1
|
Cybula M, Wang L, Wang L, Drumond-Bock AL, Moxley KM, Benbrook DM, Gunderson-Jackson C, Ruiz-Echevarria MJ, Bhattacharya R, Mukherjee P, Bieniasz M. Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research. Cancers (Basel) 2021; 13:6288. [PMID: 34944908 PMCID: PMC8699796 DOI: 10.3390/cancers13246288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023] Open
Abstract
(1) Background. PDX models have become the preferred tool in research laboratories seeking to improve development and pre-clinical testing of new drugs. PDXs have been shown to capture the cellular and molecular characteristics of human tumors better than simpler cell line-based models. More recently, however, hints that PDXs may change their characteristics over time have begun to emerge, emphasizing the need for comprehensive analysis of PDX evolution. (2) Methods. We established a panel of high-grade serous ovarian carcinoma (HGSOC) PDXs and developed and validated a 300-SNP signature that can be successfully utilized to assess genetic drift across PDX passages and detect PDX contamination with lymphoproliferative tissues. In addition, we performed a detailed histological characterization and functional assessment of multiple PDX passages. (3) Results. Our data show that the PDXs remain largely stable throughout propagation, with marginal genetic drift at the time of PDX initiation and adaptation to mouse host. Importantly, our PDX lines retained the major histological characteristics of the original patients' tumors even after multiple passages in mice, demonstrating a strong concordance with the clinical responses of their corresponding patients. (4) Conclusions. Our data underline the value of defined HGSOC PDXs as a pre-clinical tumor model.
Collapse
Affiliation(s)
- Magdalena Cybula
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Lin Wang
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Luyao Wang
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Ana Luiza Drumond-Bock
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Katherine M. Moxley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Doris M. Benbrook
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Camille Gunderson-Jackson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Maria J. Ruiz-Echevarria
- Department of Pathology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Resham Bhattacharya
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Priyabrata Mukherjee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Magdalena Bieniasz
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| |
Collapse
|
2
|
Tucker ER, George S, Angelini P, Bruna A, Chesler L. The Promise of Patient-Derived Preclinical Models to Accelerate the Implementation of Personalised Medicine for Children with Neuroblastoma. J Pers Med 2021; 11:248. [PMID: 33808071 PMCID: PMC8065808 DOI: 10.3390/jpm11040248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Patient-derived preclinical models are now a core component of cancer research and have the ability to drastically improve the predictive power of preclinical therapeutic studies. However, their development and maintenance can be challenging, time consuming, and expensive. For neuroblastoma, a developmental malignancy of the neural crest, it is possible to establish patient-derived models as xenografts in mice and zebrafish, and as spheroids and organoids in vitro. These varied approaches have contributed to comprehensive packages of preclinical evidence in support of new therapeutics for neuroblastoma. We discuss here the ethical and technical considerations for the creation of patient-derived models of neuroblastoma and how their use can be optimized for the study of tumour evolution and preclinical therapies. We also discuss how neuroblastoma patient-derived models might become avatars for personalised medicine for children with this devastating disease.
Collapse
Affiliation(s)
- Elizabeth R. Tucker
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| | - Sally George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| | - Paola Angelini
- Children and Young People’s Unit, The Royal Marsden, Downs Road, Sutton, Surrey SM2 5PT, UK;
| | - Alejandra Bruna
- Preclinical Paediatric Cancer Evolution, Centre for Cancer Drug Discovery, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK;
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Cotswold Road, London SM2 5NG, UK; (E.R.T.); (S.G.)
| |
Collapse
|
3
|
Hou D, Ying T, Wang L, Chen C, Lu S, Wang Q, Seeley E, Xu J, Xi X, Li T, Liu J, Tang X, Zhang Z, Zhou J, Bai C, Wang C, Byrne-Steele M, Qu J, Han J, Song Y. Immune Repertoire Diversity Correlated with Mortality in Avian Influenza A (H7N9) Virus Infected Patients. Sci Rep 2016; 6:33843. [PMID: 27669665 PMCID: PMC5037391 DOI: 10.1038/srep33843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Specific changes in immune repertoires at genetic level responding to the lethal H7N9 virus are still poorly understood. We performed deep sequencing on the T and B cells from patients recently infected with H7N9 to explore the correlation between clinical outcomes and immune repertoire alterations. T and B cell repertoires display highly dynamic yet distinct clonotype alterations. During infection, T cell beta chain repertoire continues to contract while the diversity of immunoglobulin heavy chain repertoire recovers. Patient recovery is correlated to the diversity of T cell and B cell repertoires in different ways – higher B cell diversity and lower T cell diversity are found in survivors. The sequences clonally related to known antibodies with binding affinity to H7 hemagglutinin could be identified from survivors. These findings suggest that utilizing deep sequencing may improve prognostication during influenza infection and could help in development of antibody discovery methodologies for the treatment of virus infection.
Collapse
Affiliation(s)
- Dongni Hou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lili Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuihua Lu
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Eric Seeley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Jianqing Xu
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiuhong Xi
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Tao Li
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jie Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinjun Tang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyong Zhang
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunlin Wang
- HudsonAlpha Institute for Biotechnology, Alabama, AL35806, USA
| | | | - Jieming Qu
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jian Han
- HudsonAlpha Institute for Biotechnology, Alabama, AL35806, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Shanghai, 200032, China
| |
Collapse
|
4
|
Bondarenko G, Ugolkov A, Rohan S, Kulesza P, Dubrovskyi O, Gursel D, Mathews J, O'Halloran TV, Wei JJ, Mazar AP. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors. Neoplasia 2016; 17:735-741. [PMID: 26476081 PMCID: PMC4611072 DOI: 10.1016/j.neo.2015.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/01/2023] Open
Abstract
Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients’ personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients’ samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers.
Collapse
Affiliation(s)
- Gennadiy Bondarenko
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Andrey Ugolkov
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Stephen Rohan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, 60611, IL, USA; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Piotr Kulesza
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, 60611, IL, USA; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Oleksii Dubrovskyi
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Demirkan Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Jeremy Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA
| | - Jian J Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, 60611, IL, USA; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 710 North Fairbanks Court, Chicago, IL, USA
| | - Andrew P Mazar
- Center for Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2170 Campus Drive, Evanston, IL, USA; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, 60611, IL, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, USA.
| |
Collapse
|
5
|
Siggs OM, Miosge LA, Daley SR, Asquith K, Foster PS, Liston A, Goodnow CC. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2587-95. [PMID: 25662996 PMCID: PMC4355390 DOI: 10.4049/jimmunol.1400326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - Lisa A Miosge
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephen R Daley
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kelly Asquith
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Adrian Liston
- Department of Microbiology and Immunology, Flanders Institute for Biotechnology and University of Leuven, Leuven 3000, Belgium
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia;
| |
Collapse
|