1
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
2
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
5
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
6
|
Sato D, Hamada Y, Narita M, Mori T, Tezuka H, Suda Y, Tanaka K, Yoshida S, Tamura H, Yamanaka A, Senba E, Kuzumaki N, Narita M. Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Mol Brain 2022; 15:17. [PMID: 35172858 PMCID: PMC8848802 DOI: 10.1186/s13041-022-00902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/06/2022] [Indexed: 01/23/2023] Open
Abstract
Recent research has suggested that the mesolimbic dopamine network that mainly terminates in the nucleus accumbens may positively control the peripheral immune system. The activation of dopamine receptors in neurons in the nucleus accumbens by the release of endogenous dopamine is thus expected to contribute to efferent immune regulation. As in the stimulation of Gs-coupled dopamine D1-receptors or Gi-coupled D2-receptors by endogenous dopamine, we investigated whether specific stimulation of dopamine D1-receptor-expressing neurons or inhibition of dopamine D2-receptor-expressing neurons in the nucleus accumbens could produce anti-tumor effects and improve the immune system in transgenic mice using pharmacogenetic techniques. Repeated stimulation of D1-receptor-expressing neurons in either the medial shell, lateral shell or core regions of the nucleus accumbens significantly decreased tumor volume under a state of tumor transplantation, whereas repeated suppression of D2-receptor-expressing neurons in these areas had no effect on this event. The number of splenic CD8+ T cells was significantly increased following repeated stimulation of D1-receptor-expressing neurons in the nucleus accumbens of mice with tumor transplantation. Furthermore, this stimulation produced a significant reduction in the population of splenic CD8+ T cells that expressed immune checkpoint-related inhibitory receptors, PD-1, TIM-3 and LAG-3. These findings suggest that repeated stimulation of D1-receptor-expressing neurons (probably D1-receptor-expressing medium spiny neurons) in the nucleus accumbens suppressed tumor progression and improved the immune system by suppressing the exhaustion of splenic CD8+ T cells.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sara Yoshida
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hideki Tamura
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-0063, Japan.,Laboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-0063, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka, 567-0801, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
7
|
Zhang Y, Grazda R, Yang Q. Interaction Between Innate Lymphoid Cells and the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:135-148. [DOI: 10.1007/978-981-16-8387-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Li M, Zhou L, Sun X, Yang Y, Zhang C, Wang T, Fu F. Dopamine, a co-regulatory component, bridges the central nervous system and the immune system. Biomed Pharmacother 2021; 145:112458. [PMID: 34847478 DOI: 10.1016/j.biopha.2021.112458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dopamine (DA) is a crucial neurotransmitter that plays an important role in maintaining physiological function in human body. In the past, most studies focused on the relationship between the dopaminergic system and neurological-related diseases. However, it has been found recently that DA is an immunomodulatory mediator and many immune cells express dopamine receptors (DRs). Some immune cells can synthesize and secrete DA and then participate in regulating immune function. DRs agonists or antagonists can improve the dysfunction of immune system through classical G protein signaling pathways or other non-receptor-dependent pathways. This article will discuss the relationship between the dopaminergic system and the immune system. It will also review the use of DRs agonists or antagonists to treat chronic and acute inflammatory diseases and corresponding immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunqi Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
9
|
Liguori NR, Lee Y, Borges W, Zhou L, Azzoli C, El-Deiry WS. Absence of Biomarker-Driven Treatment Options in Small Cell Lung Cancer, and Selected Preclinical Candidates for Next Generation Combination Therapies. Front Pharmacol 2021; 12:747180. [PMID: 34531756 PMCID: PMC8438120 DOI: 10.3389/fphar.2021.747180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the second most common cancer in the United States, and small cell lung cancer (SCLC) accounts for about 15% of all lung cancers. In SCLC, more than other malignancies, the standard of care is based on clinical demonstration of efficacy, and less on a mechanistic understanding of why certain treatments work better than others. This is in large part due to the virulence of the disease, and lack of clinically or biologically relevant biomarkers beyond routine histopathology. While first line therapies work in the majority of patients with extensive stage disease, development of resistance is nearly universal. Although neuroendocrine features, Rb and p53 mutations are common, the current lack of actionable biomarkers has made it difficult to develop more effective treatments. Some progress has been made with the application of immune checkpoint inhibitors. There are new agents, such as lurbinectedin, that have completed late-phase clinical testing while other agents are still in the pre-clinical phase. ONC201/TIC10 is an imipridone with strong in vivo and in vitro antitumor properties and activity against neuroendocrine tumors in phase 1 clinical testing. ONC201 activates the cellular integrated stress response and induces the TRAIL pro-apoptotic pathway. Combination treatment of lurbinectedin with ONC201 are currently being investigated in preclinical studies that may facilitate translation into clinical trials for SCLC patients.
Collapse
Affiliation(s)
- Nicholas R. Liguori
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Young Lee
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William Borges
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
| | - Christopher Azzoli
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| |
Collapse
|
10
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
11
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
12
|
Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cell Mol Immunol 2020; 17:705-711. [PMID: 32503998 PMCID: PMC7331581 DOI: 10.1038/s41423-020-0477-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system and the nervous system are highly complex organs composed of various different cells that must interact with each other for proper function of the system. This communication can be mediated by soluble factors. The factors released by the nervous system (neurotransmitters) differ from those released by the immune system (cytokines). Nevertheless, the nervous and immune systems can influence each other’s activity because immune cells express neurotransmitter receptors, and neurons express cytokine receptors. Moreover, immune cells can synthesize and release neurotransmitters themselves, thus using neurotransmitter-mediated pathways via autocrine and paracrine mechanisms. Natural killer (NK) cells are innate lymphocytes that are important for early and effective immune reactions against infections and cancer. Many studies have shown the strong influence of stress and the nervous system on NK cell activity. This phenomenon may be one reason why chronic stress leads to a higher incidence of infections and cancer. Here, we review the effects of neuroendocrine factors on the different activities of NK cells. Understanding the effects of neuroendocrine factors on NK cell activities during physiological and pathophysiological conditions may result in novel therapeutic strategies to enhance NK cell functions against tumors.
Collapse
|
13
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Nolan RA, Reeb KL, Rong Y, Matt SM, Johnson HS, Runner K, Gaskill PJ. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain Behav Immun Health 2019; 2. [PMID: 33665636 PMCID: PMC7929492 DOI: 10.1016/j.bbih.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of innate immune genes in the brain is thought to be a major factor in the development of addiction to substances of abuse. As the major component of the innate immune system in the brain, aberrant activation of myeloid cells such as macrophages and microglia due to substance use may mediate neuroinflammation and contribute to the development of addiction. All addictive drugs modulate the dopaminergic system and our previous studies have identified dopamine as a pro-inflammatory modulator of macrophage function. However, the mechanism that mediates this effect is currently unknown. Inflammatory activation of macrophages and induction of cytokine production is often mediated by the transcription factor NF-κB, and prior studies have shown that dopamine can modulate NF-κB activity in T-cells and other non-immune cell lines. Here we demonstrated that dopamine can activate NF-κB in primary human macrophages, resulting in the induction of its downstream targets including the NLRP3 inflammasome and the inflammatory cytokine IL-1β. These data also indicate that dopamine primes but does not activate the NLRP3 inflammasome in human macrophages. Activation of NF-κB was required for dopamine-mediated increases in IL-1β, as an inhibitor of NF-κB was able to abrogate the effects of dopamine on production of these cytokines. Connecting an increase in extracellular dopamine to NF-κB activation and inflammation suggests specific intracellular targets that could be used to ameliorate the inflammatory impact of dopamine in neuroinflammatory conditions associated with myeloid cell activation such as addiction. Dopamine exposure primes, but does not activate the NLRP3 inflammasome. Inflammasome priming can be mediated, at least partially, by a dopamine-induced increase in the activation and nuclear translocation of NF-κB in primary human macrophages. Dopamine additively increases the impact of cytomegalovirus on NF-κB activation in macrophages. Dopamine priming increases IL-1β release in response to inflammasome activation.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Y Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H S Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
15
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
16
|
Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors. Int Immunopharmacol 2019; 73:1-9. [DOI: 10.1016/j.intimp.2019.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023]
|
17
|
Stein MN, Malhotra J, Tarapore RS, Malhotra U, Silk AW, Chan N, Rodriguez L, Aisner J, Aiken RD, Mayer T, Haffty BG, Newman JH, Aspromonte SM, Bommareddy PK, Estupinian R, Chesson CB, Sadimin ET, Li S, Medina DJ, Saunders T, Frankel M, Kareddula A, Damare S, Wesolowsky E, Gabel C, El-Deiry WS, Prabhu VV, Allen JE, Stogniew M, Oster W, Bertino JR, Libutti SK, Mehnert JM, Zloza A. Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J Immunother Cancer 2019; 7:136. [PMID: 31118108 PMCID: PMC6532211 DOI: 10.1186/s40425-019-0599-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background ONC201 is a small molecule antagonist of DRD2, a G protein-coupled receptor overexpressed in several malignancies, that has prolonged antitumor efficacy and immunomodulatory properties in preclinical models. The first-in-human trial of ONC201 previously established a recommended phase II dose (RP2D) of 625 mg once every three weeks. Here, we report the results of a phase I study that evaluated the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of weekly ONC201. Methods Patients ≥ 18 years old with an advanced solid tumor refractory to standard treatment were enrolled. Dose escalation proceeded with a 3 + 3 design from 375 mg to 625 mg of ONC201. One cycle, also the dose-limiting toxicity (DLT) window, was 21 days. The primary endpoint was to determine the RP2D of weekly ONC201, which was confirmed in an 11-patient dose expansion cohort. Results Twenty patients were enrolled: three at 375 mg and 17 at 625 mg of ONC201. The RP2D was defined as 625 mg with no DLT, treatment discontinuation, or dose modifications due to drug-related toxicity. PK profiles were consistent with every-three-week dosing and similar between the first and fourth dose. Serum prolactin and caspase-cleaved cytokeratin-18 induction were detected, along with intratumoral integrated stress response activation and infiltration of granzyme B+ Natural Killer cells. Induction of immune cytokines and effectors was higher in patients who received ONC201 once weekly versus once every three weeks. Stable disease of > 6 months was observed in several prostate and endometrial cancer patients. Conclusions Weekly, oral ONC201 is well-tolerated and results in enhanced immunostimulatory activity that warrants further investigation. Trial registration NCT02250781 (Oral ONC201 in Treating Patients With Advanced Solid Tumors), NCT02324621 (Continuation of Oral ONC201 in Treating Patients With Advanced Solid Tumors). Electronic supplementary material The online version of this article (10.1186/s40425-019-0599-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark N Stein
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Usha Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ann W Silk
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Dermatology and Department of Medicine, Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lorna Rodriguez
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph Aisner
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Robert D Aiken
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Tina Mayer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Bruce G Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jenna H Newman
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Salvatore M Aspromonte
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Praveen K Bommareddy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ricardo Estupinian
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Charles B Chesson
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Evita T Sadimin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shengguo Li
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Daniel J Medina
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Tracie Saunders
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Melissa Frankel
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aparna Kareddula
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Sherrie Damare
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elayne Wesolowsky
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Christian Gabel
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA. .,Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
18
|
Abstract
Clinical evidences suggest a causal relationship between rheumatoid arthritis (RA) and the dopaminergic system, and several studies described an alteration of the disease in patients treated with dopaminergic agents. Despite these interesting results, potential direct effects of dopamine on RA have not been intensively considered until the last decade. Recent studies confirm a direct effect of dopamine on the systemic immune response as well as on bone remodeling and on joint inflammation, both in humans and in different animal models of arthritis. While more research is necessary to accurately determine the effect of dopamine in RA, these results are encouraging and support a possible use of dopaminergic drugs for the treatment of arthritis in the future. Moreover, they point out that dopaminergic agents use to treat comorbidities, might influence the immune response and the disease progression in RA patients. This review summarizes the current knowledge about the effects of dopaminergic drugs on RA and describes the potential of dopaminergic drugs as future therapeutic strategy in arthritis. Graphical Abstract ![]()
Collapse
|
19
|
Wang X, Wang ZB, Luo C, Mao XY, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J Cancer 2019; 10:1622-1632. [PMID: 31205518 PMCID: PMC6548012 DOI: 10.7150/jca.27780] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Dopamine receptors are belong to the family of G protein-coupled receptor. There are five types of dopamine receptor (DR), including DRD1, DRD2, DRD3, DRD4, and DRD5, which are divided into two major groups: the D1-like receptors (DRD1 and DRD5), and the D2-like receptors (DRD2, DRD3, and DRD4). Dopamine receptors are involved in all of the physiological functions of dopamine, including the autonomic movement, emotion, hormonal regulation, dopamine-induced immune effects, and tumor behavior, and so on. Increasing evidence shows that dopamine receptors are associated with the regulation of tumor behavior, such as tumor cell death, proliferation, invasion, and migration. Recently, some studies showed that dopamine receptors could regulate several ways of death of the tumor cell, including apoptosis, autophagy-induced death, and ferroptosis, which cannot only directly affect tumor behavior, but also limit tumor progress via activating tumor immunity. In this review, we focus mainly on the function of the dopamine receptor on Bio-behavior of tumor as a potential therapeutic target.
Collapse
Affiliation(s)
- Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,School of Life Sciences, Central South University, Changsha, Hunan 410078
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
20
|
Dopamine Alters Lipopolysaccharide-Induced Nitric Oxide Production in Microglial Cells via Activation of D1-Like Receptors. Neurochem Res 2019; 44:947-958. [PMID: 30659504 DOI: 10.1007/s11064-019-02730-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) is important in the maintenance of normal nervous system function. DA is the target of multiple drugs, and it induces critical alterations in immune cells. However, these impacts are controversial, and the mechanism remains unclear. In the present study, we treated BV-2 microglial cells and primary microglia with DA and measured the changes in cytokines. We also identified the expression of DA receptors (DRs) using confocal and immunofluorescent microscopy. Specific agonists and antagonists of D1-like DRs (D1DR and D5DR) were used to observe alterations in cytokines. Western blot and siRNA interference were performed to investigate the involvement of the downstream signaling molecules of DRs. We also measured changes in mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) signaling pathway and assessed their involvement using inhibitors. We found that DA alone produced no effects on IL-6, TNF-α or nitric oxide (NO) production, and it inhibited lipopolysaccharide (LPS)-induced NO in microglial cells. Microglia expressed a high abundance of D1-like DRs (D1DR and D5DR). The agonists inhibited NO production, and antagonists reversed the DA-induced suppression of NO. Adenylatec cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) mediated DA function, and cAMP-response element binding protein (CREB) was not involved. ERK1/2 and NF-κB, but not p-38 or JNK, played roles in DA-suppressed NO generation via altering inducible nitric oxide synthase (iNOS) transcription. These data illustrate that DA modulates LPS-induced NO production via the AC/cAMP-PKA-ERK1/2-NF-κB-iNOS axis in mouse microglia, and D1-like DRs are involved. The present study provides functional evidence for an essential role of DA in immunoregulation.
Collapse
|
21
|
Talhada D, Rabenstein M, Ruscher K. The role of dopaminergic immune cell signalling in poststroke inflammation. Ther Adv Neurol Disord 2018; 11:1756286418774225. [PMID: 29774058 PMCID: PMC5952273 DOI: 10.1177/1756286418774225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Upon ischaemic stroke, brain-resident and peripheral immune cells accumulate in the central nervous system (CNS). Interestingly, these cells express pattern specific to neurotransmitter receptors and, therefore, seem to be susceptible to neurotransmitter stimulation, potentially modulating their properties and functions. One of the principal neurotransmitters in the CNS, dopamine, is involved in the regulation of processes of brain development, motor control and higher brain functions. It is constantly released in the brain and there is experimental and clinical evidence that dopaminergic signalling is involved in recovery of lost neurological function after stroke. Independent studies have revealed specific but different patterns of dopamine receptor subtypes on different populations of immune cells. Those patterns are dependent on the activation status of cells. Generally, exposure to dopamine or dopamine receptor agonists decreases detrimental actions of immune cells. In contrast, a reduction of dopaminergic inputs perpetuates a pro-inflammatory state associated with increased release of pro-inflammatory molecules. In addition, subsets of immune cells have been identified to synthesize and release dopamine, suggesting autoregulatory mechanisms. Evidence supports that inflammatory processes activated following ischaemic stroke are modulated by dopaminergic signalling.
Collapse
Affiliation(s)
- Daniela Talhada
- LUBIN Lab – Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Av. Infante D. Henrique, Universidade da Beira Interior, Portugal
| | - Monika Rabenstein
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karsten Ruscher
- Lund Brain Injury Laboratory for Neurosurgical Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden
| |
Collapse
|
22
|
Taraskina AE, Zabotina AM, Nasyrova RF, Sosin DN, Sosina KA, Ershov EE, Grunina MN, Krupitsky EM. [The effect of antipsychotic drug on monoamine receptors in peripheral blood mononuclear cells: affinity linked mechanism]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:201-207. [PMID: 29723151 DOI: 10.18097/pbmc20186402201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Schizophrenia is one of the most serious and common mental disorders, which is characterized by high levels of pathogenic heterogeneity as well as neuroimmune abnormalities, which require treatment with antipsychotic drugs. Monoamines are one of the key neurotransmitters which play an important role in neuroimmune interactions of the human organism. We suggest that the quantity of the monoamine receptors on mononuclear cells of the peripheral blood (PBMCs) can be associated with the cytokine profile of patients. With this quantity being a key component of the mental status correction mechanism in antipsychotic therapy. In this study we measured cytokine levels (IL-6, IL-1b and TGF-b) in blood serum, the protein expression status of the serotonin receptor 5HTR2A and the dopamine receptors D1 (DRD1), DRD2, DRD3 in PBMCs of drug-naive, first episode schizophrenia patients before and after the treatment with olanzapine and haloperidol. This study has shown for the first time that the antipsychotic therapy leads to a decrease in protein levels of monoamine receptors in PBMCs associated with the affinity of the drug used. Blood cytokine levels were significantly higher in serum from studied patients as compared with the reference values. The antipsychotic-linked change of the TGF-b production caused by the therapy is probably associated with the reduction of various monoamine receptors. The relationship between the psychopathological status and the protein level of 5THR2A suggests that the amount of 5HTR2A may serve as a potential biomarker for the personalized appointment of the antipsychotic therapy.
Collapse
Affiliation(s)
- A E Taraskina
- Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Leningrad district, Gatchina, Russia; Pavlov First Saint Petersburg State Medical University, Saint-Peterburg, Russia; Bekhterev National Medical Research Center Psychiatry and Neurology, Saint-Peterburg, Russia
| | - A M Zabotina
- Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Leningrad district, Gatchina, Russia; Pavlov First Saint Petersburg State Medical University, Saint-Peterburg, Russia
| | - R F Nasyrova
- Bekhterev National Medical Research Center Psychiatry and Neurology, Saint-Peterburg, Russia
| | - D N Sosin
- Bekhterev National Medical Research Center Psychiatry and Neurology, Saint-Peterburg, Russia
| | - K A Sosina
- Bekhterev National Medical Research Center Psychiatry and Neurology, Saint-Peterburg, Russia
| | - E E Ershov
- Kashchenko Saint Petersburg Psychiatric Hospital no.1, Saint-Peterburg, Russia
| | - M N Grunina
- Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Leningrad district, Gatchina, Russia
| | - E M Krupitsky
- Bekhterev National Medical Research Center Psychiatry and Neurology, Saint-Peterburg, Russia
| |
Collapse
|
23
|
Zhang X, Liu Q, Liao Q, Zhao Y. Potential Roles of Peripheral Dopamine in Tumor Immunity. J Cancer 2017; 8:2966-2973. [PMID: 28928888 PMCID: PMC5604448 DOI: 10.7150/jca.20850] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
Recent years, immunotherapy has turned out to be a promising strategy against tumors. Peripheral dopamine (DA) has important roles in immune system among tumor patients. Accumulated reports demonstrate variable expression and distribution of DA receptors (DRs) in diverse immune cells. Interestingly, peripheral DA also involves in tumor progression and it exerts anticancer effects on immunomodulation, which includes inflammasomes in cancer, function of immune effector cells, such as T lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and natural killer (NK) cells. Given the specific immunologic status, DA medication may be a valuable candidate in pancreatic cancer treatment. The major purpose of this review is to discuss the novel potential interactions between peripheral dopamine and tumor immunity.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, Tang H, Xue YJ, Lou MQ, Zhao W, Le WD, Zhao WG, Zhang X, Wu ZB. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 2017; 13:1404-1419. [PMID: 28613975 DOI: 10.1080/15548627.2017.1328347] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dopamine agonists such as bromocriptine and cabergoline have been successfully used in the treatment of pituitary prolactinomas and other neuroendocrine tumors. However, their therapeutic mechanisms are not fully understood. In this study we demonstrated that DRD5 (dopamine receptor D5) agonists were potent inhibitors of pituitary tumor growth. We further found that DRD5 activation increased production of reactive oxygen species (ROS), inhibited the MTOR pathway, induced macroautophagy/autophagy, and led to autophagic cell death (ACD) in vitro and in vivo. In addition, DRD5 protein was highly expressed in the majority of human pituitary adenomas, and treatment of different human pituitary tumor cell cultures with the DRD5 agonist SKF83959 resulted in growth suppression, and the efficacy was correlated with the expression levels of DRD5 in the tumors. Furthermore, we found that DRD5 was expressed in other human cancer cells such as glioblastomas, colon cancer, and gastric cancer. DRD5 activation in these cell lines suppressed their growth, inhibited MTOR activity, and induced autophagy. Finally, in vivo SKF83959 also inhibited human gastric cancer cell growth in nude mice. Our studies revealed novel mechanisms for the tumor suppressive effects of DRD5 agonists, and suggested a potential use of DRD5 agonists as a novel therapeutic approach in the treatment of different human tumors and cancers.
Collapse
Affiliation(s)
- Zhi Gen Leng
- a Department of Neurosurgery , First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Shao Jian Lin
- b Department of Neurosurgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ze Rui Wu
- a Department of Neurosurgery , First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Yu Hang Guo
- a Department of Neurosurgery , First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Lin Cai
- a Department of Neurosurgery , First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Han Bing Shang
- b Department of Neurosurgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hao Tang
- b Department of Neurosurgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ya Jun Xue
- c Department of Neurosurgery, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Mei Qing Lou
- c Department of Neurosurgery, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wenxiu Zhao
- e Neuroendocrine Research Laboratory , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA
| | - Wei-Dong Le
- d Center for Clinical Research on Neurological Diseases , First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Wei Guo Zhao
- b Department of Neurosurgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xun Zhang
- e Neuroendocrine Research Laboratory , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA
| | - Zhe Bao Wu
- a Department of Neurosurgery , First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Department of Neurosurgery , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
25
|
|
26
|
Arreola R, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garcés-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabián S, Pavón L. Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016; 2016:3160486. [PMID: 27795960 PMCID: PMC5067323 DOI: 10.1155/2016/3160486] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Collapse
Affiliation(s)
- Rodrigo Arreola
- Psychiatric Genetics Department, National Institute of Psychiatry “Ramón de la Fuente”, Clinical Research Branch, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Samantha Alvarez-Herrera
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Gilberto Pérez-Sánchez
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Enrique Becerril-Villanueva
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Carlos Cruz-Fuentes
- Psychiatric Genetics Department, National Institute of Psychiatry “Ramón de la Fuente”, Clinical Research Branch, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Enrique Octavio Flores-Gutierrez
- National Institute of Psychiatry “Ramón de la Fuente”, Clinical Research Branch, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - María Eugenia Garcés-Alvarez
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Dora Luz de la Cruz-Aguilera
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, Mexico
| | - Emilio Medina-Rivero
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V. Cruce de Carreteras Acatzingo-Zumpahuacán S/N, 52400 Tenancingo, MEX, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Iztapalapa, 09340 Mexico City, Mexico
| | - Saray Quintero-Fabián
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Av. del Iman No. 1, Cuarto Piso, 04530 Mexico City, Mexico
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| |
Collapse
|
27
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36:187-198. [PMID: 27156126 DOI: 10.1016/j.intimp.2016.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Accumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS). Moreover, CD117 and FcεRI are known as MC markers due to their specific expression in MCs. To investigate the effects of D3R on METH-mediated alteration of LPS-induced MCs activation and the underlying mechanism, in this study, we examined the expression of CD117 and FcεRI in the intestines of wild-type (D3R(+/+)) and D3R-deficient (D3R(-/-)) mice. We also measured the production of MC-derived cytokines, including TNF-α, IL-6, IL-4, IL-13 and CCL-5, in the bone marrow-derived mast cells (BMMCs) of WT and D3R(-/-) mice. Furthermore, we explored the effects of D3R on METH-mediated TLR4 and downstream MAPK and NF-κB signaling induced by LPS in mouse BMMCs. We found that METH suppressed MC activation induced by LPS in the intestines of D3R(+/)mice. In contrast, LPS-induced MC activation was less affected by METH in D3R(-/-) mice. Furthermore, METH altered LPS-induced cytokine production in BMMCs of D3R(+/+) mice but not D3R(-/-) mice. D3R was also involved in METH-mediated modulation of LPS-induced expression of TLR4 and downstream MAPK and NF-κB signaling molecules in mouse BMMCs. Taken together, our findings demonstrate that the effect of D3R on TLR4 signaling may be implicated in the regulation of METH-mediated MCs activation induced by LPS.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China; Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao-Feng Jin
- Pathology Department, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi'an 710061, China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
28
|
Karpiński P, Frydecka D, Sąsiadek MM, Misiak B. Reduced number of peripheral natural killer cells in schizophrenia but not in bipolar disorder. Brain Behav Immun 2016; 54:194-200. [PMID: 26872421 DOI: 10.1016/j.bbi.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
Overwhelming evidence indicates that subthreshold inflammatory state might be implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BPD). It has been reported that both groups of patients might be characterized by abnormal lymphocyte counts. However, little is known about alterations in lymphocyte proportions that may differentiate SCZ and BPD patients. Therefore, in this study we investigated blood cell proportions quantified by means of microarray expression deconvolution using publicly available data from SCZ and BPD patients. We found significantly lower counts of natural killer (NK) cells in drug-naïve and medicated SCZ patients compared to healthy controls across all datasets. In one dataset from SCZ patients, there were no significant differences in the number of NK cells between acutely relapsed and remitted SCZ patients. No significant difference in the number of NK cells between BPD patients and healthy controls was observed in all datasets. Our results indicate that SCZ patients, but not BPD patients, might be characterized by reduced counts of NK cells. Future studies looking at lymphocyte counts in SCZ should combine the analysis of data obtained using computational deconvolution and flow cytometry techniques.
Collapse
Affiliation(s)
- Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Maria M Sąsiadek
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland; Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland.
| |
Collapse
|
29
|
Leong JW, Wagner JA, Ireland AR, Fehniger TA. Transcriptional and post-transcriptional regulation of NK cell development and function. Clin Immunol 2016; 177:60-69. [PMID: 26948928 DOI: 10.1016/j.clim.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/27/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are specialized innate lymphoid cells that survey against viral infections and malignancy. Numerous advances have improved our understanding of the molecular mechanisms that control NK cell development and function over the past decade. These include both studies on the regulatory effects of transcription factors and translational repression via microRNAs. In this review, we summarize our current knowledge of DNA-binding transcription factors that regulate gene expression and thereby orchestrate NK cell development and activation, with an emphasis on recent discoveries. Additionally, we highlight our understanding of how RNA-binding microRNAs fine tune the NK cell molecular program. We also underscore the large number of open questions in the field that are now being addressed using new technological approaches and genetically engineered model organisms. Ultimately, a deeper understanding of the basic molecular biology of NK cells will facilitate new strategies to manipulate NK cells for the treatment of human disease.
Collapse
Affiliation(s)
- Jeffrey W Leong
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA
| | - Aaron R Ireland
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA
| | - Todd A Fehniger
- Washington University School of Medicine, Department of Medicine, Division of Oncology, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Wei L, Zhang C, Chen HY, Zhang ZJ, Ji ZF, Yue T, Dai XM, Zhu Q, Ma LL, He DY, Jiang LD. Dopamine receptor DR2 expression in B cells is negatively correlated with disease activity in rheumatoid arthritis patients. Immunobiology 2014; 220:323-30. [PMID: 25468566 DOI: 10.1016/j.imbio.2014.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Dopamine receptor (DR) signaling is involved in the pathogenesis of autoimmune diseases. We aimed to measure the expression levels of DR1-5 on B cells from patients with rheumatoid arthritis (RA) and to analyze the relationship between DRs and clinical manifestations, inflammatory biomarkers, functional status and disease activity. METHODS A total of 29 patients with RA, 12 healthy donors and 12 patients with osteoarthritis (OA) were recruited in this study. Flow cytometry was used to measure the levels of DR1-5 expressed on B cells. The relationships between B cell DR expressions and clinical features in RA patients were analyzed using the Spearman correlation test. RESULTS The expression levels of B cell DR1-5 in both the RA and OA groups were lower than those in healthy controls. After 3 months of medication, all five receptors were elevated in RA patients, with DR2 and DR3 being significantly increased from the baseline. DR2 expression on B cells was negatively correlated with inflammatory biomarkers and disease activity. CONCLUSION RA patients had lower expression level of DR2 on B cells compared to the healthy controls, and the level of DR2 negatively correlated with the disease activity. DR2 and DR3 might be novel predictors of patient responses to disease modifying antirheumatic drug therapy.
Collapse
Affiliation(s)
- L Wei
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - C Zhang
- Department of Orthopedics, Zhongshan Hospital of Fudan University, Shanghai, China
| | - H Y Chen
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Z J Zhang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Z F Ji
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - T Yue
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Chinese & Western Medicine, Shanghai, China
| | - X M Dai
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Q Zhu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Chinese & Western Medicine, Shanghai, China
| | - L L Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - D Y He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Chinese & Western Medicine, Shanghai, China
| | - L D Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|