1
|
Fouda A, Maallah MT, Kouyoumdjian A, Negi S, Paraskevas S, Tchervenkov J. RORγt inverse agonist TF-S14 inhibits Th17 cytokines and prolongs skin allograft survival in sensitized mice. Commun Biol 2024; 7:454. [PMID: 38609465 PMCID: PMC11014929 DOI: 10.1038/s42003-024-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic antibody mediated rejection (AMR) is the major cause of solid organ graft rejection. Th17 contributes to AMR through the secretion of IL17A, IL21 and IL22. These cytokines promote neutrophilic infiltration, B cell proliferation and donor specific antibodies (DSAs) production. In the current study we investigated the role of Th17 in transplant sensitization. Additionally, we investigated the therapeutic potential of novel inverse agonists of the retinoic acid receptor-related orphan receptor gamma t (RORγt) in the treatment of skin allograft rejection in sensitized mice. Our results show that RORγt inverse agonists reduce cytokine production in human Th17 cells in vitro. In mice, we demonstrate that the RORγt inverse agonist TF-S14 reduces Th17 signature cytokines in vitro and in vivo and leads to blocking neutrophilic infiltration to skin allografts, inhibition of the B-cell differentiation, and the reduction of de novo IgG3 DSAs production. Finally, we show that TF-S14 prolongs the survival of a total mismatch grafts in sensitized mice. In conclusion, RORγt inverse agonists offer a therapeutic intervention through a novel mechanism to treat rejection in highly sensitized patients.
Collapse
Affiliation(s)
- Ahmed Fouda
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
| | - Mohamed Taoubane Maallah
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Araz Kouyoumdjian
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Sarita Negi
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
| | - Steven Paraskevas
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Jean Tchervenkov
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
| |
Collapse
|
2
|
Pan J, Ye F, Li H, Yu C, Mao J, Xiao Y, Chen H, Wu J, Li J, Fei L, Wu Y, Meng X, Guo G, Wang Y. Dissecting the immune discrepancies in mouse liver allograft tolerance and heart/kidney allograft rejection. Cell Prolif 2024; 57:e13555. [PMID: 37748771 PMCID: PMC10905343 DOI: 10.1111/cpr.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The liver is the most tolerogenic of transplanted organs. However, the mechanisms underlying liver transplant tolerance are not well understood. The comparison between liver transplantation tolerance and heart/kidney transplantation rejection will deepen our understanding of tolerance and rejection in solid organs. Here, we built a mouse model of liver, heart and kidney allograft and performed single-cell RNA sequencing of 66,393 cells to describe the cell composition and immune cell interactions at the early stage of tolerance or rejection. We also performed bulk RNA-seq of mouse liver allografts from Day 7 to Day 60 post-transplantation to map the dynamic transcriptional variation in spontaneous tolerance. The transcriptome of lymphocytes and myeloid cells were characterized and compared in three types of organ allografts. Cell-cell interaction networks reveal the coordinated function of Kupffer cells, macrophages and their associated metabolic processes, including insulin receptor signalling and oxidative phosphorylation in tolerance induction. Cd11b+ dendritic cells (DCs) in liver allografts were found to inhibit cytotoxic T cells by secreting anti-inflammatory cytokines such as Il10. In summary, we profiled single-cell transcriptome analysis of mouse solid organ allografts. We characterized the immune microenvironment of mouse organ allografts in the acute rejection state (heart, kidney) and tolerance state (liver).
Collapse
Affiliation(s)
- Jun Pan
- Department of Thyroid Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ye
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hui Li
- Key Laboratory of Combined Multiorgan Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiajia Mao
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junqing Wu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yijun Wu
- Department of Thyroid Surgery, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical University, The Key Laboratory of Anti‐inflammatory of Immune Medicines, Ministry of EducationHefeiChina
| | - Guoji Guo
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiangChina
| | - Yingying Wang
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
A critical regulation of Th2 cell responses by RORα in allergic asthma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1326-1335. [PMID: 33165810 DOI: 10.1007/s11427-020-1825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the lung and the airway, which is characterized by aberrant type 2 immune responses to otherwise unharmful aeroallergens. While the central role of Th2 cells and type 2 cytokines in the pathogenesis of allergic asthma is well documented, the regulation and plasticity of Th2 cells remain incompletely understood. By using an animal model of allergic asthma in IL-4-reporter mice, we found that Th2 cells in the lung expressed higher levels of Rora than those in the lymph nodes, and that treatment with an RORα agonist SR1078 resulted in diminished Th2 cell responses in vivo. To determine the T cell-intrinsic role of RORα in allergic asthma in vivo, we established T cell-specific RORα-deficient (Cd4creRoraf/f) mice. Upon intranasal allergen challenges, Cd4creRoraf/f mice exhibited a significantly increased Th2 cells in the lungs and the airway and showed an enhanced eosinophilic inflammation compared to littermate control mice. Studies with Foxp3YFP-creRoraf/f mice and CD8+ T cell depletion showed that the increased Th2 cell responses in the Cd4creRoraf/f mice were independent of Treg cells and CD8+ T cells. Our findings demonstrate a critical regulatory role of RORα in Th2 cells, which suggest that RORα agonists could be effective for the treatment of allergic diseases.
Collapse
|
5
|
Abstract
BACKGROUND T cell-mediated graft rejection is mostly correlated with potent Th1 responses. However, because IFNγ mice reject their graft as efficiently as wild-type (WT) mice, the exact contribution of IFNγ and its transcription factor T-bet remains a matter of debate. Here, we address this question in the context of pancreatic islet allograft to better inform the molecular pathways that hampers islet survival in vivo. METHODS Pancreatic islets from BALB/c mice were transplanted in WT, IFNγ, or T-bet C57BL/6 mice. Graft survival and the induction of effector and cytotoxic T-cell responses were monitored. RESULTS Rejection of fully mismatched islet allografts correlated with high expression of both IFNγ and T-bet in WT recipients. However, allogeneic islets were permanently accepted in T-bet mice, in contrast to IFNγ hosts. Long-term survival correlated with decreased CD4 and CD8 T-cell infiltrates, drastically reduced donor-specific IFNγ and tumor necrosis factor tumor necrosis factor α responses and very low expression of the cytotoxic markers granzyme B, perforin, and FasLigand. In addition, in vitro and in vivo data pointed to an increased susceptibility of T-bet CD8 T cell to apoptosis. These observations were not reported in IFNγ mice, which have set up compensatory effector mechanisms comprising an increased expression of the transcription factor Eomes and cytolytic molecules as well as tumor necrosis factor α-mediated but not IL-4 nor IL-17-mediated allogeneic responses. CONCLUSIONS Anti-islet T-cell responses require T-bet but not IFNγ-dependent programs. Our results provide new clues on the mechanisms dictating islet rejection and may help refine the therapeutic/immunosuppressive regimens applied in diabetic patients receiving islets or pancreas allografts.
Collapse
|
6
|
Li L, Chen X, Zhang Y, Li Q, Qi C, Fei X, Zheng F, Gong F, Fang M. Toll-like receptor 2 deficiency promotes the generation of alloreactive Th17 cells after cardiac transplantation in mice. Cell Immunol 2019; 338:9-20. [DOI: 10.1016/j.cellimm.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
|
7
|
Perez‐Gutierrez A, Metes DM, Lu L, Hariharan S, Thomson AW, Ezzelarab MB. Characterization of eomesodermin and T-bet expression by allostimulated CD8 + T cells of healthy volunteers and kidney transplant patients in relation to graft outcome. Clin Exp Immunol 2018; 194:259-272. [PMID: 30246373 PMCID: PMC6194331 DOI: 10.1111/cei.13162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Memory T cell (Tmem) responses play a critical role in the outcome of allo-transplantation. While the role of the T-box transcription factor Eomesodermin (Eomes) in the maintenance of antigen-specific Tmem is well studied, little is known about Eomes+ CD8+ T cell responses after transplantation. We evaluated the phenotype and function of allo-reactive Eomes+ CD8+ T cells in healthy volunteers and kidney transplant patients and their relation to transplant outcome. High Eomes expression by steady-state CD8+ T cells correlated with effector and memory phenotype. Following allo-stimulation, the expression of both the T-box proteins Eomes and T-bet by proliferating cells increased significantly, where high expression of Eomes and T-bet correlated with higher incidence of allo-stimulated IFNγ+ TNFα+ CD8+ T cells. In patients with no subsequent rejection, Eomes but not T-bet expression by donor-stimulated CD8+ T cells, increased significantly after transplantation. This was characterized by increased Eomeshi T-bet-/lo and decreased Eomes-/lo T-bethi CD8+ T cell subsets, with no significant changes in the Eomeshi T-bethi CD8+ T cell subset. No upregulation of exhaustion markers programmed-death-1 (PD-1) and cytotoxic-T-lymphocyte-associated-antigen-4 (CTLA4) by donor-stimulated Eomes+ CD8+ T cells was observed. Before transplantation, in patients without rejection, there were higher incidences of Eomeshi T-bet-/lo , and lower incidences of Eomeshi T-bethi and Eomes-/lo T-bethi donor-stimulated CD8+ T cell subsets, compared to those with subsequent rejection. Overall, our findings indicate that high Eomes expression by allo-stimulated T-bet+ CD8+ T cells is associated with enhanced effector function, and that an elevated incidence of donor-stimulated CD8+ T cells co-expressing high levels of Eomes and T-bet before transplantation, may correlate with an increased incidence of acute cellular rejection.
Collapse
Affiliation(s)
- A. Perez‐Gutierrez
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - D. M. Metes
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Departments of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - L. Lu
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - S. Hariharan
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - A. W. Thomson
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - M. B. Ezzelarab
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
8
|
T-bet or IFNγ Neutralization for Blocking Islet Allograft Rejection? Transplantation 2018; 102:1409-1410. [PMID: 29781951 DOI: 10.1097/tp.0000000000002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Chou FC, Chen HY, Chen HH, Lin GJ, Lin SH, Sytwu HK. Differential modulation of IL-12 family cytokines in autoimmune islet graft failure in mice. Diabetologia 2017; 60:2409-2417. [PMID: 28929188 DOI: 10.1007/s00125-017-4418-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS The relative contribution of T helper (Th)1 and Th17 cells in graft rejection is inconclusive, on the basis of evidence provided by different T cell-related cytokine-deficient animal models and graft types. METHODS We used novel antigen-presenting-cell-specific Il-12p35 (also known as Il12a)-knockout (KO), IL-23p19-knockdown (KD) and IL-27p28-KD strategies to investigate T cell differentiation in islet graft rejection. RESULTS In vitro dendritic cell-T cell coculture experiments revealed that dendritic cells from Il-12p35-KO and IL-23p19-KD mice showed reduced ability to stimulate IFN-γ and IL-17 production in T cells, respectively. To further explore the T cell responses in islet graft rejection, we transplanted islets into streptozotocin-induced diabetic NOD/severe combined immunodeficiency (SCID) recipient mice with IL-12-, IL-23-, or IL-27-deficient backgrounds and then challenged them with NOD.BDC2.5 T cells. The survival of islet grafts was significantly prolonged in Il-12p35-KO and IL-23p19-KD recipients compared with the control recipients. T cell infiltrations and Th1 cell populations were also decreased in the grafts, correlating with prolonged graft survival. CONCLUSIONS/INTERPRETATION Our results suggest that IL-12 and IL-23 promote and/or maintain Th1 cell-mediated islet graft rejection. Thus, blockade of IL-12 and IL-23 might act as therapeutic strategies for reducing rejection responses.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan
| | - Heng-Yi Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hui Chen
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Sato F, Kawai E, Martinez NE, Omura S, Park AM, Takahashi S, Yoh K, Tsunoda I. T-bet, but not Gata3, overexpression is detrimental in a neurotropic viral infection. Sci Rep 2017; 7:10496. [PMID: 28874814 PMCID: PMC5585213 DOI: 10.1038/s41598-017-10980-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023] Open
Abstract
Intracerebral Theiler's murine encephalomyelitis virus (TMEV) infection in mice induces inflammatory demyelination in the central nervous system. Although C57BL/6 mice normally resistant to TMEV infection with viral clearance, we have previously demonstrated that RORγt-transgenic (tg) C57BL/6 mice, which have Th17-biased responses due to RORγt overexpression in T cells, became susceptible to TMEV infection with viral persistence. Here, using T-bet-tg C57BL/6 mice and Gata3-tg C57BL/6 mice, we demonstrated that overexpression of T-bet, but not Gata3, in T cells was detrimental in TMEV infection. Unexpectedly, T-bet-tg mice died 2 to 3 weeks after infection due to failure of viral clearance. Here, TMEV infection induced splenic T cell depletion, which was associated with lower anti-viral antibody and T cell responses. In contrast, Gata3-tg mice remained resistant, while Gata3-tg mice had lower IFN-γ and higher IL-4 production with increased anti-viral IgG1 responses. Thus, our data identify how overexpression of T-bet and Gata3 in T cells alters anti-viral immunity and confers susceptibility to TMEV infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Cardiovascular Diseases and Sciences (CCDS), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Eiichiro Kawai
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Cardiovascular Diseases and Sciences (CCDS), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Investigative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Keigyou Yoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA.
- Center for Molecular and Tumor Virology (CMTV), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA.
- Center for Cardiovascular Diseases and Sciences (CCDS), Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S), 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
11
|
da Silva MB, da Cunha FF, Terra FF, Camara NOS. Old game, new players: Linking classical theories to new trends in transplant immunology. World J Transplant 2017; 7:1-25. [PMID: 28280691 PMCID: PMC5324024 DOI: 10.5500/wjt.v7.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
The evolutionary emergence of an efficient immune system has a fundamental role in our survival against pathogenic attacks. Nevertheless, this same protective mechanism may also establish a negative consequence in the setting of disorders such as autoimmunity and transplant rejection. In light of the latter, although research has long uncovered main concepts of allogeneic recognition, immune rejection is still the main obstacle to long-term graft survival. Therefore, in order to define effective therapies that prolong graft viability, it is essential that we understand the underlying mediators and mechanisms that participate in transplant rejection. This multifaceted process is characterized by diverse cellular and humoral participants with innate and adaptive functions that can determine the type of rejection or promote graft acceptance. Although a number of mediators of graft recognition have been described in traditional immunology, recent studies indicate that defining rigid roles for certain immune cells and factors may be more complicated than originally conceived. Current research has also targeted specific cells and drugs that regulate immune activation and induce tolerance. This review will give a broad view of the most recent understanding of the allogeneic inflammatory/tolerogenic response and current insights into cellular and drug therapies that modulate immune activation that may prove to be useful in the induction of tolerance in the clinical setting.
Collapse
|
12
|
Zimmermann J, Kühl AA, Weber M, Grün JR, Löffler J, Haftmann C, Riedel R, Maschmeyer P, Lehmann K, Westendorf K, Mashreghi MF, Löhning M, Mack M, Radbruch A, Chang HD. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis. Mucosal Immunol 2016; 9:1487-1499. [PMID: 26883725 DOI: 10.1038/mi.2016.5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/03/2016] [Indexed: 02/04/2023]
Abstract
The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.
Collapse
Affiliation(s)
- J Zimmermann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - A A Kühl
- Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - M Weber
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J R Grün
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - J Löffler
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - C Haftmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - R Riedel
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - P Maschmeyer
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Lehmann
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - K Westendorf
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M-F Mashreghi
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Löhning
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - M Mack
- Universitätsklinikum Regensburg, Regensburg, Germany
| | - A Radbruch
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - H D Chang
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
13
|
Rovira J, Renner P, Sabet-Baktach M, Eggenhofer E, Koehl GE, Lantow M, Lang SA, Schlitt HJ, Campistol JM, Geissler EK, Kroemer A. Cyclosporine A Inhibits the T-bet-Dependent Antitumor Response of CD8(+) T Cells. Am J Transplant 2016; 16:1139-47. [PMID: 26855194 DOI: 10.1111/ajt.13597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 01/25/2023]
Abstract
Transplant recipients face an increased risk of cancer compared with the healthy population. Although several studies have examined the direct effects of immunosuppressive drugs on cancer cells, little is known about the interactions between pharmacological immunosuppression and cancer immunosurveillance. We investigated the different effects of rapamycin (Rapa) versus cyclosporine A (CsA) on tumor-reactive CD8(+) T cells. After adoptive transfer of CD8(+) T cell receptor-transgenic OTI T cells, recipient mice received either skin grafts expressing ovalbumin (OVA) or OVA-expressing B16F10 melanoma cells. Animals were treated daily with Rapa or CsA. Skin graft rejection and tumor growth as well as molecular and cellular analyses of skin- and tumor-infiltrating lymphocytes were performed. Both Rapa and CsA were equally efficient in prolonging skin graft survival when applied at clinically relevant doses. In contrast to Rapa-treated animals, CsA led to accelerated tumor growth in the presence of adoptively transferred tumor-reactive CD8(+) OTI T cells. Further analyses showed that T-bet was downregulated by CsA (but not Rapa) in CD8(+) T cells and that cancer cytotoxicity was profoundly inhibited in the absence of T-bet. CsA reduces T-bet-dependent cancer immunosurveillance by CD8(+) T cells. This may contribute to the increased cancer risk in transplant recipients receiving calcineurin inhibitors.
Collapse
Affiliation(s)
- J Rovira
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic - IDIBAPS, Barcelona, Spain
| | - P Renner
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - M Sabet-Baktach
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - E Eggenhofer
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - G E Koehl
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - M Lantow
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - S A Lang
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - H J Schlitt
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - J M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic - IDIBAPS, Barcelona, Spain.,Department of Nephrology and Renal Transplantation, Hospital Clínic, Barcelona, Spain
| | - E K Geissler
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - A Kroemer
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany.,MedStar Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC
| |
Collapse
|
14
|
CD27low natural killer cells prolong allograft survival in mice by controlling alloreactive CD8+ T cells in a T-bet-dependent manner. Transplantation 2015; 99:391-9. [PMID: 25606781 DOI: 10.1097/tp.0000000000000585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Natural killer (NK) cells play a dichotomous role in alloimmune responses because they are known to promote both allograft survival and rejection. The aim of this study was to investigate the role of functionally distinct NK cell subsets in alloimmunity with the hypothesis that this dichotomy is explained by the functional heterogeneity of distinct NK cell subsets. METHODS Because T-bet controls thematuration of NK cells from CD27high to terminally differentiated CD27low NK cells, we used Rag−/−T-bet−/− mice that lackmature CD27low NK cells to study the distinct roles of CD27low versus CD27high NK cells in a model of Tcell–mediated skin transplant rejection under costimulatory blockade conditions. RESULTS We found that T cell–reconstituted Rag1−/− recipients (possessing CD27low NK cells) show significantly prolonged allograft survival on costimulatory blockade when compared to Rag1−/−T-bet−/− mice (lacking CD27low NK cells), indicating that CD27low but not CD27high NK cells enhance allograft survival. Critically, Rag1−/−T-bet−/− recipients showed strikingly increased alloreactive memory CD8+ Tcell responses, as indicated by increased CD8+ Tcell proliferation and interferon-γ production. Therefore, we speculated that CD27low NK cells directly regulate alloreactive CD8+ Tcell responses under costimulatory blockade conditions. To test this, we adoptively transferred CD27low NK cells into Rag1−/−T-bet−/− skin transplant recipients and found that the CD27low NK cells restore better allograft survival by inhibiting the proliferation of alloreactive interferon-γ+CD8+ T cells. CONCLUSIONS In summary, mature CD27low NK cells promote allograft survival under costimulatory blockade conditions by regulating alloreactive memory CD8+ T-cell responses.
Collapse
|
15
|
Nouël A, Simon Q, Jamin C, Pers JO, Hillion S. Regulatory B cells: an exciting target for future therapeutics in transplantation. Front Immunol 2014; 5:11. [PMID: 24478776 PMCID: PMC3897876 DOI: 10.3389/fimmu.2014.00011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022] Open
Abstract
Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrate on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting antibody, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg) cells or B10 cells has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.
Collapse
Affiliation(s)
- Alexandre Nouël
- EA2216 "Immunologie, Pathologie et Immunothérapie", Université de Brest, Université Européenne de Bretagne, SFR ScinBios, LabEx IGO "Immunotherapy, Graft, Oncology" , Brest , France
| | - Quentin Simon
- EA2216 "Immunologie, Pathologie et Immunothérapie", Université de Brest, Université Européenne de Bretagne, SFR ScinBios, LabEx IGO "Immunotherapy, Graft, Oncology" , Brest , France
| | - Christophe Jamin
- EA2216 "Immunologie, Pathologie et Immunothérapie", Université de Brest, Université Européenne de Bretagne, SFR ScinBios, LabEx IGO "Immunotherapy, Graft, Oncology" , Brest , France ; Laboratoire d'immunologie, CHRU Morvan , Brest , France
| | - Jacques-Olivier Pers
- EA2216 "Immunologie, Pathologie et Immunothérapie", Université de Brest, Université Européenne de Bretagne, SFR ScinBios, LabEx IGO "Immunotherapy, Graft, Oncology" , Brest , France ; Laboratoire d'immunologie, CHRU Morvan , Brest , France
| | - Sophie Hillion
- EA2216 "Immunologie, Pathologie et Immunothérapie", Université de Brest, Université Européenne de Bretagne, SFR ScinBios, LabEx IGO "Immunotherapy, Graft, Oncology" , Brest , France ; Laboratoire d'immunologie, CHRU Morvan , Brest , France
| |
Collapse
|