 (Y.B.); +86-10-5880-0026 (G.L.); Fax: +86-10-6694-8562 (Y.B.); +86-10-5880-0026 (G.L.)
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Z.Z.); (L.D.); (A.J.); (X.C.); (Q.Y.); (Y.W.); (Y.W.); (R.L.); (Y.C.); (Y.H.)
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Correspondence: (Y.B.); (G.L.); Tel.: +86-10-6694-8562 (Y.B.); +86-10-5880-0026 (G.L.); Fax: +86-10-6694-8562 (Y.B.); +86-10-5880-0026 (G.L.)
| |
Collapse
|
22
|
He C, Zhang Y, Luo H, Luo B, He Y, Jiang N, Liang Y, Zeng J, Luo Y, Xian Y, Liu J, Zheng X. Identification of the key differentially expressed genes and pathways involved in neutrophilia. Innate Immun 2019; 26:270-284. [PMID: 31726910 PMCID: PMC7251796 DOI: 10.1177/1753425919887411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most important determinants in the acute inflammatory response. Pathologically increased numbers of PMNs in the circulation or specific tissues (or both) lead to neutrophilia. However, the genes expressed and pathways involved in neutrophilia have yet to be elucidated. By analysis of three public microarray datasets related to neutrophilia (GSE64457, GSE54644, and GSE94923) and evaluation by gene ontology, pathway enrichment, protein-protein interaction networks, and hub genes analysis using multiple methods (DAVID, PATHER, Reactome, STRING, Reactome FI Plugin, and CytoHubba in Cytoscape), we identified the commonly up-regulated and down-regulated different expressed genes. We also discovered that multiple signaling pathways (IL-mediated, LPS-mediated, TNF-α, TLR cascades, MAPK, and PI3K-Akt) were involved in PMN regulation. Our findings suggest that the commonly expressed genes involved in regulation of multiple pathways were the underlying molecular mechanisms in the development of inflammatory, autoimmune, and hematologic diseases that share the common phenotypic characteristics of increased numbers of PMNs. Taken together, these data suggest that these genes are involved in the regulation of neutrophilia and that the corresponding gene products could serve as potential biomarkers and/or therapeutic targets for neutrophilia.
Collapse
Affiliation(s)
- Chengcheng He
- People's Hospital of Zhongjiang, Deyang, Sichuan, P. R. China.,College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yingchun Zhang
- People's Hospital of Zhongjiang, Deyang, Sichuan, P. R. China.,College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Hongwei Luo
- People's Hospital of Mianzhu, Deyang, Sichuan, P. R. China
| | - Bo Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yancheng He
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Nan Jiang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yu Liang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jingyuan Zeng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujiao Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujun Xian
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jiajia Liu
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Xiaoli Zheng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
23
|
Huang Y, Zhao C, Chen J, Su X. Deficiency of HIF-1α in myeloid cells protects Escherichia coli or LPS-induced acute lung injury. QJM 2018; 111:707-714. [PMID: 30016480 DOI: 10.1093/qjmed/hcy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deficiency of hypoxia-induced factor-1α (HIF-1α) in macrophages reduced lipopolysaccharide (LPS)-induced mortality; however, whether HIF-1α expression in myeloid cells would contribute to the development of Escherichia coli (E. coli) or LPS-induced acute lung injury (ALI) is less investigated. AIM To test whether deletion of Hif1α in myeloid cells affects E. coli or LPS-induced ALI and to elicit the underlying mechanisms. DESIGN Laboratory study. METHODS We intratracheally challenged Hif1αfl/fl and Hif1αfl/flLysMCre mice with E. coli or LPS to analyze lung and spleen inflammatory responses. Flow cytometry was used to analyze the changes of α7 nAChR+CD11b+ cells in the lung and spleen. Double knockout of Chrna7 and Itgam mice were used to examine expression of HIF-1α during E. coli lung infection. Vagotomy was performed to demonstrate the role of vagus nerve in mediating protective effects of deletion of Hif1α in myeloid cells on LPS-induced ALI. RESULTS Deletion of Hif1α in myeloid cells could reduce lung edema, inflammatory cell infiltration, and lung and BAL inflammatory cytokines in E. coli-induced ALI. Flow cytometric analysis revealed that α7 nAChR+CD11b+ cells in the lung and spleen were markedly increased in E. coli-challenged Hif1αfl/flLysMCre mice compared with E. coli-challenged Hif1αfl/fl mice. Double knockout of Chrna7 and Itgam increased HIF-1α expression in lung and spleen cells during lung E. coli infection. Vagotomy abolished the protective effect of deletion of Hif1α in myeloid cells on LPS-induced ALI. CONCLUSION Deletion of Hif1α in myeloid cells could protect mice from lung injury depending on α7 nAChR+CD11b+ cells and innervation of vagal circuits.
Collapse
Affiliation(s)
- Y Huang
- From the Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - C Zhao
- From the Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J Chen
- From the Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - X Su
- From the Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Wang L, Zhang N, Zhang Y, Xia J, Zhan Q, Wang C. Landscape of transcription and long non-coding RNAs reveals new insights into the inflammatory and fibrotic response following ventilator-induced lung injury. Respir Res 2018; 19:122. [PMID: 29929510 PMCID: PMC6013938 DOI: 10.1186/s12931-018-0822-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/08/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mechanical ventilation can cause ventilator-induced lung injury (VILI) and lung fibrosis; however, the underlying mechanisms are still not fully understood. RNA sequencing is a powerful means for detecting vitally important protein-coding transcripts and long non-coding RNAs (lncRNAs) on a genome-wide scale, which may be helpful for reducing this knowledge gap. METHODS Ninety C57BL/6 mice were subjected to either high tidal volume ventilation or sham operation, and then mice with ventilation were randomly allocated to periods of recovery for 0, 1, 3, 5, 7, 14, 21, or 28 days. Lung histopathology, wet-to-dry weight ratio, hydroxyproline concentration, and transforming growth factor beta 1 (TGF-β1) levels were determined to evaluate the progression of inflammation and fibrosis. To compare sham-operated lungs, and 0- and 7-day post-ventilated lungs, RNA sequencing was used to elucidate the expression patterns, biological processes, and functional pathways involved in inflammation and fibrosis. RESULTS A well-defined fibrotic response was most pronounced on day 7 post-ventilation. Pairwise comparisons among the sham and VILI groups showed a total of 1297 differentially expressed transcripts (DETs). Gene Ontology analysis determined that the stimulus response and immune response were the most important factors involved in inflammation and fibrosis, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed that mechanistic target of rapamycin (mTOR), Janus kinase-signal transducer and activator of transcription (JAK/STAT), and cyclic adenosine monophosphate (cAMP) signaling were implicated in early inflammation; whereas TGF-β, hypoxia inducible factor-1 (HIF-1), Toll-like receptor (TLR), and kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways were significantly involved in subsequent fibrosis. Additionally, 332 DE lncRNAs were identified and enriched in the processes of cellular and biological regulation. These lncRNAs may potentially regulate fibrosis through signaling pathways such as wingless/integrase-1 (Wnt), HIF-1, and TLR. CONCLUSIONS This is the first transcriptome study to reveal all of the transcript expression patterns and critical pathways involved in the VILI fibrotic process based on the early inflammatory state, and to show the important DE lncRNAs regulated in inflammation and fibrosis. Together, the results of this study provide novel perspectives into the potential molecular mechanisms underlying VILI and subsequent fibrosis.
Collapse
Affiliation(s)
- Lu Wang
- Beijing University of Chinese Medicine, No 11, East Bei San Huan Road, Chaoyang District, Beijing, 100029, China.,Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Nannan Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Chinese Academy of Medical Sciences and Peking Union Medical Collage, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Yi Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jingen Xia
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Zhan
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Chinese Academy of Medical Sciences and Peking Union Medical Collage, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Interactions between neutrophils and platelets contribute to the progression of thromboinflammatory disease. However, the regulatory mechanism governing these interactions is poorly understood. The present review focuses on the crucial role of Ser/Thr protein kinase B (AKT)β-NADPH oxidase 2 (NOX2) signaling in regulating neutrophil and platelet activation and their heterotypic interactions under thromboinflammatory conditions. RECENT FINDINGS Growing evidence has shown that platelets, leukocytes, and blood coagulation need to be considered to treat thromboinflammatory disease in which inflammation and thrombosis occur concurrently. In addition to plasma proteins and intracellular signaling molecules, extracellular reactive oxygen species (ROS) produced from activated leukocytes could be an important factor in the pathophysiology of thromboinflammatory disease. Recent studies reveal that AKT2-NOX2 signaling has critical roles in Ca mobilization, ROS generation, degranulation, and control of the ligand-binding function of cell surface molecules, thereby promoting heterotypic cell-cell interactions in thromboinflammation. These findings have provided novel insights into attractive therapeutic targets for the prevention and treatment of thromboinflammatory disease. SUMMARY Recent discoveries concerning molecular mechanisms regulating neutrophil-platelet interactions have bridged some gaps in our knowledge of the complicated signaling pathways exacerbating thromboinflammatory conditions.
Collapse
|
26
|
AKT/PKB Signaling: Navigating the Network. Cell 2017; 169:381-405. [PMID: 28431241 DOI: 10.1016/j.cell.2017.04.001] [Citation(s) in RCA: 2576] [Impact Index Per Article: 322.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
The Ser and Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of AKT, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type 2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
Collapse
|
27
|
Zhao C, Yang X, Su EM, Huang Y, Li L, Matthay MA, Su X. Signals of vagal circuits engaging with AKT1 in α7 nAChR +CD11b + cells lessen E. coli and LPS-induced acute inflammatory injury. Cell Discov 2017; 3:17009. [PMID: 28529765 PMCID: PMC5419718 DOI: 10.1038/celldisc.2017.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Vagal circuits-α7 nAChR (α7 nicotinic acetylcholine receptor, coded by Chrna7) signaling utilizes spleen as a hub to dampen systemic inflammatory responses. Vagal innervations also extend to the distal airways and alveoli. Vagotomy and deficiency of α7 nAChR deteriorate E. coli and lipopolysaccharide (LPS)-induced acute lung inflammatory responses; however, the underlying mechanisms remain elusive. Here, we hypothesized that vagal circuits would limit splenic release and lung recruitment of α7 nAChR+CD11b+ cells (CD11b is coded by Itgam, a surface marker of monocytes and neutrophils) via phosphorylation of AKT1 and that this process would define the severity of lung injury. Using both E. coli and LPS-induced lung injury mouse models, we found that vagotomy augmented splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, and consequently worsened lung inflammatory responses. Rescue of vagotomy with an α7 nAChR agonist preserved α7 nAChR+CD11b+ cells in the spleen, suppressed recruitment of these cells to the lung and attenuated lung inflammatory responses. Vagal signals via α7 nAChR promoted serine473 phosphorylation of AKT1 in α7 nAChR+CD11b+ cells and stabilized these cells in the spleen. Deletion of Akt1 enhanced splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, which elicited neutrophil-infiltrated lung inflammation and injury. Vagotomy and double deletion of Chrna7 and Itgam reduced serine473 phosphorylation of AKT1 in the spleen and BAL (bronchoalveolar lavage) Ly6CintGr1hi neutrophils and Ly6Chi monocytes, and they facilitated the recruitment of neutrophils and monocytes to the airspaces of E. coli-injured lungs. Double deletion of Chrna7 and Itgam increased lung recruitment of monocytes and/or neutrophils and deteriorated E. coli and LPS-induced lung injury. Thus, signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells attenuate E. coli and LPS-induced acute lung inflammatory responses. Targeting this signaling pathway could provide novel therapeutic strategies for treating acute lung injury.
Collapse
Affiliation(s)
- Caiqi Zhao
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xi Yang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Emily M Su
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Yuanyuan Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Xiao Su
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, Wang Y, Su H, Jia A, Hu Y, Han L, Zhang J, Li S, Tao W, Liu G. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun 2017; 8:14275. [PMID: 28145433 PMCID: PMC5296641 DOI: 10.1038/ncomms14275] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. The differentiation of Th17 cells is central to infection and autoimmunity. Here, the authors show that expression of MST1 by dendritic cells limits IL-6 production and thereby controls Th17 differentiation in immunity to fungal infection and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Chunxiao Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huilin Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Linian Han
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jiangyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Simin Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors. Curr Opin Hematol 2016; 23:36-43. [PMID: 26554893 DOI: 10.1097/moh.0000000000000198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Neutrophils have traditionally been viewed in the context of acute infection and inflammation forming the first line of defense against invading pathogens. Neutrophil trafficking to the site of inflammation requires adhesion and transmigration through blood vessels, which is orchestrated by adhesion molecules, such as β2 and β1-integrins, chemokines, and cytokines. The review focuses on recent advances in understanding the regulators of neutrophil recruitment during inflammation in both acute and chronic settings. RECENT FINDINGS Recent findings suggest that besides the established pathways of selectin or chemokine-mediated integrin activation, signaling by distinct Toll-like receptors (TLRs) (especially TLR2, TLR4, and TLR5) can activate integrin-dependent neutrophil adhesion. Moreover, the integrin α3β1 has been vitally implicated as a new player in neutrophil recruitment and TLR-mediated responses in septic inflammation. Furthermore, several endogenous inhibitory mechanisms of leukocyte recruitment have been identified, including the secreted molecules Del-1, PTX3, and GDF-15, which block distinct steps of the leukocyte adhesion cascade, as well as novel regulatory signaling pathways, involving the protein kinase AKT1 and IFN-λ2/IL-28A. SUMMARY The leukocyte adhesion cascade is a tightly regulated process, subjected to both positive and negative regulators. Dysregulation of this process and hence neutrophil recruitment can lead to the development of inflammatory and autoimmune diseases.
Collapse
|
30
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
31
|
Sun R, Xu F, Wang C, Dong E. NSFC spurs significant basic research progress of respiratory medicine in China. CLINICAL RESPIRATORY JOURNAL 2015; 11:271-284. [PMID: 26176299 PMCID: PMC7159156 DOI: 10.1111/crj.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC.
Collapse
Affiliation(s)
- Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Feng Xu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
32
|
Zhang PX, Cheng J, Zou S, D’Souza AD, Koff JL, Lu J, Lee PJ, Krause DS, Egan ME, Bruscia EM. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 2015; 6:6221. [PMID: 25665524 PMCID: PMC4324503 DOI: 10.1038/ncomms7221] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In cystic fibrosis (CF) patients, hyper-inflammation is a key factor in lung destruction and disease morbidity. We have previously demonstrated that macrophages drive the lung hyper-inflammatory response to LPS in CF mice, because of reduced levels of the scaffold protein CAV1 with subsequent uncontrolled TLR4 signalling. Here we show that reduced CAV1 and, consequently, increased TLR4 signalling, in human and murine CF macrophages and murine CF lungs, is caused by high microRNA-199a-5p levels, which are PI3K/AKT-dependent. Downregulation of microRNA-199a-5p or increased AKT signalling restores CAV1 expression and reduces hyper-inflammation in CF macrophages. Importantly, the FDA-approved drug celecoxib re-establishes the AKT/miR-199a-5p/CAV1 axis in CF macrophages, and ameliorates lung hyper-inflammation in Cftr-deficient mice. Thus, we identify the AKT/miR-199a-5p/CAV1 pathway as a regulator of innate immunity, which is dysfunctional in CF macrophages contributing to lung hyper-inflammation. In addition, we found that this pathway can be targeted by celecoxib.
Collapse
Affiliation(s)
- Ping-xia Zhang
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jijun Cheng
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Siying Zou
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Anthony D. D’Souza
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jonathan L. Koff
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jun Lu
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Patty J. Lee
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Diane S. Krause
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Marie E. Egan
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cellular and Molecular Physiology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Emanuela M. Bruscia
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| |
Collapse
|
33
|
The calcineurin-NFAT axis controls allograft immunity in myeloid-derived suppressor cells through reprogramming T cell differentiation. Mol Cell Biol 2014; 35:598-609. [PMID: 25452304 DOI: 10.1128/mcb.01251-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While cyclosporine (CsA) inhibits calcineurin and is highly effective in prolonging rejection for transplantation patients, the immunological mechanisms remain unknown. Herein, the role of calcineurin signaling was investigated in a mouse allogeneic skin transplantation model. The calcineurin inhibitor CsA significantly ameliorated allograft rejection. In CsA-treated allograft recipient mice, CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs) were functional suppressive immune modulators that resulted in fewer gamma interferon (IFN-γ)-producing CD8(+) T cells and CD4(+) T cells (T(H)1 T helper cells) and more interleukin 4 (IL-4)-producing CD4(+) T cells (T(H2)) and prolonged allogeneic skin graft survival. Importantly, the expression of NFATc1 is significantly diminished in the CsA-induced MDSCs. Blocking NFAT (nuclear factor of activated T cells) with VIVIT phenocopied the CsA effects in MDSCs and increased the suppressive activities and recruitment of CD11b(+) Gr1(+) MDSCs in allograft recipient mice. Mechanistically, CsA treatment enhanced the expression of indoleamine 2,3-dioxygenase (IDO) and the suppressive activities of MDSCs in allograft recipients. Inhibition of IDO nearly completely recovered the increased MDSC suppressive activities and the effects on T cell differentiation. The results of this study indicate that MDSCs are an essential component in controlling allograft survival following CsA or VIVIT treatment, validating the calcineurin-NFAT-IDO signaling axis as a potential therapeutic target in transplantation.
Collapse
|
34
|
Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:283525. [PMID: 25136575 PMCID: PMC4127262 DOI: 10.1155/2014/283525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/27/2022]
Abstract
Cholinergic anti-inflammatory pathway (CAP) bridges immune and nervous systems and plays pleiotropic roles in modulating inflammation in animal models by targeting different immune, proinflammatory, epithelial, endothelial, stem, and progenitor cells and signaling pathways. Acute lung injury (ALI) is a devastating inflammatory disease. It is pathogenically heterogeneous and involves many cells and signaling pathways. Here, we emphasized the research regarding the modulatory effects of CAP on animal models, cell population, and signaling pathways that involved in the pathogenesis of ALI. By comparing the differential effects of CAP on systemic and pulmonary inflammation, we postulated that a pulmonary parasympathetic inflammatory reflex is formed to sense and respond to pathogens in the lung. Work targeting the formation and function of pulmonary parasympathetic inflammatory reflex would extend our understanding of how vagus nerve senses, recognizes, and fights with pathogens and inflammatory responses.
Collapse
|
35
|
Liao J, Wang X, Bi Y, Shen B, Shao K, Yang H, Lu Y, Zhang Z, Chen X, Liu H, Wang J, Chu Y, Xue L, Wang X, Liu G. Dexamethasone potentiates myeloid-derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol 2014; 96:675-84. [PMID: 24948701 DOI: 10.1189/jlb.2hi1113-611rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Whereas GCs have been demonstrated to be beneficial for transplantation patients, the pharmacological mechanisms remain unknown. Herein, the role of GR signaling was investigated via a pharmacological approach in a murine allogeneic skin transplantation model. The GC Dex, a representative GC, significantly relieved allograft rejection. In Dex-treated allograft recipient mice, CD11b(+)Gr1(+) MDSCs prolonged graft survival and acted as functional suppressive immune modulators that resulted in fewer IFN-γ-producing Th1 cells and a greater number of IL-4-producing Th2 cells. In agreement, Dex-treated MDSCs promoted reciprocal differentiation between Th1 and Th2 in vivo. Importantly, the GR is required in the Dex-induced MDSC effects. The blocking of GR with RU486 significantly diminished the expression of CXCR2 and the recruitment of CD11b(+)Gr1(+) MDSCs, thereby recovering the increased MDSC-suppressive activity induced by Dex. Mechanistically, Dex treatment induced MDSC iNOS expression and NO production. Pharmacologic inhibition of iNOS completely eliminated the MDSC-suppressive function and the effects on T cell differentiation. This study shows MDSCs to be an essential component in the prolongation of allograft survival following Dex or RU486 treatment, validating the GC-GR-NO signaling axis as a potential therapeutic target in transplantation.
Collapse
Affiliation(s)
- Jiongbo Liao
- Ruijin Hospital and Medical School of Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Xiao Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; and
| | - Bo Shen
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Kun Shao
- Ruijin Hospital and Medical School of Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Hui Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Yun Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Zhengguo Zhang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Xi Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Huanrong Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Jian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Yiwei Chu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| | - Lixiang Xue
- Department of Biochemistry and Molecular Biology, Peking University, Health Science Center, Beijing, China
| | - Xianghui Wang
- Ruijin Hospital and Medical School of Shanghai Jiao Tong University, Shanghai, China;
| | - Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Institute of Immunobiology, and
| |
Collapse
|
36
|
Zhang Y, Bi Y, Yang H, Chen X, Liu H, Lu Y, Zhang Z, Liao J, Yang S, Chu Y, Yang R, Liu G. mTOR limits the recruitment of CD11b+Gr1+Ly6Chigh myeloid-derived suppressor cells in protecting against murine immunological hepatic injury. J Leukoc Biol 2014; 95:961-70. [PMID: 24569105 DOI: 10.1189/jlb.0913473] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mTOR pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct the innate and adaptive immune responses. MDSCs are a heterogeneous cell population that plays a crucial regulatory effect in immune-related diseases. However, whether mTOR signaling affects the functions of MDSCs remains largely unknown. Here, we show that mTOR signaling is a pivotal negative determinant of MDSC recruitment in IMH disease. In the context of IMH, inhibition of mTOR with rapamycin in CD11b⁺Gr1⁺ MDSCs mediates protection against IMH and serves as a functional, suppressive immune modulator that results in increased CD11b⁺Gr1⁺Ly6C(high) MDSC recruitment to inflammatory sites. In agreement with this, mTOR down-regulation promotes CD11b⁺Gr1⁺Ly6C(high) MDSC migration in vitro and in vivo. Mechanistically, mTOR activity down-regulation in MDSCs induced iNOS expression and NO production. Pharmacologic inhibition of iNOS completely eliminated MDSC recruitment. This study identifies MDSCs as an essential component for protection against IMH following rapamycin treatment. Rapamycin treatment or mTOR inhibition promotes CD11b⁺Gr1⁺Ly6C(high) MDSC recruitment and is critically required for protection against hepatic injury. This study further validates the targeting of mTOR signaling as a potential therapeutic approach to IMH-related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Xi Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Huanrong Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Yun Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Zhengguo Zhang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Jiongbo Liao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Shan Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Yiwei Chu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, and Biotherapy Research Center, Fudan University, Shanghai, China; and
| |
Collapse
|
37
|
Liu G, Bi Y, Wang R, Yang H, Zhang Y, Wang X, Liu H, Lu Y, Zhang Z, Chen W, Chu Y, Yang R. Targeting S1P1 receptor protects against murine immunological hepatic injury through myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3068-79. [PMID: 24567529 DOI: 10.4049/jimmunol.1301193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although FTY720 may alter migration and homing of lymphocytes via sphingosine-1-phosphate (S1P) receptors, our recent studies indicated that FTY720 directly controls the differentiation of Th1 cells to regulatory T cells (Tregs) by targeting S1P1. However, the pharmacological function of FTY720 in immunological hepatic injury remains unknown. In this study, the role and regulatory signaling pathway of S1P receptor were investigated using a pharmacological approach in immune-mediated hepatic injury (IMH). In the context of IMH, FTY720 significantly ameliorated mortality and hepatic pathology. In FTY720-treated mice, recruited CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) mediate protection against IMH and are functional suppressive immune modulators that result in fewer IFN-γ-producing Th1 cells and more Foxp3(+) Tregs. In agreement, FTY720-treated MDSCs promote the reciprocal differentiation between Th1 cells and Tregs in vitro and in vivo. Mechanistically, FTY720 treatment induced inducible NO synthase expression and NO production in MDSCs. Pharmacologic inhibition of inducible NO synthase completely eliminates MDSC suppressive function and eradicates their inducible effects on T cell differentiation. Finally, the mTOR inhibitor, rapamycin, photocopies the effects of FTY720 on MDSCs, implicating mTOR as a downstream effector of S1P1 signaling. This study identifies MDSCs as an essential component that provides protection against IMH following FTY720 or rapamycin treatment, validating the S1P1-mTOR signaling axis as a potential therapeutic target in hepatic injury.
Collapse
Affiliation(s)
- Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bi Y, Zhou J, Yang H, Wang X, Zhang X, Wang Q, Wu X, Han Y, Song Y, Tan Y, Du Z, Yang H, Zhou D, Cui Y, Zhou L, Yan Y, Zhang P, Guo Z, Wang X, Liu G, Yang R. IL-17A produced by neutrophils protects against pneumonic plague through orchestrating IFN-γ-activated macrophage programming. THE JOURNAL OF IMMUNOLOGY 2013; 192:704-13. [PMID: 24337746 DOI: 10.4049/jimmunol.1301687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Innate immune cells, including neutrophils and macrophages, are critically involved in host antimicrobial defense responses. Intrinsic regulatory mechanisms controlling neutrophil and macrophage activities are poorly defined. In this study, we found that IL-17A, a natural signal factor, could provide protection against early pneumonic plague inflammation by coordinating the functions of neutrophils and programming of macrophages. The IL-17A level is promptly increased during the initial infection. Importantly, abrogation of IL-17A or IL-17AR significantly aggravated the infection, but mIL-17A treatment could significantly alleviate inflammatory injury, revealing that IL-17A is a critical requirement for early protection of infection. We also demonstrated that IL-17A was predominantly produced by CD11b(+)Ly6G(+) neutrophils. Although IL-17A could not significantly affect the antimicrobial responses of neutrophils, it could target the proinflammatory macrophage (M1) programming and potentiate the M1's defense against pneumonic plague. Mechanistically, IFN-γ treatment or IFN-γ-activated M1 macrophage transfer could significantly mitigate the aggravated infection of IL-17A(-/-) mice. Finally, we showed that IL-17A and IFN-γ could synergistically promote macrophage anti-infection immunity. Thus, our findings identify a previously unrecognized function of IL-17A as an intrinsic regulator in coordinating neutrophil and macrophage antimicrobial activity to provide protection against acute pneumonic plague.
Collapse
Affiliation(s)
- Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|