1
|
De Voss CJ, Korompis M, Li S, Ateere A, McShane H, Stylianou E. Novel mRNA vaccines induce potent immunogenicity and afford protection against tuberculosis. Front Immunol 2025; 16:1540359. [PMID: 40018046 PMCID: PMC11865049 DOI: 10.3389/fimmu.2025.1540359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease with a severe global burden. The intractability of Mtb has prevented the identification of clear correlates of protection against TB and hindered the development of novel TB vaccines that are urgently required. Lipid nanoparticle (LNP)-formulated mRNA is a highly promising vaccine platform that has yet to be thoroughly applied to TB. Methods We selected five Mtb antigens (PPE15, ESAT6, EspC, EsxI, MetE) and evaluated their potential as LNP-formulated mRNA vaccines, both when each antigen was delivered individually, and when all five antigens were combined in a mix regimen (m-Mix). Results Each mRNA construct demonstrated unique cellular and humoral immunogenicity, and both m-Mix, as well as the single antigen EsxI, conferred significant protection in a murine Mtb challenge model. Whilst the potent immune responses of each mRNA were maintained when applied as a boost to BCG, there was no additional increase to the efficacy of BCG. Combination of m-Mix with a recombinant, replication-deficient chimpanzee adenovirus (ChAdOx1), in a heterologous prime-boost delivery (C-m-Mix), appeared to result in increased protection upon murine Mtb infection, than either regimen alone. Discussion This work warrants further investigation of LNP-formulated mRNA vaccines for TB, whilst indicating the potential of m-Mix and C-m-Mix to progress to further stages of vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Stylianou
- The Jenner Institute, University of Oxford,
Oxford, United Kingdom
| |
Collapse
|
2
|
Korompis M, De Voss CJ, Li S, Richard A, Almujri SS, Ateere A, Frank G, Lemoine C, McShane H, Stylianou E. Strong immune responses and robust protection following a novel protein in adjuvant tuberculosis vaccine candidate. Sci Rep 2025; 15:1886. [PMID: 39805855 PMCID: PMC11729893 DOI: 10.1038/s41598-024-84667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
BCG remains the only licensed vaccine for tuberculosis (TB), but its efficacy wanes over time. Subunit vaccines, aim to improve BCG immunity and protection, by inducing responses to a few mycobacterial antigens delivered with a specific platform. Since the platform shapes the immune response induced, selecting the right platform has been challenging due to the lack of immune correlates of protection. Recently, the protein-adjuvated subunit vaccine. M72/AS01E, demonstrated 49.7% efficacy in preventing active TB in latently infected adults, indicating that protective immunity through subunit vaccines is possible. In this study we evaluated the immunogenicity and efficacy of the promising mycobacterial antigen PPE15, formulated with five adjuvants developed by the Vaccine Formulation Institute. While all adjuvants were immunogenic, PPE15 with LMQ protected vaccinated mice against an in vivo Mycobacterium tuberculosis challenge, both as a standalone vaccine and as a boost to BCG. Vaccinated mice had enriched lung parenchymal antigen-specific CD4 + CXCR3 + KLRG1- T cells previously associated with TB protection. Heterologous vaccination strategies were also explored by combining intranasal ChAdOx1.PPE15 viral vector, with intramuscular PPE15-LMQ resulting in improved protection compared to individual vaccines. These findings support the progression of this vaccine candidate to the next stages of development.
Collapse
Affiliation(s)
| | | | - Shuailin Li
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Salem Salman Almujri
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Géraldine Frank
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
4
|
Larsen SE, Erasmus JH, Reese VA, Pecor T, Archer J, Kandahar A, Hsu FC, Nicholes K, Reed SG, Baldwin SL, Coler RN. An RNA-Based Vaccine Platform for Use against Mycobacterium tuberculosis. Vaccines (Basel) 2023; 11:vaccines11010130. [PMID: 36679975 PMCID: PMC9862644 DOI: 10.3390/vaccines11010130] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), a bacterial pathogen that causes tuberculosis disease (TB), exerts an extensive burden on global health. The complex nature of M.tb, coupled with different TB disease stages, has made identifying immune correlates of protection challenging and subsequently slowing vaccine candidate progress. In this work, we leveraged two delivery platforms as prophylactic vaccines to assess immunity and subsequent efficacy against low-dose and ultra-low-dose aerosol challenges with M.tb H37Rv in C57BL/6 mice. Our second-generation TB vaccine candidate ID91 was produced as a fusion protein formulated with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion) or as a novel replicating-RNA (repRNA) formulated in a nanostructured lipid carrier. Protein subunit- and RNA-based vaccines preferentially elicit cellular immune responses to different ID91 epitopes. In a single prophylactic immunization screen, both platforms reduced pulmonary bacterial burden compared to the controls. Excitingly, in prime-boost strategies, the groups that received heterologous RNA-prime, protein-boost or combination immunizations demonstrated the greatest reduction in bacterial burden and a unique humoral and cellular immune response profile. These data are the first to report that repRNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing CD4+ and CD8+ T-cell epitopes.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA
| | - Jesse H. Erasmus
- HDT BioCorp, Seattle, WA 98102, USA
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Valerie A. Reese
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA 98105, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
- Correspondence:
| |
Collapse
|
5
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
6
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
7
|
Han Lew M, Nor Norazmi M, Nordin F, Jun Tye G. A novel peptide vaccination augments cytotoxic CD8+ T-cell responses against Mycobacterium tuberculosis HspX antigen. Immunobiology 2022; 227:152201. [DOI: 10.1016/j.imbio.2022.152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022]
|
8
|
Adeagbo BA, Akinlalu AO, Phan T, Guderian J, Boukes G, Willenburg E, Fenner C, Bolaji OO, Fox CB. Controlled Covalent Conjugation of a Tuberculosis Subunit Antigen (ID93) to Liposome Improved In Vitro Th1-Type Cytokine Recall Responses in Human Whole Blood. ACS OMEGA 2020; 5:31306-31313. [PMID: 33324841 PMCID: PMC7726955 DOI: 10.1021/acsomega.0c04774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) remains a foremost poverty-related disease with a high rate of mortality despite global immunization with Bacille Calmette-Guérin (BCG). Several adjuvanted recombinant proteins are in clinical development for TB to protect against the disease in infants and adults. Nevertheless, simple mixing of adjuvants with antigens may not be optimal for enhancing the immune response due to poor association. Hence, co-delivery of adjuvants with antigens has been advocated for improved immune response. This report, therefore, presents a strategy of using chemical conjugation to co-deliver an adjuvanted recombinant protein TB vaccine (ID93 + GLA-LSQ). Chemical conjugation involving glutaraldehyde (GA) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) was used to associate the antigen (ID93) to the modified liposome (mGLA-LSQ). The physicochemical stability of the formulations was evaluated using high-performance liquid chromatography (HPLC) (adjuvant content), dynamic light scattering (DLS, particle size analysis), and sodium dodecyl sulfate-polyacrylamide gel (SDS) electrophoresis (protein analysis). The bioactivity was assessed by cytokine stimulation using fresh whole blood from 10 healthy donors. The conjugates of ID93 + mGLA_LSQ maintained liposomal and protein integrity with the two protein chemistries. The GLA and QS21 content of the vaccine were also stable for 3 months. However, only the glutaraldehyde conjugates provoked significant secretion of interleukin-2 (210.4 ± 11.45 vs 166.7 ± 9.15; p = 0.0059), interferon-gamma (210.5 ± 14.79 vs 144.1 ± 4.997; p = 0.0011), and tumor necrosis factor alpha (2075 ± 46.8 vs 1456 ± 144.8; p = 0.0082) compared to simple mixing. Conjugation of recombinant protein (ID93) to the liposome (mGLA_LSQ) through chemical conjugation resulted in a stable vaccine formulation, which could facilitate co-delivery of the subunit vaccine to promote a robust immune response.
Collapse
Affiliation(s)
- Babatunde Ayodeji Adeagbo
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Akintunde Oluseto Akinlalu
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
| | - Tony Phan
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Jeff Guderian
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Gerhardt Boukes
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Elize Willenburg
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Caryn Fenner
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Oluseye Oladotun Bolaji
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
| | - Christopher B. Fox
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
- Department
of Global Health, University of Washington, 3980 15th Ave NE, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Khan A, Bakhru P, Saikolappan S, Das K, Soudani E, Singh CR, Estrella JL, Zhang D, Pasare C, Ma Y, Sun J, Wang J, Hunter RL, Tony Eissa N, Dhandayuthapani S, Jagannath C. An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. NPJ Vaccines 2019; 4:34. [PMID: 31396406 PMCID: PMC6683161 DOI: 10.1038/s41541-019-0122-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/15/2019] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium bovis BCG is widely used as a vaccine against tuberculosis due to M. tuberculosis (Mtb), which kills millions of people each year. BCG variably protects children, but not adults against tuberculosis. BCG evades phagosome maturation, autophagy, and reduces MHC-II expression of antigen-presenting cells (APCs) affecting T-cell activation. To bypass these defects, an autophagy-inducing, TLR-2 activating C5 peptide from Mtb-derived CFP-10 protein was overexpressed in BCG in combination with Ag85B. Recombinant BCG85C5 induced a robust MHC-II-dependent antigen presentation to CD4 T cells in vitro, and elicited stronger TH1 cytokines (IL-12, IL-1β, and TNFα) from APCs of C57Bl/6 mice increasing phosphorylation of p38MAPK and ERK. BCG85C5 also enhanced MHC-II surface expression of MΦs by inhibiting MARCH1 ubiquitin ligase that degrades MHC-II. BCG85C5 infected APCs from MyD88 or TLR-2 knockout mice showed decreased antigen presentation. Furthermore, BCG85C5 induced LC3-dependent autophagy in macrophages increasing antigen presentation. Consistent with in vitro effects, BCG85C5 markedly expanded both effector and central memory T cells in C57Bl/6 mice protecting them against both primary aerosol infection with Mtb and reinfection, but was less effective among TLR-2 knockout mice. Thus, BCG85C5 induces stronger and longer lasting immunity, and is better than BCG against tuberculosis of mice.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Pearl Bakhru
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Sankaralingam Saikolappan
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Kishore Das
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Emily Soudani
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Christopher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Jaymie L. Estrella
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yue Ma
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jin Wang
- Methodist Hospital Research Institute, Houston, TX USA
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | | | - Subramanian Dhandayuthapani
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
- Methodist Hospital Research Institute, Houston, TX USA
| |
Collapse
|
10
|
Díez-Delgado I, Sevilla IA, Garrido JM, Romero B, Geijo MV, Dominguez L, Juste RA, Aranaz A, de la Fuente J, Gortazar C. Tuberculosis vaccination sequence effect on protection in wild boar. Comp Immunol Microbiol Infect Dis 2019; 66:101329. [PMID: 31437687 DOI: 10.1016/j.cimid.2019.101329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
The Eurasian wild boar (Sus scrofa) is a reservoir for tuberculosis (TB) in which vaccination is a valuable tool for control. We evaluated the protection and immune response achieved by homologous and heterologous regimes administering BCG and heat-inactivated Mycobacterium bovis (IV). Twenty-one wild boar piglets were randomly allocated in five groups: Control, homologous BCG, homologous IV, heterologous IV-BCG, heterologous BCG-IV. Significant 67% and 66% total lesion score reductions were detected in homologous IV (IVx2) and heterologous IV-BCG groups when compared with Control group (F4,16 = 6.393, p = 0.003; Bonferroni Control vs IVx2 p = 0.026, Tukey Control vs IV-BCG p = 0.021). No significant differences were found for homologous BCG (although a 48% reduction in total lesion score was recorded) and BCG-IV (3% reduction). Heterologous regimes did not improve protection over homologous regimes in the wild boar model and showed variable results from no protection to similar protection as homologous regimes. Therefore, homologous regimes remain the best option to vaccinate wild boar against TB. Moreover, vaccine sequence dramatically influenced the outcome underlining the relevance of studying the effects of prior sensitization in the outcome of vaccination.
Collapse
Affiliation(s)
- Iratxe Díez-Delgado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ronda de Toledo 12, 13071, Ciudad Real, Spain.
| | - Iker A Sevilla
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department. Bizkaia Science and Technology Park 812L, 48160, Derio (Bizkaia), Spain
| | - Joseba M Garrido
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department. Bizkaia Science and Technology Park 812L, 48160, Derio (Bizkaia), Spain
| | - Beatriz Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - María V Geijo
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department. Bizkaia Science and Technology Park 812L, 48160, Derio (Bizkaia), Spain
| | - Lucas Dominguez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain; Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Ramón A Juste
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department. Bizkaia Science and Technology Park 812L, 48160, Derio (Bizkaia), Spain; Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Carretera de Oviedo s/n 13 P.O. Box, 33300, Villaviciosa, Asturias, Spain
| | - Alicia Aranaz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ronda de Toledo 12, 13071, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
11
|
Ruhwald M, Andersen PL, Schrager L. Towards a new vaccine for tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10022417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Khoshnood S, Heidary M, Haeili M, Drancourt M, Darban-Sarokhalil D, Nasiri MJ, Lohrasbi V. Novel vaccine candidates against Mycobacterium tuberculosis. Int J Biol Macromol 2018; 120:180-188. [PMID: 30098365 DOI: 10.1016/j.ijbiomac.2018.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is now among the top ten causes of mortality worldwide being resulted in 1.7 million deaths including 0.4 million among people with HIV in 2016. The Bacille Calmette-Guerin (BCG) is the only available TB vaccine which fails to provide consistent protection against pulmonary TB in adults and adolescents despite being efficacious at protecting infants and young children from the most severe, often deadly forms of TB disease. To achieve the goal of global TB elimination by 2050 we will need new interventions including more improved vaccines that are effective in adult individuals who have not been infected with Mycobacterium tuberculosis as well as latently infected or immunocompromised subjects. In recent decades, multiple new vaccine candidates including whole cell vaccines, adjuvanted proteins, and vectored subunit vaccines have entered into the clinical trials. These new TB vaccines are hoped to provide encouraging safety and immunogenicity under various conditions including prevention of TB disease in adolescents and adults, as BCG replacement/boosters, or as therapeutic vaccines to reduce the duration of TB therapy. In this review, we will discuss the status of novel TB vaccine candidates currently under development in preclinical or clinical phases.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Heidary
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, Institut Hospital-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Abstract
INTRODUCTION Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.
Collapse
|
14
|
Optimizing Immunization Strategies for the Induction of Antigen-Specific CD4 and CD8 T Cell Responses for Protection against Intracellular Parasites. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:785-94. [PMID: 27466350 PMCID: PMC5014921 DOI: 10.1128/cvi.00251-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022]
Abstract
Immunization strategies that generate either CD4 or CD8 T cell responses are relatively well described, but less is known with regard to optimizing regimens to induce both CD4 and CD8 memory T cells. Considering the importance of both CD4 and CD8 T cells in the control of intracellular pathogens such as Leishmania donovani, we wanted to identify vaccines that could raise both CD4 and CD8 T cell responses and determine how to configure immunization strategies to generate the best combined protective T cell response. We examined responses generated against the Leishmania vaccine antigen F3 following its administration in either recombinant form with the Toll-like receptor 4 (TLR4) agonist-containing adjuvant formulation GLA-SE (F3+GLA-SE) or as a gene product delivered in an adenoviral vector (Ad5-F3). Homologous immunization strategies using only F3+GLA-SE or Ad5-F3 preferentially generated either CD4 or CD8 T cells, respectively. In contrast, heterologous strategies generated both antigen-specific CD4 and CD8 T cells. Administration of F3+GLA-SE before Ad5-F3 generated the greatest combined CD4 and CD8 responses. Cytotoxic CD8 T cell responses were highest when Th1 cells were generated prior to their induction by Ad5-F3. Finally, a single immunization with a combination of F3+GLA-SE mixed with Ad5-F3 was found to be sufficient to provide protection against experimental L. donovani infection. Taken together, our data delineate immunization regimens that induce antigen-specific CD4 and CD8 T cell memory responses, and identify a single immunization strategy that could be used to rapidly provide protection against intracellular pathogens in regions where access to health care is limited or sporadic.
Collapse
|
15
|
Tuberculosis vaccines--state of the art, and novel approaches to vaccine development. Int J Infect Dis 2016; 32:5-12. [PMID: 25809749 DOI: 10.1016/j.ijid.2014.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 11/20/2022] Open
Abstract
The quest for a vaccine that could have a major impact in reducing the current global burden of TB disease in humans continues to be extremely challenging. Significant gaps in our knowledge and understanding of the pathogenesis and immunology of tuberculosis continue to undermine efforts to break new ground, and traditional approaches to vaccine development have thus far met with limited success. Existing and novel candidate vaccines are being assessed in the context of their ability to impact the various stages that culminate in disease transmission and an increase in the global burden of disease. Innovative methods of vaccine administration and delivery have provided a fresh stimulus to the search for the elusive vaccine. Here we discuss the current status of preclinical vaccine development, providing insights into alternative approaches to vaccine delivery and promising candidate vaccines. The state of the art of clinical development also is reviewed.
Collapse
|
16
|
Coler RN, Hudson T, Hughes S, Huang PWD, Beebe EA, Orr MT. Vaccination Produces CD4 T Cells with a Novel CD154-CD40-Dependent Cytolytic Mechanism. THE JOURNAL OF IMMUNOLOGY 2015; 195:3190-7. [PMID: 26297758 DOI: 10.4049/jimmunol.1501118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022]
Abstract
The discovery of new vaccines against infectious diseases and cancer requires the development of novel adjuvants with well-defined activities. The TLR4 agonist adjuvant GLA-SE elicits robust Th1 responses to a variety of vaccine Ags and is in clinical development for both infectious diseases and cancer. We demonstrate that immunization with a recombinant protein Ag and GLA-SE also induces granzyme A expression in CD4 T cells and produces cytolytic cells that can be detected in vivo. Surprisingly, these in vivo CTLs were CD4 T cells, not CD8 T cells, and this cytolytic activity was not dependent on granzyme A/B or perforin. Unlike previously reported CD4 CTLs, the transcription factors Tbet and Eomes were not necessary for their development. CTL activity was also independent of the Fas ligand-Fas, TRAIL-DR5, and canonical death pathways, indicating a novel mechanism of CTL activity. Rather, the in vivo CD4 CTL activity induced by vaccination required T cell expression of CD154 (CD40L) and target cell expression of CD40. Thus, vaccination with a TLR4 agonist adjuvant induces CD4 CTLs, which kill through a previously unknown CD154-dependent mechanism.
Collapse
Affiliation(s)
- Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA 98102; Department of Global Health, University of Washington, Seattle, WA 98105; and PAI Life Sciences, Seattle, WA 98102
| | - Thomas Hudson
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Sean Hughes
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Po-Wei D Huang
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Elyse A Beebe
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102; Department of Global Health, University of Washington, Seattle, WA 98105; and
| |
Collapse
|
17
|
Abstract
SUMMARY Tuberculosis (TB) is a leading cause of death worldwide despite the availability of effective chemotherapy for over 60 years. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination protects against active TB disease in some populations, its efficacy is suboptimal. Development of an effective TB vaccine is a top global priority that has been hampered by an incomplete understanding of protective immunity to TB. Thus far, preventing TB disease, rather than infection, has been the primary target for vaccine development. Several areas of research highlight the importance of including preinfection vaccines in the development pipeline. First, epidemiology and mathematical modeling studies indicate that a preinfection vaccine would have a high population-level impact for control of TB disease. Second, immunology studies support the rationale for targeting prevention of infection, with evidence that host responses may be more effective during acute infection than during chronic infection. Third, natural history studies indicate that resistance to TB infection occurs in a small percentage of the population. Fourth, case-control studies of BCG indicate that it may provide protection from infection. Fifth, prevention-of-infection trials would have smaller sample sizes and a shorter duration than disease prevention trials and would enable opportunities to search for correlates of immunity as well as serve as a criterion for selecting a vaccine product for testing in a larger TB disease prevention trial. Together, these points support expanding the focus of TB vaccine development efforts to include prevention of infection as a primary goal along with vaccines or other interventions that reduce the rate of transmission and reactivation.
Collapse
|
18
|
Orr MT, Windish HP, Beebe EA, Argilla D, Huang PWD, Reese VA, Reed SG, Coler RN. Interferon γ and Tumor Necrosis Factor Are Not Essential Parameters of CD4+ T-Cell Responses for Vaccine Control of Tuberculosis. J Infect Dis 2015; 212:495-504. [PMID: 25637347 DOI: 10.1093/infdis/jiv055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis infects one third of the world's population and causes >8 million cases of tuberculosis annually. New vaccines are necessary to control the spread of tuberculosis. T cells, interferon γ (IFN-γ), and tumor necrosis factor (TNF) are necessary to control M. tuberculosis infection in both humans and unvaccinated experimental animal models. However, the immune responses necessary for vaccine efficacy against M. tuberculosis have not been defined. The multifunctional activity of T-helper type 1 (TH1) cells that simultaneously produce IFN-γ and TNF has been proposed as a candidate mechanism of vaccine efficacy. METHODS We used a mouse model of T-cell transfer and aerosolized M. tuberculosis infection to assess the contributions of TNF, IFN-γ, and inducible nitric oxide synthase (iNOS) to vaccine efficacy. RESULTS CD4(+) T cells were necessary and sufficient to transfer protection against aerosolized M. tuberculosis, but neither CD4(+) T cell-produced TNF nor host cell responsiveness to IFN-γ were necessary. Transfer of Tnf(-/-) CD4(+) T cells from vaccinated donors to Ifngr(-/-) recipients was also sufficient to confer protection. Activation of iNOS to produce reactive nitrogen species was not necessary for vaccine efficacy. CONCLUSIONS Induction of TH1 cells that coexpress IFN-γ and TNF is not a requirement for vaccine efficacy against M. tuberculosis, despite these cytokines being essential for control of M. tuberculosis in nonvaccinated animals.
Collapse
Affiliation(s)
- Mark T Orr
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| | | | | | | | | | | | - Steven G Reed
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| | - Rhea N Coler
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| |
Collapse
|
19
|
Flórido M, Pillay R, Gillis CM, Xia Y, Turner SJ, Triccas JA, Stambas J, Britton WJ. Epitope-specific CD4+, but not CD8+, T-cell responses induced by recombinant influenza A viruses protect against Mycobacterium tuberculosis infection. Eur J Immunol 2014; 45:780-93. [PMID: 25430701 DOI: 10.1002/eji.201444954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/29/2014] [Accepted: 11/24/2014] [Indexed: 02/01/2023]
Abstract
Tuberculosis remains a global health problem, in part due to failure of the currently available vaccine, BCG, to protect adults against pulmonary forms of the disease. We explored the impact of pulmonary delivery of recombinant influenza A viruses (rIAVs) on the induction of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4(+) and CD8(+) T-cell responses and the resultant protection against M. tuberculosis infection in C57BL/6 mice. Intranasal infection with rIAVs expressing a CD4(+) T-cell epitope from the Ag85B protein (PR8.p25) or CD8(+) T-cell epitope from the TB10.4 protein (PR8.TB10.4) generated strong T-cell responses to the M. tuberculosis-specific epitopes in the lung that persisted long after the rIAVs were cleared. Infection with PR8.p25 conferred protection against subsequent M. tuberculosis challenge in the lung, and this was associated with increased levels of poly-functional CD4(+) T cells at the time of challenge. By contrast, infection with PR8.TB10.4 did not induce protection despite the presence of IFN-γ-producing M. tuberculosis-specific CD8(+) T cells in the lung at the time of challenge and during infection. Therefore, the induction of pulmonary M. tuberculosis epitope-specific CD4(+), but not CD8(+) T cells, is essential for protection against acute M. tuberculosis infection in the lung.
Collapse
Affiliation(s)
- Manuela Flórido
- Tuberculosis Research Program, Centenary Institute, Newtown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nandakumar S, Kannanganat S, Posey JE, Amara RR, Sable SB. Attrition of T-cell functions and simultaneous upregulation of inhibitory markers correspond with the waning of BCG-induced protection against tuberculosis in mice. PLoS One 2014; 9:e113951. [PMID: 25419982 PMCID: PMC4242676 DOI: 10.1371/journal.pone.0113951] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/01/2014] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most widely used live attenuated vaccine. However, the correlates of protection and waning of its immunity against tuberculosis is poorly understood. In this study, we correlated the longitudinal changes in the magnitude and functional quality of CD4+ and CD8+ T-cell response over a period of two years after mucosal or parenteral BCG vaccination with the strength of protection against Mycobacterium tuberculosis in mice. The BCG vaccination-induced CD4+ and CD8+ T cells exhibited comparable response kinetics but distinct functional attributes in-terms of IFN-γ, IL-2 and TNF-α co-production and CD62L memory marker expression. Despite a near life-long BCG persistence and the induction of enduring CD4+ T-cell responses characterized by IFN-γ and/or TNF-α production with comparable protection, the protective efficacy waned regardless of the route of vaccination. The progressive decline in the multifactorial functional abilities of CD4+ and CD8+ T cells in-terms of type-1 cytokine production, proliferation and cytolytic potential corresponded with the waning of protection against M. tuberculosis infection. In addition, simultaneous increase in the dysfunctional and terminally-differentiated T cells expressing CTLA-4, KLRG-1 and IL-10 during the contraction phase of BCG-induced response coincided with the loss of protection. Our results question the empirical development of BCG-booster vaccines and emphasize the pursuit of strategies that maintain superior T-cell functional capacity. Furthermore, our results underscore the importance of understanding the comprehensive functional dynamics of antigen-specific T-cell responses in addition to cytokine polyfunctionality in BCG-vaccinated hosts while optimizing novel vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Subhadra Nandakumar
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil Kannanganat
- Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James E. Posey
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Suraj B. Sable
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Principi N, Esposito S. The present and future of tuberculosis vaccinations. Tuberculosis (Edinb) 2014; 95:6-13. [PMID: 25458613 DOI: 10.1016/j.tube.2014.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
The clinical, social, and economic burden of tuberculosis (TB) remains high worldwide, thereby highlighting the importance of TB prevention. The bacilli Calmette-Guérin (BCG) vaccine that is currently available can protect younger children but is less effective in adults, the major source of TB transmission. In addition, the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains and the high prevalence of HIV infection have significantly complicated TB prognosis and treatment. Together, these data highlight the need for new and more effective vaccines. Recently, several vaccines containing multiple antigens, including some of those specific for dormant Mtb strains, have been developed. These vaccines appear to be the best approach for satisfactory Mtb prevention. However, until a new vaccine is proven more effective and safe than BCG, BCG should remain part of the immunization schedules for neonates and children at risk for TB as a fundamental prophylactic measure.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
22
|
Pabreja S, Garg T, Rath G, Goyal AK. Mucosal vaccination against tuberculosis using Ag85A-loaded immunostimulating complexes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:532-9. [DOI: 10.3109/21691401.2014.966195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Noe AR, Espinosa D, Li X, Coelho-dos-Reis JGA, Funakoshi R, Giardina S, Jin H, Retallack DM, Haverstock R, Allen JR, Vedvick TS, Fox CB, Reed SG, Ayala R, Roberts B, Winram SB, Sacci J, Tsuji M, Zavala F, Gutierrez GM. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate. PLoS One 2014; 9:e107764. [PMID: 25247295 PMCID: PMC4172688 DOI: 10.1371/journal.pone.0107764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.
Collapse
Affiliation(s)
- Amy R. Noe
- Leidos Inc., Frederick, Maryland, United States of America
| | - Diego Espinosa
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jordana G. A. Coelho-dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Ryota Funakoshi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Steve Giardina
- Leidos Inc., Frederick, Maryland, United States of America
| | - Hongfan Jin
- Pfenex Inc., San Diego, California, United States of America
| | | | - Ryan Haverstock
- Pfenex Inc., San Diego, California, United States of America
| | | | - Thomas S. Vedvick
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ramses Ayala
- Leidos Inc., Frederick, Maryland, United States of America
| | - Brian Roberts
- Leidos Inc., Frederick, Maryland, United States of America
| | | | - John Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
24
|
Polyclonal activation of naïve T cells by urease deficient-recombinant BCG that produced protein complex composed of heat shock protein 70, CysO and major membrane protein-II. BMC Infect Dis 2014; 14:179. [PMID: 24690183 PMCID: PMC4011778 DOI: 10.1186/1471-2334-14-179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium bovis bacillus Calmette-Guérin (BCG) is known to be only partially effective in inhibiting M. tuberculosis (MTB) multiplication in human. A new recombinant (r) urease-deficient BCG (BCG-dHCM) that secretes protein composed of heat shock protein (HSP)70, MTB-derived CysO and major membrane protein (MMP)-II was produced for the efficient production of interferon gamma (IFN-γ) which is an essential element for mycobacteriocidal action and inhibition of neutrophil accumulation in lungs. METHODS Human monocyte-derived dendritic cells (DC) and macrophages were differentiated from human monocytes, infected with BCG and autologous T cells-stimulating activity of different constructs of BCG was assessed. C57BL/6 mice were used to test the effectiveness of BCG for the production of T cells responsive to MTB-derived antigens (Ags). RESULTS BCG-dHCM intracellularly secreted HSP70-CysO-MMP-II fusion protein, and activated DC by up-regulating Major Histcompatibility Complex (MHC), CD86 and CD83 molecules and enhanced various cytokines production from DC and macrophages. BCG-dHCM activated naïve T cells of both CD4 and CD8 subsets through DC, and memory type CD4+ T cells through macrophages in a manner dependent on MHC and CD86 molecules. These T cell activations were inhibited by the pre-treatment of Ag-presenting cells (APCs) with chloroquine. The single and primary BCG-dHCM-inoculation produced long lasting T cells responsive to in vitro secondarily stimulation with HSP70, CysO, MMP-II and H37Rv-derived cytosolic protein, and partially inhibited the replication of aerosol-challenged MTB. CONCLUSIONS The results indicate that introduction of different type of immunogenic molecules into a urease-deficient rBCG is useful for providing polyclonal T cell activating ability to BCG and for production of T cells responsive to secondary stimulation.
Collapse
|
25
|
Lindenstrøm T, Aagaard C, Christensen D, Agger EM, Andersen P. High-frequency vaccine-induced CD8⁺ T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur J Immunol 2014; 44:1699-709. [PMID: 24677089 DOI: 10.1002/eji.201344358] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022]
Abstract
Relatively few MHC class I epitopes have been identified from Mycobacterium tuberculosis, but during the late stage of infection, CD8(+) T-cell responses to these epitopes are often primed at an extraordinary high frequency. Although clearly available for recognition during infection, their role in resistance to mycobacterial infections still remain unclear. As an alternative to DNA and viral vaccination platforms, we have exploited a novel CD8(+) T-cell-inducing adjuvant, cationic adjuvant formulation 05 (dimethyldioctadecylammonium/trehalose dibehenate/poly (inositic:cytidylic) acid), to prime high-frequency CD8 responses to the immunodominant H2-K(b) -restricted IMYNYPAM epitope contained in the vaccine Ag tuberculosis (TB)10.4/Rv0288/ESX-H (where ESX is mycobacterial type VII secretion system). We report that the amino acid C-terminal to this minimal epitope plays a decisive role in proteasomal cleavage and epitope priming. The primary structure of TB10.4 is suboptimal for proteasomal processing of the epitope and amino acid substitutions in the flanking region markedly increased epitope-specific CD8(+) T-cell responses. One of the optimized sequences was contained in the closely related TB10.3/Rv3019c/ESX-R Ag and when recombinantly expressed and administered in the cationic adjuvant formulation 05 adjuvant, this Ag promoted very high CD8(+) T-cell responses. This abundant T-cell response was functionally active but provided no protection against challenge, suggesting that CD8(+) T cells play a limited role in protection against M. tuberculosis in the mouse model.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | | | | | | | | |
Collapse
|
26
|
Montagnani C, Chiappini E, Galli L, de Martino M. Vaccine against tuberculosis: what's new? BMC Infect Dis 2014; 14 Suppl 1:S2. [PMID: 24564340 PMCID: PMC4015960 DOI: 10.1186/1471-2334-14-s1-s2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background one of the World Health Organization Millennium Development Goal is to reduce tuberculosis incidence by 2015. However, more of 8.5 million tuberculosis cases have been reported in 2011, with an increase of multidrug-resistant strains. Therefore, the World Health Organization target cannot be reach without the help of a vaccine able to limit the spread of tuberculosis. Nowadays, bacille Calmette-Guérin is the only vaccine available against tuberculosis. It prevents against meningeal and disseminated tuberculosis in children, but its effectiveness against pulmonary form in adolescents and adults is argued. Method a systematic review was performed by searches of Pubmed, references of the relevant articles and Aeras and ClinicalTrial.gov websites. Results 100 articles were included in this review. Three viral vectored booster vaccines, five protein adjuvant booster vaccines, two priming vaccines and two therapeutic vaccines have been analyzed. Conclusions Several vaccines are in the pipeline, but further studies on basic research, clinical trial and mass vaccination campaigns are needed to achieve the TB eradication target by 2050.
Collapse
|
27
|
Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:1-11. [PMID: 24152387 DOI: 10.1128/cvi.00564-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.
Collapse
|