1
|
Qu J, Fang Y, Tao R, Zhao J, Xu T, Chen R, Zhang J, Meng K, Yang Q, Zhang K, Yan X, Sun D, Chen X. Advancing thyroid disease research: The role and potential of zebrafish model. Life Sci 2024; 357:123099. [PMID: 39374770 DOI: 10.1016/j.lfs.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Thyroid disorders significantly affect human metabolism, cardiovascular function, skeletal health, and reproductive systems, presenting a complex challenge due to their multifactorial nature. Understanding the underlying mechanisms and developing novel therapeutic approaches require appropriate models. Zebrafish, with their genetic tractability, short life cycle, and physiological relevance, have emerged as a valuable model for investigating thyroid diseases. This review provides a comprehensive analysis of the zebrafish thyroid gland's structure and function, explores its application in modeling thyroid pathologies such as hypothyroidism, hyperthyroidism, and thyroid cancer, and discusses current limitations and possible improvements. Furthermore, it outlines future directions for zebrafish-based research, focusing on enhancing the model's relevance to human thyroid disease and its potential to expedite the development of clinical therapies.
Collapse
Affiliation(s)
- Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical, City university of Hong Kong, Kowloon 999077, Hong Kong
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
2
|
Abstract
Bone marrow contains resident cellular components that are not only involved in bone maintenance but also regulate hematopoiesis and immune responses. The immune system and bone interact with each other, coined osteoimmunology. Hashimoto's thyroiditis (HT) is one of the most common chronic autoimmune diseases which is accompanied by lymphocytic infiltration. It shows elevating thyroid autoantibody levels at an early stage and progresses to thyroid dysfunction ultimately. Different effects exert on bone metabolism during different phases of HT. In this review, we summarized the mechanisms of the long-term effects of HT on bone and the relationship between thyroid autoimmunity and osteoimmunology. For patients with HT, the bone is affected not only by thyroid function and the value of TSH, but also by the setting of the autoimmune background. The autoimmune background implies a breakdown of the mechanisms that control self-reactive system, featuring abnormal immune activation and presence of autoantibodies. The etiology of thyroid autoimmunity and osteoimmunology is complex and involves a number of immune cells, cytokines and chemokines, which regulate the pathogenesis of HT and osteoporosis at the same time, and have potential to affect each other. In addition, vitamin D works as a potent immunomodulator to influence both thyroid immunity and osteoimmunology. We conclude that HT affects bone metabolism at least through endocrine and immune pathways.
Collapse
Affiliation(s)
- Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Hui Huang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China.
| |
Collapse
|
3
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
The Frequency of Intrathyroidal Follicular Helper T Cells Varies with the Progression of Graves’ Disease and Hashimoto’s Thyroiditis. J Immunol Res 2022; 2022:4075522. [PMID: 35224111 PMCID: PMC8872690 DOI: 10.1155/2022/4075522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Autoimmune thyroid diseases (AITD), mainly Graves' disease (GD) and Hashimoto's thyroiditis (HT), are common organ-specific autoimmune diseases characterized by circulating antibodies and lymphocyte infiltration. Follicular helper T (Tfh) cell dysregulation is involved in the development of autoimmune pathologies. We aimed to explore the role of intrathyroidal and circulating Tfh cells in patients with GD and HT. Methods Ultrasound-guided thyroid fine-needle aspiration (FNA) was conducted in 35 patients with GD, 40 patients with HT, and 22 patients with nonautoimmune thyroid disease (nAITD). Peripheral blood samples were also obtained from 40 patients with GD, 40 patients with HT, and 40 healthy controls. The frequencies of intrathyroidal and circulating Tfh cells from FNA and peripheral blood samples were assessed by flow cytometry. Additionally, the correlations between the frequencies of the Tfh cells and the levels of autoantibodies and hormones or disease duration were analyzed. Results The frequency of intrathyroidal CD4+CXCR5+ICOShigh Tfh cells was higher in HT patients than in GD patients. Significant correlations were identified between the percentages of circulating and intrathyroidal Tfh cells and the serum concentrations of thyroid autoantibodies, especially thyroglobulin antibodies (TgAb), in AITD. Intrathyroidal CD4+CXCR5+ICOShigh Tfh cells were positively correlated with free triiodothyronine (FT3) in HT patients but negatively correlated with FT3 in GD patients. In addition, HT patients with a longer disease duration had an increased frequency of intrathyroidal CD4+CXCR5+ICOShigh and CD4+CXCR5+PD-1+ Tfh cells. In contrast, in the GD patients, a longer disease duration did not affect the frequency of intrathyroidal CD4+CXCR5+ICOShigh but was associated with a lower frequency of CD4+CXCR5+PD-1+ Tfh cells. Conclusions Our data suggest that intrathyroidal Tfh cells might play a role in the pathogenesis of AITD and they are potential immunobiomarkers for AITD.
Collapse
|
5
|
Stensland ZC, Coleman BM, Rihanek M, Baxter RM, Gottlieb PA, Hsieh EW, Sarapura VD, Simmons KM, Cambier JC, Smith MJ. Peripheral immunophenotyping of AITD subjects reveals alterations in immune cells in pediatric vs adult-onset AITD. iScience 2022; 25:103626. [PMID: 35005561 PMCID: PMC8718984 DOI: 10.1016/j.isci.2021.103626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is caused by aberrant activation of the immune system allowing autoreactive B and T cells to target the thyroid gland leading to disease. Although AITD is more frequently diagnosed in adults, children are also affected but rarely studied. Here, we performed phenotypic and functional characterization of peripheral blood immune cells from pediatric and adult-onset AITD patients and age-matched controls using mass cytometry. Major findings indicate that unlike adult-onset AITD patients, pediatric AITD patients exhibit a decrease in anergic B cells (BND) and DN2 B cells and an increase in immature B cells compared to age-matched controls. These results indicate alterations in peripheral blood immune cells seen in pediatric-onset AITD could lead to rapid progression of disease. Hence, this study demonstrates diversity of AITD by showing differences in immune cell phenotypes and function based on age of onset, and may inform future therapies. Penetrance of high-risk HLA-DR3 haplotype is higher in pediatric AITD patients Pediatric AITD patients display altered frequency of autoreactive B cell subsets Immune cell subset frequency and function is similar in adult AITD and controls
Collapse
Affiliation(s)
- Zachary C. Stensland
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brianne M. Coleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marynette Rihanek
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Virginia D. Sarapura
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | - Kimber M. Simmons
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John C. Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Corresponding author
| |
Collapse
|
6
|
Zdor VV, Geltser BI, Eliseikina MG, Markelova EV, Tikhonov YN, Plekhova NG, Karaulov AV. Roles of Thyroid Hormones, Mast Cells, and Inflammatory Mediators in the Initiation and Progression of Autoimmune Thyroid Diseases. Int Arch Allergy Immunol 2020; 181:715-726. [DOI: 10.1159/000508937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
|
7
|
Di Dalmazi G, Chalan P, Caturegli P. MYMD-1, a Novel Immunometabolic Regulator, Ameliorates Autoimmune Thyroiditis via Suppression of Th1 Responses and TNF-α Release. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1350-1362. [PMID: 30674573 DOI: 10.4049/jimmunol.1801238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023]
Abstract
MYMD-1 is a synthetic derivative of tobacco alkaloids, compounds that possess immunoregulatory properties and have been linked to the epidemiological observation that smoking reduces the odds of developing thyroid Abs and hypothyroidism. To assess the effect and mechanism(s) of the action of MYMD-1, we chose the NOD.H-2h4 mouse model of spontaneous thyroiditis. We began in vitro using T cells isolated from NOD.H-2h4 spleens and found that MYMD-1 suppressed TNF-α production by CD4+ T cells in a dose-dependent manner. We then treated 58 NOD.H-2h4 mice for 12 wk with either unsupplemented water that contained (10 mice) or did not contain (16 mice) MYMD-1 (185 mg/l) or water supplemented with sodium iodide (500 mg/l) that contained (16 mice) or did not contain (16 mice) MYMD-1. Mice were bled at baseline and then every 2 wk until sacrifice. MYMD-1 decreased the incidence and severity (p < 0.001) of thyroiditis, as assessed by histopathology. Similarly, the number of CD3+ T cells and CD19+ B cells infiltrating the thyroid was dampened by MYMD-1, as assessed by flow cytometry. Interestingly, the subset of thyroidal CD3+CD4+Tbet+RORγT- effector Th1 cells and the systemic levels of TNF-α were decreased by MYMD-1. Serum thyroglobulin Abs decreased in the MYMD-1 group. Thyroid hormones did not differ among the four groups, whereas thyroid-stimulating hormone increased upon iodine supplementation but remained normal in MYMD-1-treated mice. Overall, the study suggests that MYMD-1 ameliorates thyroiditis acting on specific lymphoid subsets. Further studies, including other models of autoimmunity, will confirm the potential clinical use of MYMD-1 as a novel immunometabolic regulator.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Division of Endocrinology, Department of Medicine and Aging Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy; and
| | - Paulina Chalan
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
8
|
Zhao J, Chen Y, Xu Z, Yang W, Zhu Z, Song Y, Liu J. Increased circulating follicular regulatory T cells in Hashimoto’s thyroiditis. Autoimmunity 2018; 51:345-351. [PMID: 30343599 DOI: 10.1080/08916934.2018.1516759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiwei Zhao
- Department of Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing, China
| | - Yanxia Chen
- Department of Rheumatology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhenyao Xu
- Institute of Translational Medcine, Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Yang
- Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhongliang Zhu
- Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yingxiang Song
- Department of Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinlin Liu
- Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Zhao J, Chen Y, Zhao Q, Shi J, Yang W, Zhu Z, Yu W, Guan J, Song Y, Wu H, Jin W, Zhou Y, Liu J. Increased circulating Tfh17 and PD-1 +Tfh cells are associated with autoantibodies in Hashimoto's thyroiditis. Autoimmunity 2018; 51:352-359. [PMID: 30345813 DOI: 10.1080/08916934.2018.1516761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Hashimoto's thyroiditis (HT) is characterized by autoantibodies targeting the thyroid. Abnormal CD4+CXCR5+T cell levels were previously shown to be associated with HT. However, Tfh cells consist of heterogeneous subpopulations, and which T follicular helper (Tfh) cell subpopulation participates in the pathogenesis of HT remains poorly understood. METHODS Thirty healthy controls (HCs) and 52 HT patients were enrolled in the study. The percentages of Tfh, ICOS+Tfh, PD1+Tfh, Tfh1, Tfh2, Tfh17, effector Tfh, resting Tfh, effector memory Tfh, central memory Tfh, and naïve Tfh cells in the peripheral blood were all determined via flow cytometry, and the associations between the percentages of these cells and thyroid function indices were also investigated. RESULTS The percentage of Tfh cells was significantly higher in HT patients than in HCs. Examination of the Tfh cell subsets revealed that the percentages of Tfh1, Tfh2, and resting Tfh cells were significantly decreased, while those of the ICOS+Tfh, PD1+Tfh, Tfh17, and effector Tfh cells were significantly increased in HT patients. No significant differences in effector memory, central memory or naïve Tfh cell percentages were noted between the HC and HT groups. Furthermore, the percentage of PD1+Tfh cells was positively correlated with anti-thyroglobulin antibody levels. Most importantly, only Tfh17 cell percentages were positively correlated with anti-thyroglobulin and anti-thyroid peroxidase antibody levels and were negatively correlated serum free T3 and free T4 levels in HT patients. CONCLUSIONS Increased circulating Tfh17 cell and PD1+Tfh percentages are associated with higher autoantibody levels in HT patients, which imply that Tfh17 or PD1+Tfh cells may play a pathogenic role in the development of HT.
Collapse
Affiliation(s)
- Jiwei Zhao
- a Department of Clinical Laboratory , Zhejiang Sian International Hospital , Jiaxing , PR China
| | - Yanxia Chen
- b Department of Rheumatology , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Qing Zhao
- c Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine , Shanghai JiaoTong University Affiliated Sixth People's Hospital , Shanghai , PR China
| | - Jie Shi
- d Department of Clinical Laboratory , Cixi People's Hospital , Cixi , PR China
| | - Wei Yang
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Zhongliang Zhu
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Wenge Yu
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Jinju Guan
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Yingxiang Song
- f Department of Endocrinology , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Hui Wu
- f Department of Endocrinology , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Weidong Jin
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Yonglie Zhou
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China
| | - Jinlin Liu
- e Department of Clinical Laboratory , Zhejiang Provincial People's Hospital, Hangzhou Medical College , Hangzhou , PR China.,g Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province , Hangzhou , PR China
| |
Collapse
|
10
|
Rydzewska M, Jaromin M, Pasierowska IE, Stożek K, Bossowski A. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Res 2018; 11:2. [PMID: 29449887 PMCID: PMC5812228 DOI: 10.1186/s13044-018-0046-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/30/2018] [Indexed: 12/29/2022] Open
Abstract
Autoimmune thyroid disorders (AITD) broadly include Graves' disease and Hashimoto's thyroiditis which are the most common causes of thyroid gland dysfunctions. These disorders develop due to complex interactions between environmental and genetic factors and are characterized by reactivity to self-thyroid antigens due to autoreactive lymphocytes escaping tolerance. Both cell-mediated and humoral responses lead to tissue injury in autoimmune thyroid disease. The differentiation of CD4+ cells in the specific setting of immune mediators (for example cytokines, chemokines) results in differentiation of various T cell subsets. T cell identification has shown a mixed pattern of cytokine production indicating that both subtypes of T helper, Th1 and Th2, responses are involved in all types of AITD. Furthermore, recent studies described T cell subtypes Th17 and Treg which also play an essential role in pathogenesis of AITD. This review will focus on the role of the T regulatory (Treg) and T helper (Th) (especially Th17) lymphocytes, and also of B lymphocytes in AITD pathogenesis. However, we have much more to learn about cellular mechanisms and interactions in AITD before we can develop complete understanding of AITD pathophysiology.
Collapse
Affiliation(s)
- Marta Rydzewska
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Białystok, Poland
| | - Michał Jaromin
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Białystok, Poland
| | - Izabela Elżbieta Pasierowska
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Białystok, Poland
| | - Karlina Stożek
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Białystok, Poland
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, ul. Waszyngtona 17, 15-274 Białystok, Poland
| |
Collapse
|
11
|
Smith MJ, Rihanek M, Coleman BM, Gottlieb PA, Sarapura VD, Cambier JC. Activation of thyroid antigen-reactive B cells in recent onset autoimmune thyroid disease patients. J Autoimmun 2017; 89:82-89. [PMID: 29233566 DOI: 10.1016/j.jaut.2017.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis (HT) and Graves' disease (GD), is the most common autoimmune disorder in the United States, affecting over 20 million people. At the time of diagnosis, both HD and GD are characterized by the accumulation of B and T lymphocytes in the thyroid gland and production of autoantibodies targeting the thyroid, indicating that a breach in tolerance of autoreactive lymphocytes has occurred. However, few studies have sought to understand the underlying pathogenesis of AITD that ultimately leads to production of autoantibodies and loss of thyroid function. In this study, we analyzed the phenotype of thyroid antigen-reactive B cells in the peripheral blood of recent onset and long standing AITD patients. We found that in recent onset patients thyroid antigen-reactive B cells in blood no longer appear anergic, rather they express CD86, a marker of activation. This likely reflects activation of these cells leading to their production of autoantibodies. Hence, this study reports the early loss of anergy in thyroid antigen-reactive B cells, an event that contributes to development of AITD.
Collapse
Affiliation(s)
- Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brianne M Coleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Virginia D Sarapura
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
12
|
Elayeb R, Tamagne M, Pinheiro M, Ripa J, Djoudi R, Bierling P, Pirenne F, Vingert B. Anti-CD20 Antibody Prevents Red Blood Cell Alloimmunization in a Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3771-3780. [DOI: 10.4049/jimmunol.1700754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022]
|
13
|
Ellis JS, Braley-Mullen H. Mechanisms by Which B Cells and Regulatory T Cells Influence Development of Murine Organ-Specific Autoimmune Diseases. J Clin Med 2017; 6:jcm6020013. [PMID: 28134752 PMCID: PMC5332917 DOI: 10.3390/jcm6020013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Experiments with B cell-deficient (B−/−) mice indicate that a number of autoimmune diseases require B cells in addition to T cells for their development. Using B−/− Non-obese diabetic (NOD) and NOD.H-2h4 mice, we demonstrated that development of spontaneous autoimmune thyroiditis (SAT), Sjogren’s syndrome and diabetes do not develop in B−/− mice, whereas all three diseases develop in B cell-positive wild-type (WT) mice. B cells are required early in life, since reconstitution of adult mice with B cells or autoantibodies did not restore their ability to develop disease. B cells function as important antigen presenting cells (APC) to initiate activation of autoreactive CD4+ effector T cells. If B cells are absent or greatly reduced in number, other APC will present the antigen, such that Treg are preferentially activated and effector T cells are not activated. In these situations, B−/− or B cell-depleted mice develop the autoimmune disease when T regulatory cells (Treg) are transiently depleted. This review focuses on how B cells influence Treg activation and function, and briefly considers factors that influence the effectiveness of B cell depletion for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| | - Helen Braley-Mullen
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
- Department of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
14
|
Kayes TD, Weisman GA, Camden JM, Woods LT, Bredehoeft C, Downey EF, Cole J, Braley-Mullen H. New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland. THE JOURNAL OF IMMUNOLOGY 2016; 197:2119-30. [PMID: 27521344 DOI: 10.4049/jimmunol.1600133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sixty to seventy percent of IFN-γ(-/-) NOD.H-2h4 mice given sodium iodide (NaI)-supplemented water develop a slow onset autoimmune thyroid disease, characterized by thyrocyte epithelial cell (TEC) hyperplasia and proliferation (H/P). TEC H/P develops much earlier in CD28(-/-) mice and nearly 100% (both sexes) have severe TEC H/P at 4 mo of age. Without NaI supplementation, 50% of 5- to 6-mo-old CD28(-/-)IFN-γ(-/-) mice develop severe TEC H/P, and 2-3 wk of NaI is sufficient for optimal development of severe TEC H/P. Mice with severe TEC H/P are hypothyroid, and normalization of serum thyroxine levels does not reduce TEC H/P. Activated CD4(+) T cells are sufficient to transfer TEC H/P to SCID recipients. Thyroids of mice with TEC H/P have infiltrating T cells and expanded numbers of proliferating thyrocytes that highly express CD40. CD40 facilitates, but is not required for, development of severe TEC H/P, as CD40(-/-)IFN-γ(-/-)CD28(-/-) mice develop severe TEC H/P. Accelerated development of TEC H/P in IFN-γ(-/-)CD28(-/-) mice is a result of reduced regulatory T cell (Treg) numbers, as CD28(-/-) mice have significantly fewer Tregs, and transfer of CD28(+) Tregs inhibits TEC H/P. Essentially all female IFN-γ(-/-)CD28(-/-) NOD.H-2h4 mice have substantial lymphocytic infiltration of salivary glands and reduced salivary flow by 6 mo of age, thereby providing an excellent new model of autoimmune exocrinopathy of the salivary gland. This is one of very few models where autoimmune thyroid disease and hypothyroidism develop in most mice by 4 mo of age. This model will be useful for studying the effects of hypothyroidism on multiple organ systems.
Collapse
Affiliation(s)
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Cole Bredehoeft
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Edward F Downey
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - James Cole
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Helen Braley-Mullen
- Department of Medicine, University of Missouri, Columbia, MO 65212; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
15
|
Ciornei RT, Hong SH, Fang Y, Zhu Z, Braley-Mullen H. Mechanisms and kinetics of proliferation and fibrosis development in a mouse model of thyrocyte hyperplasia. Cell Immunol 2016; 304-305:16-26. [PMID: 27173733 DOI: 10.1016/j.cellimm.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
IFN-γ(-/-) NOD.H-2h4 mice develop autoimmune disease with extensive hyperplasia and proliferation of thyroid epithelial cells (TEC H/P) and fibrosis. Splenic T cells from donors with severe TEC H/P transfer TEC H/P to SCID recipients. The goal of this study was to determine what factors control TEC H/P development/progression by examining T cells, markers of apoptosis, senescence and proliferation in thyroids of SCID recipients over time. At 28days, T cell infiltration was maximal, thyrocytes were proliferating, and fibrosis was moderate. At days 60 and 90, thyroids were larger with more fibrosis. T cells, cytokines and thyrocyte proliferation decreased, and cell cycle inhibitor proteins, and anti-apoptotic molecules increased. T cells and thyrocytes had foci of phosphorylated histone protein H2A.X, indicative of cellular senescence, when TEC H/P progressed and thyrocyte proliferation declined. Some thyrocytes were regenerating at day 90, with irregularly shaped empty follicles and ciliated epithelium. Proliferating thyrocytes were thyroid transcription factor (TTF1)-positive, suggesting they derived from epithelial cells and not brachial cleft remnants.
Collapse
Affiliation(s)
- Radu Tudor Ciornei
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - So-Hee Hong
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Yujiang Fang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States; Department of Microbiology, Immunology and Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Ziwen Zhu
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Helen Braley-Mullen
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
16
|
Kolypetri P, King J, Larijani M, Carayanniotis G. Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 2015; 34:542-56. [PMID: 26287317 DOI: 10.3109/08830185.2015.1065828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the field of autoimmune thyroiditis, NOD.H2(h4) mice have attracted significant and increasing attention since they not only develop spontaneous disease but they present thyroiditis with accelerated incidence and severity if they ingest iodide through their drinking water. This animal model highlights the interplay between genetic and dietary factors in the triggering of autoimmune disease and offers new opportunities to study immunoregulatory parameters influenced by both genes and environment. Here, we review experimental findings with this mouse model of thyroiditis.
Collapse
Affiliation(s)
- Panayota Kolypetri
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Justin King
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Mani Larijani
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - George Carayanniotis
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada.,b Division of Endocrinology, Faculty of Medicine , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
17
|
Ellis JS, Braley-Mullen H. Regulatory T cells in B-cell-deficient and wild-type mice differ functionally and in expression of cell surface markers. Immunology 2015; 144:598-610. [PMID: 25318356 DOI: 10.1111/imm.12410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) with chronic inflammation of thyroids by T and B cells. B-cell deficient (B(-/-) ) mice are resistant to SAT but develop SAT if regulatory T (Treg) cells are transiently depleted. We established a transfer model using splenocytes from CD28(-/-) B(-/-) mice (effector cells and antigen-presenting cells) cultured with or without sorted Treg cells from Foxp3-GFP wild-type (WT) or B(-/-) mice. After transfer to mice lacking T cells, mice given Treg cells from B(-/-) mice had significantly lower SAT severity scores than mice given Treg cells from WT mice, indicating that Treg cells in B(-/-) mice are more effective suppressors of SAT than Treg cells in WT mice. Treg cells from B(-/-) mice differ from WT Treg cells in expression of CD27, tumour necrosis factor receptor (TNFR) II p75, and glucocorticoid-induced TNFR-related protein (GITR). After transient depletion using anti-CD25 or diphtheria toxin, the repopulating Treg cells in B(-/-) mice lack suppressor function, and expression of CD27, GITR and p75 is like that of WT Treg cells. If B(-/-) Treg cells develop with B cells in bone marrow chimeras, their phenotype is like that of WT Treg cells. Addition of B cells to cultures of B(-/-) Treg and T effector cells abrogates their suppressive function and their phenotype is like that of WT Treg cells. These results establish for the first time that Treg cells in WT and B(-/-) mice differ both functionally and in expression of particular cell surface markers. Both properties are altered after transient depletion and repopulation of B(-/-) Treg cells, and by the presence of B cells during Treg cell development or during interaction with effector T cells.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Medicine, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
18
|
Evidence that MHC I-E dampens thyroid autoantibodies and prevents spreading to a second thyroid autoantigen in I-A(k) NOD mice. Genes Immun 2015; 16:268-74. [PMID: 25811933 PMCID: PMC4457582 DOI: 10.1038/gene.2015.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
NOD.H2k and NOD.H2h4 mice carry the MHC class II molecule I-Ak associated with susceptibility to experimentally-induced thyroiditis. Dietary iodine enhanced spontaneous thyroid autoimmunity, well known in NOD.H2h4 mice, has not been investigated in NOD.H2k mice. We compared NOD.H2h4 and NOD.H2k strains for thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) without or with dietary sodium iodide (NaI) for up to 32 weeks. TgAb levels were significantly higher in NOD.H2h4 than NOD.H2k mice on NaI and TPOAb developed in NOD.H2h4 but not NOD.H2k mice. DNA exome analysis revealed, in addition to the differences in the chromosome (Chr) 17 MHC regions, that NOD.H2k and particularly NOD.H2h4 mice have substantial non-MHC parental DNA. KEGG pathway-analysis highlighted thyroid autoimmunity and immune-response genes on Chr 17 but not on Chr 7 and 15 parental B10.A4R DNA. Studies of parental strains provided no evidence for non-MHC gene contributions. The exon 10 thyroglobulin haplotype, associated with experimentally-induced thyroiditis, is absent in NOD.H2h4 and NOD.H2k mice and is not a marker for spontaneous murine thyroid autoimmunity. In conclusion, the absence of I-E is a likely explanation for the difference between NOD.H2h4 and NOD.H2k mice in TgAb levels and, as in humans, autoantibody spreading to TPO.
Collapse
|
19
|
Braley-Mullen H, Yu S. NOD.H-2h4 mice: an important and underutilized animal model of autoimmune thyroiditis and Sjogren's syndrome. Adv Immunol 2015; 126:1-43. [PMID: 25727287 DOI: 10.1016/bs.ai.2014.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NOD.H-2h4 mice express the K haplotype on the NOD genetic background. They spontaneously develop thyroiditis and Sjogren's syndrome, but they do not develop diabetes. Although autoimmune thyroid diseases and Sjogren's syndrome are highly prevalent autoimmune diseases in humans, there has been relatively little emphasis on the use of animal models of these diseases for understanding basic mechanisms involved in development and therapy of chronic organ-specific autoimmune diseases. The goal of this review is to highlight some of the advantages of NOD.H-2h4 mice for studying basic mechanisms involved in development of autoimmunity. NOD.H-2h4 mice are one of relatively few animal models that develop organ-specific autoimmune diseases spontaneously, i.e., without a requirement for immunization with antigen and adjuvant, and in both sexes in a relatively short period of time. Thyroiditis and Sjogren's syndrome in NOD.H-2h4 mice are chronic autoimmune diseases that develop relatively early in life and persist for the life of the animal. Because the animals do not become clinically ill, the NOD.H-2h4 mouse provides an excellent model to test therapeutic protocols over a long period of time. The availability of several mutant mice on this background provides a means to address the impact of particular cells and molecules on the autoimmune diseases. Moreover, to our knowledge, this is the only animal model in which the presence or absence of a single cytokine, IFN-γ, is sufficient to completely inhibit one autoimmune thyroid disease, with a completely distinct autoimmune thyroid disease developing when it is absent.
Collapse
Affiliation(s)
- Helen Braley-Mullen
- Departments of Medicine, Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri, USA.
| | - Shiguang Yu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
20
|
Johnston HF, Xu Y, Racine JJ, Cassady K, Ni X, Wu T, Chan A, Forman S, Zeng D. Administration of anti-CD20 mAb is highly effective in preventing but ineffective in treating chronic graft-versus-host disease while preserving strong graft-versus-leukemia effects. Biol Blood Marrow Transplant 2014; 20:1089-103. [PMID: 24796279 DOI: 10.1016/j.bbmt.2014.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 12/15/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome, and donor B cells play important roles in augmenting its pathogenesis. B cell-depleting anti-CD20 mAb has been administered before or after cGVHD onset for preventing or treating cGVHD in the clinic. Although administration before onset appeared to be more effective, the effect is variable and sometimes minimal. Here, we used 2 mouse cGVHD models to evaluate the preventive and therapeutic effect of anti-CD20 mAb. With the model of DBA/2 donor to MHC-matched BALB/c recipient, 1 intravenous injection of anti-CD20 mAb (40 mg/kg) the following day or on day 7 after hematopoietic cell transplantation when serum autoantibodies were undetectable effectively prevented induction of cGVHD and preserved a strong graft-versus-leukemia (GVL) effect. The separation of GVL effect from GVHD was associated with a significant reduction of donor CD4(+) T cell proliferation and expansion and protection of host thymic medullary epithelial cells. Anti-CD20 mAb administration also prevented expansion of donor T cells and induction of cGVHD in another mouse model of C57BL/6 donor to MHC-mismatched BALB/c recipients. In contrast, administration of anti-CD20 mAb after GVHD onset was not able to effectively deplete donor B cells or ameliorate cGVHD in either model. These results indicate that administration of anti-CD20 mAb before signs of cGVHD can prevent induction of autoimmune-like cGVHD while preserving a GVL effect; there is little effect if administered after cGVHD onset. This provides new insights into clinical prevention and therapy of cGVHD with B cell-depleting reagents.
Collapse
Affiliation(s)
- Heather F Johnston
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Yajing Xu
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jeremy J Racine
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Kaniel Cassady
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Xiong Ni
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Changhai Hospital, The Second Military Medical School, Shanghai, China
| | - Tao Wu
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Changhai Hospital, The Second Military Medical School, Shanghai, China
| | - Andrew Chan
- Department of Research Biology, Genentech, San Francisco, California
| | - Stephen Forman
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Defu Zeng
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California.
| |
Collapse
|