1
|
Liu D, Wang X, Han Y, Wang J, Sun Y, Hou Y, Wu Q, Zeng C, Ding X, Chang Y, Hu J, Huang X, Lu L. A donor PD-1 +CD8 + T SCM-like regulatory subset mobilized by G-CSF alleviates recipient acute graft-versus-host-disease. Signal Transduct Target Ther 2025; 10:120. [PMID: 40175340 PMCID: PMC11965471 DOI: 10.1038/s41392-025-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
Donor selection determines the occurrence of acute graft-versus-host-disease (aGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). To optimize the current clinical donor selection criteria and identify putative donor lymphocyte subsets associated with better recipient outcomes, we analyzed the peripheral CD4+ and CD8+ subsets in 80 granulocyte colony-stimulating factor (G-CSF) mobilized donors and examined the aGVHD incidence of the corresponding 80 haploidentical and identical allo-HSCT recipients. The G-CSF-induced expansion of subsets varied among donors. We discovered a novel PD-1+CD8+CD45RA+CCR7+ T lymphocyte subset in suitable donors that was significantly correlated with lower incidence of aGVHD and post-transplant anti-infection. The anti-aGVHD activity of this subset was confirmed in a validation cohort (n = 30). Single-cell RNA sequencing revealed that this T cell subset exhibited transcriptomic features of stem cell-like memory T cell (TSCM) with both Treg and Teff activities which indicated its dual functions in aGVHD inhibition and graft-versus-leukemia (GVL) effect. Intriguingly, upon G-CSF mobilization, the donor PD-1+CD8+ TSCM-like regulatory cells increased the PD-1 expression in a BCL6-dependent manner. Next, we showed that the mouse counterpart of this subset (PD-1+CD8+CD44-CD62L+) ameliorated aGVHD, and confirmed the existence of this subset in clinical recipients. In summary, we, for the first time, identified a novel donor peripheral T cell subset suppressing aGVHD while promoting the immune reconstitution of recipients. It may serve as an indicator for optimal haploidentical and identical donor selection. Importantly, the dual Treg and Teff function of these T cells makes it a promising treatment for not only aGVHD but also auto-immune diseases.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Sun
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Hou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Zeng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jiong Hu
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Mei D, Xue Z, Zhang T, Yang Y, Jin L, Yu Q, Hong J, Zhang X, Ge J, Xu L, Wang H, Zhang Z, Zhao Y, Zhai Y, Tao Q, Zhai Z, Li Q, Li H, Zhang L. Immune isolation-enabled nanoencapsulation of donor T cells: a promising strategy for mitigating GVHD and treating AML in preclinical models. J Immunother Cancer 2024; 12:e008663. [PMID: 39242117 PMCID: PMC11381671 DOI: 10.1136/jitc-2023-008663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND In allogeneic-hematopoietic stem cell transplantation for acute myeloid leukemia (AML), donor T cells combat leukemia through the graft-versus-leukemia (GVL) effect, while they also pose a risk of triggering life-threatening graft-versus-host disease (GVHD) by interacting with recipient cells. The onset of GVHD hinges on the interplay between donor T cells and recipient antigen-presenting cells (APCs), sparking T-cell activation. However, effective methods to balance GVHD and GVL are lacking. METHODS In our study, we crafted nanocapsules by layering polycationic aminated gelatin and polyanionic alginate onto the surface of T cells, examining potential alterations in their fundamental physiological functions. Subsequently, we established an AML mouse model and treated it with transplantation of bone marrow cells (BMCs) combined with encapsulated T cells to investigate the GVL and anti-GVHD effects of encapsulated T cells. In vitro co-culture was employed to probe the effects of encapsulation on immune synapses, co-stimulatory molecules, and tumor-killing pathways. RESULTS Transplantation of BMCs combined with donor T cells selectively encapsulated onto AML mice significantly alleviates GVHD symptoms while preserving essential GVL effects. Encapsulated T cells exerted their immunomodulatory effects by impeding the formation of immune synapses with recipient APCs, thereby downregulating co-stimulatory signals such as CD28-CD80, ICOS-ICOSL, and CD40L-CD40. Recipient mice receiving encapsulated T-cell transplantation exhibited a marked increase in donor Ly-5.1-BMC cell numbers, accompanied by unaltered in vivo expression levels of perforin and granzyme B. While transient inhibition of donor T-cell cytotoxicity in the tumor microenvironment was observed in vitro following single-cell nanoencapsulation, subsequent restoration to normal antitumor activity ensued, attributed to selective permeability of encapsulated vesicle shells and material degradation. Moreover, the expression of apoptotic proteins and FAS-FAS ligand pathway at normal levels was still observed in leukemia tumor cells. CONCLUSIONS Encapsulated donor T cells effectively mitigate GVHD while preserving the GVL effect by minimizing co-stimulatory signaling with APCs through early immune isolation. Subsequent degradation of nanocapsules restores T-cell cytotoxic efficacy against AML cells, mediated by cytotoxic pathways. Using transplant-encapsulated T cells offers a promising strategy to suppress GVHD while preserving the GVL effect.
Collapse
Affiliation(s)
- Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Qianshan Tao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongxia Li
- Department of Hematology and Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Takahashi S, Minnie SA, Ensbey KS, Schmidt CR, Sekiguchi T, Legg SRW, Zhang P, Koyama M, Olver SD, Collinge AD, Keshmiri S, Comstock ML, Varelias A, Green DJ, Hill GR. Regulatory T cells suppress myeloma-specific immunity during autologous stem cell mobilization and transplantation. Blood 2024; 143:1656-1669. [PMID: 38295333 PMCID: PMC11103090 DOI: 10.1182/blood.2023022000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.
Collapse
Affiliation(s)
- Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Samuel R. W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stuart D. Olver
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Sara Keshmiri
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melissa L. Comstock
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Damian J. Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Dwivedi AK, Gornalusse GG, Siegel DA, Barbehenn A, Thanh C, Hoh R, Hobbs KS, Pan T, Gibson EA, Martin J, Hecht F, Pilcher C, Milush J, Busch MP, Stone M, Huang ML, Reppetti J, Vo PM, Levy CN, Roychoudhury P, Jerome KR, Hladik F, Henrich TJ, Deeks SG, Lee SA. A cohort-based study of host gene expression: tumor suppressor and innate immune/inflammatory pathways associated with the HIV reservoir size. PLoS Pathog 2023; 19:e1011114. [PMID: 38019897 PMCID: PMC10712869 DOI: 10.1371/journal.ppat.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.
Collapse
Affiliation(s)
- Ashok K. Dwivedi
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Germán G. Gornalusse
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Alton Barbehenn
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Cassandra Thanh
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Kristen S. Hobbs
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Erica A. Gibson
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California, United States of America
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Jeffrey Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Michael P. Busch
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Julieta Reppetti
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO- Houssay), Buenos Aires, Argentina
| | - Phuong M. Vo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Claire N. Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Henrich
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
5
|
Guo H, Li R, Wang M, Hou Y, Liu S, Peng T, Zhao X, Lu L, Han Y, Shao Y, Chang Y, Li C, Huang X. Multiomics Analysis Identifies SOCS1 as Restraining T Cell Activation and Preventing Graft-Versus-Host Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200978. [PMID: 35585676 PMCID: PMC9313503 DOI: 10.1002/advs.202200978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Indexed: 05/03/2023]
Abstract
Graft-versus-host disease (GVHD) is a major life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Inflammatory signaling pathways promote T-cell activation and are involved in the pathogenesis of GVHD. Suppressor of cytokine signaling 1 (SOCS1) is a critical negative regulator for several inflammatory cytokines. However, its regulatory role in T-cell activation and GVHD has not been elucidated. Multiomics analysis of the transcriptome and chromatin structure of granulocyte-colony-stimulating-factor (G-CSF)-administered hyporesponsive T cells from healthy donors reveal that G-CSF upregulates SOCS1 by reorganizing the chromatin structure around the SOCS1 locus. Parallel in vitro and in vivo analyses demonstrate that SOCS1 is critical for restraining T cell activation. Loss of Socs1 in T cells exacerbates GVHD pathogenesis and diminishes the protective role of G-CSF in GVHD mouse models. Further analysis shows that SOCS1 inhibits T cell activation not only by inhibiting the colony-stimulating-factor 3 receptor (CSF3R)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, but also by restraining activation of the inflammasome signaling pathway. Moreover, high expression of SOCS1 in T cells from patients correlates with low acute GVHD occurrence after HSCT. Overall, these findings identify that SOCS1 is critical for inhibiting T cell activation and represents a potential target for the attenuation of GVHD.
Collapse
Affiliation(s)
- Huidong Guo
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Ruifeng Li
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100080China
- Institute for Immunology and School of MedicineTsinghua UniversityBeijing100084China
| | - Ming Wang
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Yingping Hou
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100080China
| | - Shuoshuo Liu
- Institute for Immunology and School of MedicineTsinghua UniversityBeijing100084China
- Beijing Tsinghua Changgeng HospitalBeijing102218China
| | - Ting Peng
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Xiang‐Yu Zhao
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Liming Lu
- Shanghai Institute of ImmunologyShanghai Jiaotong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yali Han
- Shanghai Jiayin Biotechnology, Ltd.Shanghai200092China
| | - Yiming Shao
- Shanghai Jiayin Biotechnology, Ltd.Shanghai200092China
| | - Ying‐Jun Chang
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Cheng Li
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Center for Statistical ScienceCenter for BioinformaticsPeking UniversityBeijingChina
| | - Xiao‐Jun Huang
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100080China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies (2019RU029)Chinese Academy of Medical SciencesBeijing100730China
| |
Collapse
|
6
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R, Vietor I. An Overview of Autophagy in Hematopoietic Stem Cell Transplantation. Front Bioeng Biotechnol 2022; 10:849768. [PMID: 35677295 PMCID: PMC9168265 DOI: 10.3389/fbioe.2022.849768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a fundamental homeostatic process crucial for cellular adaptation in response to metabolic stress. Autophagy exerts its effect through degrading intracellular components and recycling them to produce macromolecular precursors and energy. This physiological process contributes to cellular development, maintenance of cellular/tissue homeostasis, immune system regulation, and human disease. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only preferred therapy for most bone marrow-derived cancers. Unfortunately, HSCT can result in several serious and sometimes untreatable conditions due to graft-versus-host disease (GVHD), graft failure, and infection. These are the major cause of morbidity and mortality in patients receiving the transplant. During the last decade, autophagy has gained a considerable understanding of its role in various diseases and cellular processes. In light of recent research, it has been confirmed that autophagy plays a crucial role in the survival and function of hematopoietic stem cells (HSCs), T-cell differentiation, antigen presentation, and responsiveness to cytokine stimulation. Despite the importance of these events to HSCT, the role of autophagy in HSCT as a whole remains relatively ambiguous. As a result of the growing use of autophagy-modulating agents in the clinic, it is imperative to understand how autophagy functions in allogeneic HSCT. The purpose of this literature review is to elucidate the established and implicated roles of autophagy in HSCT, identifying this pathway as a potential therapeutic target for improving transplant outcomes.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
7
|
Ramírez-González A, Manzo-Merino J, Contreras-Ochoa CO, Bahena-Román M, Aguilar-Villaseñor JM, Lagunas-Martínez A, Rosenstein Y, Madrid Marina V, Torres-Poveda K. Functional Role of AKNA: A Scoping Review. Biomolecules 2021; 11:1709. [PMID: 34827707 PMCID: PMC8615511 DOI: 10.3390/biom11111709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Human akna encodes an AT-hook transcription factor whose expression participates in various cellular processes. We conducted a scoping review on the literature regarding the functional role of AKNA according to the evidence found in human and in vivo and in vitro models, stringently following the "PRISMA-ScR" statement recommendations. METHODS We undertook an independent PubMed literature search using the following search terms, AKNA OR AKNA ADJ gene OR AKNA protein, human OR AKNA ADJ functions. Observational and experimental articles were considered. The selected studies were categorized using a pre-determined data extraction form. A narrative summary of the evidence was produced. RESULTS AKNA modulates the expression of CD40 and CD40L genes in immune system cells. It is a negative regulator of inflammatory processes as evidenced by knockout mouse models and observational studies for several autoimmune and inflammatory diseases. Furthermore, AKNA contributes to the de-regulation of the immune system in cancer, and it has been proposed as a susceptibility genetic factor and biomarker in CC, GC, and HNSCC. Finally, AKNA regulates neurogenesis by destabilizing the microtubules dynamics. CONCLUSION Our results provide evidence for the role of AKNA in various cellular processes, including immune response, inflammation, development, cancer, autoimmunity, and neurogenesis.
Collapse
Affiliation(s)
- Abrahán Ramírez-González
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Joaquín Manzo-Merino
- Department of Basic Research, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
- Consejo Nacional de Ciencia y Tecnología (CONACyT)-Instituto Nacional de Cancerología, Mexico City 03940, Mexico
| | - Carla Olbia Contreras-Ochoa
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Margarita Bahena-Román
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - José Manasés Aguilar-Villaseñor
- Centro Nacional para la Salud de la Infancia y la Adolescencia (CeNSIA)-Secretaría de Salud Federal, Mexico City 01480, Mexico;
| | - Alfredo Lagunas-Martínez
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City 62210, Mexico;
| | - Vicente Madrid Marina
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
| | - Kirvis Torres-Poveda
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (A.R.-G.); (C.O.C.-O.); (M.B.-R.); (A.L.-M.); (V.M.M.)
- CONACyT-Instituto Nacional de Salud Pública, Cuernavaca 03940, Mexico
| |
Collapse
|
8
|
Xu ZL, Huang XJ. Optimizing outcomes for haploidentical hematopoietic stem cell transplantation in severe aplastic anemia with intensive GVHD prophylaxis: a review of current findings. Expert Rev Hematol 2021; 14:449-455. [PMID: 33945370 DOI: 10.1080/17474086.2021.1923475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has resulted in increased levels of disease-free survival in severe aplastic anemia (SAA). Haploidentical transplantation (haplo-SCT) was previously not recommended due to unacceptable incidences of graft-versus-host disease (GvHD) and graft failures. With the advent of intensive GvHD prophylaxis strategies, the outcomes obtained with haplo-SCT for SAA have gradually improved.Areas covered: A comprehensive search considered PubMed reported articles before 1 February 2021, presented abstracts, and clinical trials pertaining to haplo-HSCT for SAA. This manuscript covers modern approaches with intensive GvHD prophylaxis in haplo-SCT for SAA. The representative methods consist of granulocyte colony stimulating factor (G-CSF) plus ATG-based and posttransplantation cyclophosphamide (PT-Cy)-based protocols.Expert opinion: Currently, haplo-SCT has become a feasible option for treating SAA. The G-CSF/ATG-based protocol included the largest sample size and reported comparable survival rates with identical siblings. The PT-Cy protocol resulted in a relatively lower incidence of GvHD and seemingly poorer but continuously improved engraftment with augmented conditioning. The optimized outcomes are constantly updated with the modification of the conditioning regimen, donor selection, graft source and GvHD prophylaxis. In the future, we should pay more attention to quality of life in addition to survival, and personalized haplo-SCT may improve outcomes.
Collapse
Affiliation(s)
- Zheng-Li Xu
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiao-Jun Huang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| |
Collapse
|
9
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
10
|
Gao L, Zhang Y, Wang S, Kong P, Su Y, Hu J, Jiang M, Bai H, Lang T, Wang J, Liu L, Yang T, Huang X, Liu F, Lou S, Liu Y, Zhang C, Liu H, Gao L, Liu J, Zhu L, Wen Q, Chen T, Wang P, Rao J, Mao M, Wang C, Duan X, Luo L, Peng X, Cassady K, Zhong JF, Zhang X. Effect of rhG-CSF Combined With Decitabine Prophylaxis on Relapse of Patients With High-Risk MRD-Negative AML After HSCT: An Open-Label, Multicenter, Randomized Controlled Trial. J Clin Oncol 2020; 38:4249-4259. [PMID: 33108244 PMCID: PMC7768335 DOI: 10.1200/jco.19.03277] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relapse is a major cause of treatment failure after allogeneic hematopoietic stem-cell transplantation (allo-HSCT) for high-risk acute myeloid leukemia (HR-AML). The aim of this study was to explore the effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) combined with minimal-dose decitabine (Dec) on the prevention of HR-AML relapse after allo-HSCT.
Collapse
Affiliation(s)
- Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanqi Zhang
- Department of Health Statistics, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Sanbin Wang
- Department of Hematology, General Hospital of Kunming Military Region of the People's Liberation Army (PLA), Kunming, China
| | - Peiyan Kong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Su
- Department of Hematology, General Hospital of Chengdu Military Region of the PLA, Chengdu, China
| | - Jiong Hu
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Jiang
- Department of Hematology, the Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hai Bai
- Department of Hematology, General Hospital of Lanzhou Military Region of the PLA, Lanzhou, China
| | - Tao Lang
- Department of Hematology, Xinjiang Provincial People's Hospital, Urumqi, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Forth Military Medical University (Air Force Medical University), Xi'an, China
| | - Tonghua Yang
- Department of Hematology, Yunnan Provincial People's Hospital, Kunming, China
| | - Xiaobing Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Fang Liu
- Department of Hematology, General Hospital of Chengdu Military Region of the PLA, Chengdu, China
| | - Shifeng Lou
- Department of Hematology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jia Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lidan Zhu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ting Chen
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ping Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Mao
- Department of Hematology, Xinjiang Provincial People's Hospital, Urumqi, China
| | - Cunbang Wang
- Department of Hematology, General Hospital of Lanzhou Military Region of the PLA, Lanzhou, China
| | - Xianlin Duan
- Department of Hematology, the Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Le Luo
- Department of Hematology, General Hospital of Kunming Military Region of the People's Liberation Army (PLA), Kunming, China
| | - Xiangui Peng
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kaniel Cassady
- Departments of Diabetes Immunology and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jiang F Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, CA
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Chang YJ, Zhao XY, Huang XJ. Granulocyte Colony-Stimulating Factor-Primed Unmanipulated Haploidentical Blood and Marrow Transplantation. Front Immunol 2019; 10:2516. [PMID: 31749802 PMCID: PMC6842971 DOI: 10.3389/fimmu.2019.02516] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF), a growth factor for neutrophils, has been successfully used for stem cell mobilization and T cell immune tolerance induction. The establishment of G-CSF-primed unmanipulated haploidentical blood and marrow transplantation (The Beijing Protocol) has achieved outcomes for the treatment of acute leukemia, myelodysplastic syndrome, and severe aplastic anemia with haploidentical allografts comparable to those of human leukocyte antigen (HLA)-matched sibling donor transplantation. Currently, G-CSF-mobilized bone marrow and/or peripheral blood stem cell sources have been widely used in unmanipulated haploidentical transplant settings. In this review, we summarize the roles of G-CSF in inducing T cell immune tolerance. We discuss the recent advances in the Beijing Protocol, mainly focusing on strategies that have been used to improve transplant outcomes in cases of poor graft function, virus infections, and relapse. The application of G-CSF-primed allografts in other haploidentical modalities is also discussed.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
12
|
Zhang P, Hill GR. Interleukin-10 mediated immune regulation after stem cell transplantation: Mechanisms and implications for therapeutic intervention. Semin Immunol 2019; 44:101322. [PMID: 31640914 DOI: 10.1016/j.smim.2019.101322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Interleukin-10 (IL-10) is a multi-faceted anti-inflammatory cytokine which plays an essential role in immune tolerance. Indeed, deficiency of IL-10 or its receptor results in aberrant immune responses that lead to immunopathology. Graft-versus-host disease (GVHD) is the limiting complication of allogeneic stem cell transplantation (SCT) and results from an imbalance in pathological versus regulatory immune networks. A number of immune cells exert their immunomodulatory role through secretion of IL-10 or induction of IL-10-secreting cells after SCT. Type-1 regulatory T cells (Tr1 cells) and FoxP3+ regulatory T cells (Tregs) are predominant sources of IL-10 after SCT and the critical role of this cytokine in preventing GVHD is now established. Recently, intriguing interactions among IL-10, immune cells, commensal microbes and host tissues in the gastrointestinal (GI) tract and other barrier surfaces have been uncovered. We now understand that IL-10 secretion is dynamically modulated by the availability of antigen, co-stimulatory signals, cytokines, commensal microbes and their metabolites in the microenvironment. In this review, we provide an overview of the control of IL-10 secretion and signaling after SCT and the therapeutic interventions, with a focus on Tr1 cells.
Collapse
Affiliation(s)
- Ping Zhang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Du R, Hu P, Liu Q, Zhang J, Deng G, Hu D, Zhang J. Granulocyte Colony-Stimulating Factor Treatment During Radiotherapy Is Associated With Survival Benefit in Patients With Lung Cancer. Technol Cancer Res Treat 2019; 17:1533033818816076. [PMID: 31122176 PMCID: PMC6295692 DOI: 10.1177/1533033818816076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objectives: Granulocyte colony-stimulating factor, an agent commonly used for neutropenia treatment, plays an important role in cancer treatment. However, the effect of granulocyte colony-stimulating factor treatment on patient’s survival during radiation therapy in lung cancer remains unknown. Materials and Methods: A retrospective study of patients with lung cancer who underwent radiation therapy from 2012 to 2015 at Shandong Provincial Qianfoshan Hospital was performed. Granulocyte colony-stimulating factor was administered when grade 3 or 4 leukopenia and/or neutropenia occurred during radiation therapy, and no prophylactic granulocyte colony-stimulating factor was used in this study. Patients were classified into high and low granulocyte colony-stimulating factor group according the dosage of granulocyte colony-stimulating factor use during radiation therapy. The influence of granulocyte colony-stimulating factor on survival was investigated. In addition, the predict value of granulocyte colony-stimulating factor in concurrent chemoradiotherapy group and radiation therapy alone group was also evaluated, respectively. Results: A total of 231 patients were enrolled, with 56 in the high granulocyte colony-stimulating factor group and 175 in the low granulocyte colony-stimulating factor group. High dose of granulocyte colony-stimulating factor for the entire population group was associated with a favorable overall survival (hazard ratio [95% confidence interval] = 1.798 [1.260-2.568]; P = .001) and a longer progression-free survival (hazard ratio = 1.550 [1.127-2.132]; P = .002). However, compared with a lower granulocyte colony-stimulating factor, a higher granulocyte colony-stimulating factor was associated with significant better overall survival and progression-free survival in radiation therapy group, not in concurrent chemoradiotherapy group. Although there was no statistical significance in concurrent chemoradiotherapy group, the median overall survival and progression-free survival of patients in the higher granulocyte colony-stimulating factor group were longer than those in the lower group. Furthermore, the treatment strategy was also associated with the overall survival, not the progression-free survival. Conclusion: This study suggests that granulocyte colony-stimulating factor treatment during radiation therapy has favorable impact on outcome in patients with lung cancer. Besides, results showed that patients treated with concurrent chemoradiotherapy had better prognosis than those treated with radiation therapy alone.
Collapse
Affiliation(s)
- Rui Du
- 1 Department of Graduate, Weifang Medical University, Weifang, Shandong Pro, China
| | - Pingping Hu
- 2 Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Qiqi Liu
- 3 Department of Graduate, Shandong University, Jinan, Shandong Pro, China
| | - Jingxin Zhang
- 1 Department of Graduate, Weifang Medical University, Weifang, Shandong Pro, China
| | - Guodong Deng
- 3 Department of Graduate, Shandong University, Jinan, Shandong Pro, China
| | - Dan Hu
- 4 Department of Graduate, Taishan Medical University, Taian, Shandong Pro, China
| | - Jiandong Zhang
- 2 Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| |
Collapse
|
14
|
Autophagy in regulatory T cells: A double-edged sword in disease settings. Mol Immunol 2019; 109:43-50. [PMID: 30852245 DOI: 10.1016/j.molimm.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic process that directs cytoplasmic proteins, organelles and microbes to lysosomes for degradation. It not only represents an essential cell-intrinsic mechanism to protect against internal and external stresses but also shapes both innate and adaptive immunity. Regulatory T cells (Tregs) are a developmentally and functionally distinct T cell subpopulation engaged in sustaining immunological self-tolerance and homeostasis. There is compelling evidence that autophagy is actively regulated in Tregs and serves as a central signal-dependent controller for Tregs by restraining excessive apoptotic and metabolic activities. In this review, we discuss how autophagy modulates the stability and functionality of Tregs in different disease settings, and provide a perspective on how manipulation of autophagy enables better control of immune response by targeting the generation of Tregs and the maintenance of their stability.
Collapse
|
15
|
Xuan L, Wu X, Qiu D, Gao L, Liu H, Fan Z, Huang F, Jin Z, Sun J, Li Y, Liu Q. Regulatory γδ T cells induced by G-CSF participate in acute graft-versus-host disease regulation in G-CSF-mobilized allogeneic peripheral blood stem cell transplantation. J Transl Med 2018; 16:144. [PMID: 29801459 PMCID: PMC5970446 DOI: 10.1186/s12967-018-1519-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The immunomodulatory effects of granulocyte colony-stimulating factor (G-CSF) on T cells result in a low incidence of acute graft-versus-host disease (aGVHD) in G-CSF-mobilized allogeneic peripheral blood stem cell transplantation (G-PBSCT). However, the exact mechanism remains unclear. Regulatory γδ T cells (γδTregs), characterized by the presence of TCRγδ and Foxp3, have aroused great concern in the maintenance of immune tolerance. We hypothesized that γδTregs might involve in the immunomodulatory effects of G-CSF mobilization. Methods The expression and immunomodulatory function of γδTreg subsets in peripheral blood of donors before and after G-CSF treatment in vivo and in vitro were evaluated by flow cytometry and CFSE assays. To investigate the effects of γδTregs on aGVHD, the association between γδTreg subsets in grafts and aGVHD in recipients was estimated. Results The proportions of Vδ1Tregs, CD27+Vδ1Tregs and CD25+Vδ1Tregs were significantly increased in peripheral blood after G-CSF treatment in vivo. γδTregs could be generated in vitro by stimulating with anti-TCRγδ in the presence of G-CSF. The immune phenotype, proliferation suppression function, and cytokine secretion of G-CSF-induced γδTregs were similar to that of transforming growth factor-β (TGF-β)-induced γδTregs. The clinical data demonstrated that the proportion of CD27+Vδ1Tregs in grafts was significantly lower in the patients who experienced aGVHD than in those who did not develop aGVHD (P = 0.028), and the proportions of other γδTreg subsets in grafts did not differ significantly between the two groups. The best cutoff value for CD27+Vδ1Treg proportion in grafts in prediction of aGVHD was 0.33%, with an area under the curve value of 0.725 (P = 0.043). Eight patients (26.7%) were classified as the low-CD27+Vδ1Treg group (< 0.33%), and 22 patients (73.3%) as the high-CD27+Vδ1Treg group (≥ 0.33%). The incidence of aGVHD was higher in the low-CD27+Vδ1Treg group than in the high-CD27+Vδ1Treg group (75.0% versus 22.7%, P = 0.028). Conclusions G-CSF could induce the generation of γδTregs in vivo and in vitro, and γδTregs might participate in aGVHD regulation in G-PBSCT.
Collapse
Affiliation(s)
- Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Dan Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Li Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Harnessing Advances in T Regulatory Cell Biology for Cellular Therapy in Transplantation. Transplantation 2017; 101:2277-2287. [PMID: 28376037 DOI: 10.1097/tp.0000000000001757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular therapy with CD4FOXP3 T regulatory (Treg) cells is a promising strategy to induce tolerance after solid-organ transplantation or prevent graft-versus-host disease after transfer of hematopoietic stem cells. Treg cells currently used in clinical trials are either polyclonal, donor- or antigen-specific. Aside from variations in isolation and expansion protocols, however, most therapeutic Treg cell-based products are much alike. Ongoing basic science work has provided considerable new insight into multiple facets of Treg cell biology, including their stability, homing, and functional specialization; integrating these basic science discoveries with clinical efforts will support the development of next-generation therapeutic Treg cells with enhanced efficacy. In this review, we summarize recent advances in knowledge of how Treg cells home to lymphoid and peripheral tissues, and control antibody production and tissue repair. We also discuss newly appreciated pathways that modulate context-specific Treg cell function and stability. Strategies to improve and tailor Treg cells for cell therapy to induce transplantation tolerance are highlighted.
Collapse
|
17
|
Bal G, Fabian D, Maia D, Ringel F, Salama A. Effect of thrombopoietin receptor agonists on leukocyte and haematopoietic stem and progenitor cells in the peripheral blood of patients with immune thrombocytopenic purpura. Ann Hematol 2017; 96:2045-2056. [DOI: 10.1007/s00277-017-3131-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022]
|
18
|
MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest 2017; 127:2452-2463. [PMID: 28665299 DOI: 10.1172/jci90593] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17-secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2-dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway-targeted therapeutics, reviewed herein.
Collapse
Affiliation(s)
- Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce R Blazar
- Masonic Cancer Center; and Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota, Minneapolis, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
19
|
Han YM, Park JM, Choi YS, Jin H, Lee YS, Han NY, Lee H, Hahm KB. The efficacy of human placenta-derived mesenchymal stem cells on radiation enteropathy along with proteomic biomarkers predicting a favorable response. Stem Cell Res Ther 2017; 8:105. [PMID: 28464953 PMCID: PMC5414323 DOI: 10.1186/s13287-017-0559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Radiation enteropathy is a common complication in patients with abdominopelvic cancer, but no treatment has yet been established. Stem cell therapy may be a viable therapeutic option because intestinal stem cells are highly vulnerable to ionizing radiation (IR) and stem cell loss explains its intractability to general treatment. Here, we investigated either prophylactic or therapeutic efficacy of human placenta-derived mesenchymal stem cells (hPDSCs) against radiation enteropathy and could identify biomarkers predicting a favorable response to stem cell therapy. METHODS We challenged a radiation-induced enteropathy model with hPDSCs. After sacrifice, we checked the gross anatomy of small intestine, histology gross, and analyzed that, accompanied with molecular changes implicated in this model. RESULTS hPDSCs significantly improved the outcome of mice induced with either radiation enteropathy or lethal radiation syndrome (P < 0.01). hPDSCs exerted inhibitory actions on inflammatory cytokines, the re-establishment of epithelium homeostasis was completed with increasing endogenous restorative processes as assessed with increased levels of proliferative markers in the hPDSCs group, and a significant inhibition of IR-induced apoptosis. The preservation of cells expressing lysozyme, and Musashi-1 were significantly increased in the hPDSC treatment group. Both preventive and therapeutic efficacies of hPDSCs were noted against IR-induced enteropathy. Label-free quantification was used to identify biomarkers which predict favorable responses after hPDSC treatment, and finally glutathione S-transferase-mu type, interleukin-10, and peroxiredoxin-2 were validated as proteomic biomarkers predicting a favorable response to hPDSCs in radiation enteropathy. CONCLUSIONS hPDSCs may be a useful prophylactic and therapeutic cell therapy for radiation enteropathy.
Collapse
Affiliation(s)
- Young-Min Han
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Yong Soo Choi
- Department of Applied Bioscience, CHA University, Seongnam, South Korea
| | - Hee Jin
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yun-Sil Lee
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hookeun Lee
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea. .,Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| |
Collapse
|
20
|
Peng W. G-CSF treatment promotes apoptosis of autoreactive T cells to restrict the inflammatory cascade and accelerate recovery in experimental allergic encephalomyelitis. Exp Neurol 2017; 289:73-84. [DOI: 10.1016/j.expneurol.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
|
21
|
Le Texier L, Lineburg KE, MacDonald KPA. Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes. Int J Hematol 2016; 105:153-161. [PMID: 27943115 DOI: 10.1007/s12185-016-2161-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Regulatory T cells (Treg) are a suppressive T cell population which play a crucial role in the establishment of tolerance after stem cell transplantation (SCT) by controlling the effector T cell responses that drive acute and chronic GVHD. The BM compartment is enriched in a highly suppressive, activated/memory autophagy-dependent Treg population, which contributes to the HSC engraftment and the control of GVHD. G-CSF administration releases Treg from the BM through disruption of the CXCR4/SDF-1 axis and further improves Treg survival following SCT through the induction of autophagy. However, AMD3100 is more efficacious in mobilizing these Treg highlighting the potential for optimized mobilization regimes to produce more tolerogenic grafts. Notably, the disruption of adhesive interaction between integrins and their ligands contributes to HSC mobilization and may be relevant for BM Treg. Importantly, the Tregs in the BM niche contribute to maintenance of the HSC niche and appear required for optimal control of GVHD post-transplant. Although poorly studied, the BM Treg appear phenotypically and functionally unique to Treg in the periphery. Understanding the requirements for maintaining the enrichment, function and survival of BM Treg needs to be further investigated to improve therapeutic strategies and promote tolerance after SCT.
Collapse
Affiliation(s)
- Laetitia Le Texier
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Katie E Lineburg
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Kelli P A MacDonald
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
22
|
Mingomataj EÇ, Bakiri AH. Regulator Versus Effector Paradigm: Interleukin-10 as Indicator of the Switching Response. Clin Rev Allergy Immunol 2016; 50:97-113. [PMID: 26450621 DOI: 10.1007/s12016-015-8514-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interleukin-10 (IL-10) is generally considered as the most important cytokine with anti-inflammatory properties and one of the key cytokines preventing inflammation-mediated tissue damage. In this respect, IL-10 producing cells play a crucial role in the outcome of infections, allergy, autoimmune reactions, tumor development, and transplant tolerance. Based on recent findings with regard to the mentioned clinical conditions, this review attempts to shed some light on the IL-10 functions, considering this cytokine as inherent inducer of the switching immunity. While acute infections and vaccinations are associated by IL-10 enhanced during few weeks, chronic parasitoses, tumor diseases, allergen-specific immunotherapy, transplants, and use of immune-suppressor drugs show an increased IL-10 level along months or years. With regard to autoimmune pathologies, the IL-10 increase is prevalently observed during early stages, whereas the successive stages are characterized by reaching of immune equilibrium independently to disease's activity. Together, these findings indicate that IL-10 is mainly produced during transient immune conditions and the persistent IL-10-related effect is the indication/prediction (and maybe effectuation) of the switching immunity. Actual knowledge emphasizes that any manipulation of the IL-10 response for treatment purposes should be considered very cautiously due to its potential hazards to the immune system. Probably, the IL-10 as potential switcher of immunity response should be used in association with co-stimulatory immune effectors that are necessary to determine the appropriate deviation during treatment of respective pathologies. Hopefully, further findings would open new avenues to study the biology of this "master switch" cytokine and its therapeutic potential.
Collapse
Affiliation(s)
- Ervin Ç Mingomataj
- Department of Allergy & Clinical Immunology, "Mother Theresa" School of Medicine, Tirana, Albania. .,Faculty of Technical Medical Sciences, Department of Preclinical Disciplines, University of Medicine, Tirana, Albania.
| | - Alketa H Bakiri
- Hygeia Hospital Tirana, Outpatients Service, Allergology Consulting Room, Tirana, Albania.,Faculty of Medical Sciences, Department of Preclinical Disciplines, Albanian University, Tirana, Albania
| |
Collapse
|
23
|
Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis 2016; 62:49-63. [DOI: 10.1016/j.bcmd.2016.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
|
24
|
Le Texier L, Lineburg KE, Cao B, McDonald-Hyman C, Leveque-El Mouttie L, Nicholls J, Melino M, Nalkurthi BC, Alexander KA, Teal B, Blake SJ, Souza-Fonseca-Guimaraes F, Engwerda CR, Kuns RD, Lane SW, Teng M, Teh C, Gray D, Clouston AD, Nilsson SK, Blazar BR, Hill GR, MacDonald KP. Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight 2016; 1:e86850. [PMID: 27699243 DOI: 10.1172/jci.insight.86850] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral tolerance. Quantitative and/or qualitative defects in Tregs result in diseases such as autoimmunity, allergy, malignancy, and graft-versus-host disease (GVHD), a serious complication of allogeneic stem cell transplantation (SCT). We recently reported increased expression of autophagy-related genes (Atg) in association with enhanced survival of Tregs after SCT. Autophagy is a self-degradative process for cytosolic components that promotes cell homeostasis and survival. Here, we demonstrate that the disruption of autophagy within FoxP3+ Tregs (B6.Atg7fl/fl-FoxP3cre+ ) resulted in a profound loss of Tregs, particularly within the bone marrow (BM). This resulted in dysregulated effector T cell activation and expansion, and the development of enterocolitis and scleroderma in aged mice. We show that the BM compartment is highly enriched in TIGIT+ Tregs and that this subset is differentially depleted in the absence of autophagy. Moreover, following allogeneic SCT, recipients of grafts from B6.Atg7fl/fl-FoxP3cre+ donors exhibited reduced Treg reconstitution, exacerbated GVHD, and reduced survival compared with recipients of B6.WT-FoxP3cre+ grafts. Collectively, these data indicate that autophagy-dependent Tregs are critical for the maintenance of tolerance after SCT and that the promotion of autophagy represents an attractive immune-restorative therapeutic strategy after allogeneic SCT.
Collapse
Affiliation(s)
- Laëtitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katie E Lineburg
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Benjamin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Cameron McDonald-Hyman
- Pediatric Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lucie Leveque-El Mouttie
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jemma Nicholls
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle Melino
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Blessy C Nalkurthi
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kylie A Alexander
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bianca Teal
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Blake
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Christian R Engwerda
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel D Kuns
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Steven W Lane
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Michele Teng
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Charis Teh
- Molecular Genetics of Cancer Division and Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Daniel Gray
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Molecular Genetics of Cancer Division and Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | - Susan K Nilsson
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Bruce R Blazar
- Pediatric Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey R Hill
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Kelli Pa MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Chang YJ, Huang XJ. Haploidentical stem cell transplantation: anti-thymocyte globulin-based experience. Semin Hematol 2016; 53:82-9. [DOI: 10.1053/j.seminhematol.2016.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Yang J, Zhu F, Wang X, Yao W, Wang M, Pei G, Hu Z, Guo Y, Zhao Z, Wang P, Mou J, Sun J, Zeng R, Xu G, Liao W, Yao Y. Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation. PLoS One 2016; 11:e0149926. [PMID: 26900858 PMCID: PMC4763993 DOI: 10.1371/journal.pone.0149926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.
Collapse
Affiliation(s)
- Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xiaohui Wang
- Department of Nephrology, Fifth Hospital of Wuhan, 122 Xianzheng Street, Hanyang district, Wuhan 430050, Hubei, China
| | - Weiqi Yao
- Wuhan Hamilton Biotechnology-Co.LTD., B6-4, Wuhan institute of biotechnology, #666 Gaoxin Road, Wuhan 430073, Hubei, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yujiao Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Pengge Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jingyi Mou
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jie Sun
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
- * E-mail: (WL); (YY)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
- * E-mail: (WL); (YY)
| |
Collapse
|
27
|
Yang JZ, Zhang JQ, Sun LX. Mechanisms for T cell tolerance induced with granulocyte colony-stimulating factor. Mol Immunol 2015; 70:56-62. [PMID: 26703218 DOI: 10.1016/j.molimm.2015.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been widely accepted as a mediator of T cell tolerance. The immune modulatory effect of G-CSF on T cells is believed to be mediated exclusively through other effector cells, such as monocytes, tolerogenic dendritic cells (DC), and myeloid-derived suppressor cells. Recent advances confirmed the direct effects of G-CSF in inducing immune tolerance of T cells through the G-CSF-G-CSF receptor pathway and related molecular mechanisms. This review aims to summarize the findings associated with the direct and indirect mechanisms for T cell tolerance induced with G-CSF. The role of G-CSF in preventing graft-versus-host disease (GVHD) and in treating autoimmune diseases (ADs) is also discussed. It is conceivable that G-CSF and immune cell compositions, such as tolerogenic DC and CD4(+)CD25(+)Foxp3(+) T cells, modulated by G-CSF could become an integral part of the immunomodulatory therapies against GVHD and ADs in the future.
Collapse
Affiliation(s)
- Jian-Zhu Yang
- Department of Pathology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Qiao Zhang
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Xia Sun
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
28
|
Morris KT, Castillo EF, Ray AL, Weston LL, Nofchissey RA, Hanson JA, Samedi VG, Pinchuk IV, Hudson LG, Beswick EJ. Anti-G-CSF treatment induces protective tumor immunity in mouse colon cancer by promoting protective NK cell, macrophage and T cell responses. Oncotarget 2015; 6:22338-47. [PMID: 26061815 PMCID: PMC4673167 DOI: 10.18632/oncotarget.4169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine that is highly expressed in human and mouse colorectal cancers (CRC). We previously reported that G-CSF stimulated human CRC cell growth and migration, therefore in this study we sought to examine the therapeutic potential of anti-G-CSF treatment for CRC. G-CSF is known to mobilize neutrophils, however its impact on other immune cells has not been well examined. Here, we investigated the effects of therapeutic anti-G-CSF treatment on CRC growth and anti-tumor immune responses. C57BL/6 mice treated with azoxymethane/dextran sodium sulfate (AOM/DSS) to induce neoplasms were administered anti-G-CSF or isotype control antibodies three times a week for three weeks. Animals treated with anti-G-CSF antibodies had a marked decrease in neoplasm number and size compared to the isotype control group. Colon neutrophil and macrophage frequency were unchanged, but the number of macrophages producing IL-10 were decreased while IL-12 producing macrophages were increased. NK cells were substantially increased in colons of anti-G-CSF treated mice, along with IFNγ producing CD4(+) and CD8(+) T cells. These studies are the first to indicate a crucial role for G-CSF inhibition in promoting protective anti-tumor immunity, and suggest that anti-G-CSF treatment is a potential therapeutic approach for CRC.
Collapse
Affiliation(s)
- Katherine T. Morris
- Department of Surgery, University of New Mexico, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Anita L. Ray
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lea L. Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert A. Nofchissey
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Joshua A. Hanson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Von G. Samedi
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Irina V. Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ellen J. Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Konopleva M, Benton CB, Thall PF, Zeng Z, Shpall E, Ciurea S, Kebriaei P, Alousi A, Popat U, Anderlini P, Nieto Y, Parmar S, Qiao W, Chen J, Rondon G, McMullin B, Wang RY, Lu H, Schober W, Woodworth G, Gulbis A, Cool R, Andreeff M, Champlin R. Leukemia cell mobilization with G-CSF plus plerixafor during busulfan-fludarabine conditioning for allogeneic stem cell transplantation. Bone Marrow Transplant 2015; 50:939-946. [PMID: 25867648 PMCID: PMC4490031 DOI: 10.1038/bmt.2015.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/14/2022]
Abstract
We hypothesized that during conditioning chemotherapy for allogeneic stem cell transplant (allo-SCT), disruption of stromal-leukemia interactions using granulocyte-colony stimulating factor (G-CSF) in combination with the CXCR4-specific inhibitor plerixafor, may promote release of leukemic cells from the niche and increase tumor elimination. In a phase 1/2 investigation, we treated 45 AML/MDS/CML patients (34 AML, 7 MDS, and 4 CML) with G-CSF (10 μg/kg daily for 6 days starting on day −9) plus plerixafor (doses of 0, 80, 160 or 240 μg/kg daily for 4 days starting on day −7) along with the busulfan-fludarabine (Bu-Flu) conditioning regimen. In the phase 1 part, we determined that G-CSF plus plerixafor is safe in this setting. We compared clinical effects and outcomes of AML/MDS study patients (n = 40) to 164 patients from a historical data set who received Bu-Flu alone prior to allo-SCT by stratifying on cytogenetics and disease status to correct for bias. Study patients had increased myeloid chimerism and lower rates of GvHD. There was no significant difference in relapse free survival or overall survival. The G-CSF plus plerixafor combination increased circulating white blood cells, CD34+ cells, and CXCR4+ cells, and preferentially mobilized FISH+ leukemic cells. ClinicalTrials.gov identifier is NCT00822770.
Collapse
Affiliation(s)
- Marina Konopleva
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Christopher B Benton
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Peter F Thall
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Ciurea
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Uday Popat
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Paolo Anderlini
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Simrit Parmar
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Julianne Chen
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Becky McMullin
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Rui-Yu Wang
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hongbo Lu
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Wendy Schober
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Glenda Woodworth
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Alison Gulbis
- Division of Pharmacy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Rita Cool
- Division of Pharmacy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Michael Andreeff
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Arbez J, Saas P, Lamarthée B, Malard F, Couturier M, Mohty M, Gaugler B. Impact of donor hematopoietic cells mobilized with G-CSF and plerixafor on murine acute graft-versus-host-disease. Cytotherapy 2015; 17:948-55. [PMID: 25813681 DOI: 10.1016/j.jcyt.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND AIMS This study aimed to characterize the immune effectors contained in the grafts from donor mice mobilized by granulocyte colony-stimulating factor (G-CSF) and plerixafor and to evaluate their impact on the development of acute graft-versus-host-disease (aGVHD). METHODS Mobilization was done with G-CSF alone or G-CSF plus plerixafor (G+P). RESULTS In grafts collected after G+P mobilization, we observed a significantly higher proportion of c-kit(+)Sca-1(+) hematopoietic stem cells compared with G-CSF. A significant increase in the percentage of plasmacytoid dendritic cells was detected in the G+P graft compared with G-CSF graft. We also studied the ability of stem cell grafts mobilized with G+P to induce GVHD in a mouse model. We observed higher mortality (P < 0.001) associated with increased aGVHD clinical score (P < 0.0001) as well as higher pathology score in the intestine of mice receiving G+P as compared with G-CSF grafts (P < 0.001). Moreover, the exacerbated aGVHD severity was associated with upregulation of CCR6 expression on both CD4(+) and CD8(+) T cells from the G+P grafts, as well as on T cells from mice transplanted with G+P grafts. CONCLUSIONS In conclusion, we showed that grafts mobilized with G+P exhibited functional features different from those mobilized with G-CSF alone, which increase the severity of aGVHD in the recipients.
Collapse
Affiliation(s)
- Jessy Arbez
- Institut de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1098, Besançon, France; Université de Franche-Comté, Besançon, F-25000, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon Cedex, France
| | - Philippe Saas
- Institut de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1098, Besançon, France; Université de Franche-Comté, Besançon, F-25000, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon Cedex, France
| | - Baptiste Lamarthée
- Institut de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1098, Besançon, France; Université de Franche-Comté, Besançon, F-25000, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon Cedex, France
| | - Florent Malard
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire and Université de Nantes, France; INSERM CRNCA UMR892, Nantes, France
| | - Mélanie Couturier
- Institut de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1098, Besançon, France; Université de Franche-Comté, Besançon, F-25000, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon Cedex, France
| | - Mohamad Mohty
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, Assistance Publique des Hôpitaux de Paris, Paris, France; INSERM UMRS938, Centre de Recherche Saint-Antoine, Paris, France
| | - Béatrice Gaugler
- Institut de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1098, Besançon, France; Université de Franche-Comté, Besançon, F-25000, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon Cedex, France.
| |
Collapse
|
31
|
Saraceni F, Shem-Tov N, Olivieri A, Nagler A. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective. Bone Marrow Transplant 2015; 50:886-91. [PMID: 25665044 DOI: 10.1038/bmt.2014.330] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/20/2023]
Abstract
Although stem cell mobilization has been performed for more than 20 years, little is known about the effects of mobilizing agents on apheresis composition and the impact of graft cell subsets on patients' outcome. With the increasing use of plerixafor and the inclusion of poor mobilizers in autologous transplant procedures, new parameters other than CD34(+) stem cell dose are emerging; plerixafor seems to mobilize more primitive CD34(+)/CD38(-) stem cells compared with G-CSF, but their correlation with stable hematopoietic engraftment is still obscure. Immune recovery is as crucial as hematopoietic reconstitution, and higher T and natural killer cells infused within the graft have been correlated with better outcome in autologous transplant; recent studies showed increased mobilization of immune effectors with plerixafor compared with G-CSF, but further data are needed to clarify the clinical impact of these findings. In the allogeneic setting, much evidence suggests that mobilized T-cell alloreactivity is tempered by G-CSF, probably with the mediation of dendritic cells, even though no clear correlation with GVL and GVHD has been found. Plerixafor is not approved in healthy donors yet; early data suggest it might mobilize a GVHD protective balance of immune effectors, but further studies are needed to define its role in allogeneic transplant.
Collapse
Affiliation(s)
- F Saraceni
- 1] Department of Hematology and Bone Marrow Transplantation, Ospedali Riuniti, Ancona, Italy [2] Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - N Shem-Tov
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - A Olivieri
- Department of Hematology and Bone Marrow Transplantation, Ospedali Riuniti, Ancona, Italy
| | - A Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
32
|
Granulocyte colony–stimulating factor priming improves haploidentical stem cell transplantation in high-risk acute myeloid leukemia subsets: a new role for an old work horse. Biol Blood Marrow Transplant 2014; 20:1873-4. [PMID: 25464120 DOI: 10.1016/j.bbmt.2014.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 11/21/2022]
|
33
|
Leveque L, Le Texier L, Lineburg KE, Hill GR, MacDonald KPA. Autophagy and haematopoietic stem cell transplantation. Immunol Cell Biol 2014; 93:43-50. [DOI: 10.1038/icb.2014.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Lucie Leveque
- Department of Immunology, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Laetitia Le Texier
- Department of Immunology, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Katie E Lineburg
- Department of Immunology, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Geoffrey R Hill
- Department of Immunology, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kelli PA MacDonald
- Department of Immunology, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| |
Collapse
|
34
|
Rutella S, Filippini P, Bertaina V, Li Pira G, Altomare L, Ceccarelli S, Brescia LP, Lucarelli B, Girolami E, Conflitti G, Cefalo MG, Bertaina A, Corsetti T, Moretta L, Locatelli F. Mobilization of healthy donors with plerixafor affects the cellular composition of T-cell receptor (TCR)-αβ/CD19-depleted haploidentical stem cell grafts. J Transl Med 2014; 12:240. [PMID: 25179788 PMCID: PMC4158047 DOI: 10.1186/s12967-014-0240-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HLA-haploidentical hematopoietic stem cell transplantation (HSCT) is suitable for patients lacking related or unrelated HLA-matched donors. Herein, we investigated whether plerixafor (MZ), as an adjunct to G-CSF, facilitated the collection of mega-doses of hematopoietic stem cells (HSC) for TCR-αβ/CD19-depleted haploidentical HSCT, and how this agent affects the cellular graft composition. METHODS Ninety healthy donors were evaluated. Single-dose MZ was given to 30 'poor mobilizers' (PM) failing to attain ≥40 CD34+ HSCs/μL after 4 daily G-CSF doses and/or with predicted apheresis yields ≤12.0x106 CD34+ cells/kg recipient's body weight. RESULTS MZ significantly increased CD34+ counts in PM. Naïve/memory T and B cells, as well as natural killer (NK) cells, myeloid/plasmacytoid dendritic cells (DCs), were unchanged compared with baseline. MZ did not further promote the G-CSF-induced mobilization of CD16+ monocytes and the down-regulation of IFN-γ production by T cells. HSC grafts harvested after G-CSF + MZ were enriched in myeloid and plasmacytoid DCs, but contained low numbers of pro-inflammatory 6-sulfo-LacNAc+ (Slan)-DCs. Finally, children transplanted with G-CSF + MZ-mobilized grafts received greater numbers of monocytes, myeloid and plasmacytoid DCs, but lower numbers of NK cells, NK-like T cells and Slan-DCs. CONCLUSIONS MZ facilitates the collection of mega-doses of CD34+ HSCs for haploidentical HSCT, while affecting graft composition.
Collapse
Affiliation(s)
- Sergio Rutella
- Department of Pediatric Hematology/Oncology and Transfusion Medicine, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|