1
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
2
|
Arrizabalaga L, Risson A, Ezcurra-Hualde M, Aranda F, Berraondo P. Unveiling the multifaceted antitumor effects of interleukin 33. Front Immunol 2024; 15:1425282. [PMID: 38881897 PMCID: PMC11176530 DOI: 10.3389/fimmu.2024.1425282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Interleukin 33 (IL-33), once predominantly recognized for its pro-tumoral activities, has emerged as a multifunctional cytokine with antitumor properties. IL-33 pleiotropic activities include activation of Th1 CD4+ T cells, CD8+ T cells, NK cells, dendritic cells, eosinophils, as well as type 2 innate lymphoid cells. Regarding this immunomodulatory activity, IL-33 demonstrates synergistic interactions with various cancer therapies, including immune checkpoint blockade and chemotherapy. Combinatorial treatments leveraging IL-33 exhibit enhanced antitumor efficacy across different tumor models, promising novel avenues for cancer therapy. Despite its antitumor effects, the complex interplay of IL-33 within the tumor microenvironment underscores the need for further investigation. Understanding the mechanisms underlying IL-33's dual role as both a promoter and inhibitor of tumor progression is essential for refining therapeutic strategies and fully realizing its potential in cancer immunotherapy. This review delves into the intricate landscape of IL-33 effects within the tumor microenvironment, highlighting its pivotal role in orchestrating immune responses against cancer.
Collapse
Affiliation(s)
- Leire Arrizabalaga
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aline Risson
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Miriam Ezcurra-Hualde
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Fernando Aranda
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Pedro Berraondo
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
3
|
Naito Y, Koyama S, Masuhiro K, Hirai T, Uenami T, Inoue T, Osa A, Machiyama H, Watanabe G, Sax N, Villa J, Kinugasa-Katayama Y, Nojima S, Yaga M, Hosono Y, Okuzaki D, Satoh S, Tsuda T, Nakanishi Y, Suga Y, Morita T, Fukushima K, Nishide M, Shiroyama T, Miyake K, Iwahori K, Hirata H, Nagatomo I, Yano Y, Tamiya M, Kumagai T, Takemoto N, Inohara H, Yamasaki S, Yamashita K, Aoshi T, Akbay EA, Hosen N, Shintani Y, Takamatsu H, Mori M, Takeda Y, Kumanogoh A. Tumor-derived semaphorin 4A improves PD-1-blocking antibody efficacy by enhancing CD8 + T cell cytotoxicity and proliferation. SCIENCE ADVANCES 2023; 9:eade0718. [PMID: 37205755 DOI: 10.1126/sciadv.ade0718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have caused revolutionary changes in cancer treatment, but low response rates remain a challenge. Semaphorin 4A (Sema4A) modulates the immune system through multiple mechanisms in mice, although the role of human Sema4A in the tumor microenvironment remains unclear. This study demonstrates that histologically Sema4A-positive non-small cell lung cancer (NSCLC) responded significantly better to anti-programmed cell death 1 (PD-1) antibody than Sema4A-negative NSCLC. Intriguingly, SEMA4A expression in human NSCLC was mainly derived from tumor cells and was associated with T cell activation. Sema4A promoted cytotoxicity and proliferation of tumor-specific CD8+ T cells without terminal exhaustion by enhancing mammalian target of rapamycin complex 1 and polyamine synthesis, which led to improved efficacy of PD-1 inhibitors in murine models. Improved T cell activation by recombinant Sema4A was also confirmed using isolated tumor-infiltrating T cells from patients with cancer. Thus, Sema4A might be a promising therapeutic target and biomarker for predicting and promoting ICI efficacy.
Collapse
Affiliation(s)
- Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa,Chiba, and Tokyo, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Takashi Hirai
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takeshi Uenami
- Department of Thoracic Oncology, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirotomo Machiyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Go Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa,Chiba, and Tokyo, Japan
| | - Nicolas Sax
- KOTAI Biotechnologies Inc., Suita, Osaka, Japan
| | | | - Yumi Kinugasa-Katayama
- Department of Cellular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, WPI, IFReC, Osaka University, Suita, Osaka, Japan
- Department of Molecular Immunology, RIMD, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI, IFReC, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Shingo Satoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Host Defense, WPI, IFReC, Osaka University, Suita, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Yano
- Department of Thoracic Oncology, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Norihiko Takemoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, WPI, IFReC, Osaka University, Suita, Osaka, Japan
- Department of Molecular Immunology, RIMD, Osaka University, Suita, Osaka, Japan
| | | | - Taiki Aoshi
- Department of Cellular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoki Hosen
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Immunotherapy, WPI, IFReC, Osaka University, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization, Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Peng H, Wu S, Wang S, Yang Q, Wang L, Zhang S, Huang M, Li Y, Xiong P, Zhang Z, Cai Y, Li L, Deng Y, Deng Y. Sex differences exist in adult heart group 2 innate lymphoid cells. BMC Immunol 2022; 23:52. [PMCID: PMC9620621 DOI: 10.1186/s12865-022-00525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Group 2 innate lymphoid cells (ILC2s) are the most dominant ILCs in heart tissue, and sex-related differences exist in mouse lung ILC2 phenotypes and functions; however, it is still unclear whether there are sex differences in heart ILC2s.
Results Compared with age-matched wild-type (WT) male mice, 8-week-old but not 3-week-old WT female mice harbored an obviously greater percentage and number of heart ILC2s in homeostasis. However, the percentage of killer-cell lectin-like receptor G1 (Klrg1)− ILC2s was higher, but the Klrg1+ ILC2s were lower in female mice than in male mice in both heart tissues of 3- and 8-week-old mice. Eight-week-old Rag2−/− mice also showed sex differences similar to those of age-matched WT mice. Regarding surface marker expression, compared to age-matched male mice, WT female mice showed higher expression of CD90.2 and Ki67 and lower expression of Klrg1 and Sca-1 in heart total ILC2s. There was no sex difference in IL-4 and IL-5 secretion by male and female mouse heart ILC2s. Increased IL-33 mRNA levels within the heart tissues were also found in female mice compared with male mice. By reanalyzing published single-cell RNA sequencing data, we found 2 differentially expressed genes between female and male mouse heart ILC2s. Gene set variation analysis revealed that the glycine, serine and threonine metabolism pathway was upregulated in female heart ILC2s. Subcluster analysis revealed that one cluster of heart ILC2s with relatively lower expression of Semaphorin 4a and thioredoxin interacting protein but higher expression of hypoxia-inducible lipid droplet-associated. Conclusions These results revealed greater numbers of ILC2s, higher expression of CD90.2, reduced Klrg1 and Sca-1 expression in the hearts of female mice than in male mice and no sex difference in IL-4 and IL-5 production in male and female mouse heart ILC2s. These sex differences in heart ILC2s might be due to the heterogeneity of IL-33 within the heart tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00525-0.
Collapse
Affiliation(s)
- Hongyan Peng
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shuting Wu
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shanshan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Qinglan Yang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Lili Wang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shuju Zhang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Minghui Huang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Yana Li
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Peiwen Xiong
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Zhaohui Zhang
- grid.410570.70000 0004 1760 6682Institute of Materia Medica, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038 China
| | - Yue Cai
- grid.233520.50000 0004 1761 4404Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 China
| | - Liping Li
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Youcai Deng
- grid.410570.70000 0004 1760 6682Institute of Materia Medica, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038 China ,grid.410570.70000 0004 1760 6682Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yafei Deng
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| |
Collapse
|
5
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Li S, Hua X, Zheng M, Wu J, Ma Z, Xing X, Ma J, Zhang J, Shan C, Xu J. PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Exp Neurol 2021; 346:113854. [PMID: 34474008 DOI: 10.1016/j.expneurol.2021.113854] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by high mortality, morbidity and disability rates. Ischemia/reperfusion is a critical pathophysiological basis of motor and cognitive dysfunction caused by ischemic stroke. Microglia, innate immune cells of the central nervous system, mediate the neuroinflammatory response to ischemia/reperfusion. PlexinA2 (PLXNA2) plays an important role in the regulation of neuronal axon guidance, the immune response and angiogenesis. However, it is not clear whether PLXNA2 regulates microglia polarization in ischemic stroke or the underlying mechanism. In the present study, we investigated the role of PLXNA2 in rats with middle cerebral artery occlusion/reperfusion (MCAO/R) and BV2 microglia cells with oxygen and glucose deprivation/reoxygenation (OGD/R). A battery of behavioral tests, including the beam balance test, forelimb placement test, foot fault test, cylinder test, CatWalk gait analysis and Morris water maze test were performed to evaluate sensorimotor function, locomotor activity and cognitive ability. The expression of M1/M2-specific markers in the ischemic penumbra and BV2 microglia cells was detected using immunofluorescence staining, quantitative real-time PCR analysis and Western blot analysis. Our study showed that PLXNA2 knockdown accelerated the recovery of motor function and cognitive ability after MCAO/R. In addition, PLXNA2 knockdown restrained proinflammatory cytokine release and promoted anti-inflammatory cytokine release, and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway was involved in PLXNA2 regulated microglia polarization. Taken together, our results indicate that PLXNA2 knockdown reduces neuroinflammation by switching the microglia phenotype from M1 to M2 in the ischemic penumbra of MCAO/R-injured rats, which may be due to the inhibition of mTOR/STAT3 signaling. Treatments targeting PLXNA2 may be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Sisi Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuyun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mouxiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jiajia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhenzhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangxin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junpeng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
7
|
Suga Y, Nagatomo I, Kinehara Y, Koyama S, Okuzaki D, Osa A, Naito Y, Takamatsu H, Nishide M, Nojima S, Ito D, Tsuda T, Nakatani T, Nakanishi Y, Futami Y, Koba T, Satoh S, Hosono Y, Miyake K, Fukushima K, Shiroyama T, Iwahori K, Hirata H, Takeda Y, Kumanogoh A. IL-33 Induces Sema4A Expression in Dendritic Cells and Exerts Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:1456-1467. [PMID: 34380650 DOI: 10.4049/jimmunol.2100076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has shown great promise as a new standard therapeutic strategy against cancer. However, the response rate and survival benefit remain unsatisfactory because most current approaches, such as the use of immune checkpoint inhibitors, depend on spontaneous antitumor immune responses. One possibility for improving the efficacy of immunotherapy is to promote antitumor immunity using adjuvants or specific cytokines actively. IL-33 has been a candidate for such cytokine therapies, but it remains unclear how and in which situations IL-33 exerts antitumor immune effects. In this study, we demonstrate the potent antitumor effects of IL-33 using syngeneic mouse models, which included marked inhibition of tumor growth and upregulation of IFN-γ production by tumor-infiltrating CD8+ T cells. Of note, IL-33 induced dendritic cells to express semaphorin 4A (Sema4A), and the absence of Sema4A abolished the antitumor activity of IL-33, indicating that Sema4A is intrinsically required for the antitumor effects of IL-33 in mice. Collectively, these results not only present IL-33 and Sema4A as potential therapeutic targets but also shed light on the potential use of Sema4A as a biomarker for dendritic cell activation status, which has great value in various fields of cancer research, including vaccine development.
Collapse
Affiliation(s)
- Yasuhiko Suga
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan;
| | - Yuhei Kinehara
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Koyama
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yujiro Naito
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masayuki Nishide
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Ito
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takeshi Tsuda
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; and
| | - Takeshi Nakatani
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yu Futami
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shingo Satoh
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Hosono
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan; .,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Suita, Osaka, Japan
| |
Collapse
|
8
|
Nakanishi Y, Kang S, Kumanogoh A. Neural guidance factors as hubs of immunometabolic crosstalk. Int Immunol 2021; 33:749-754. [PMID: 34174067 PMCID: PMC8633672 DOI: 10.1093/intimm/dxab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Semaphorins were originally identified as axon-guidance molecules essential for neural development. In addition to their functions in the neural system, members of the semaphorin family have critical functions in many pathophysiological processes, including immune responses, bone homeostasis, cancer and metabolic disorders. In particular, several lines of evidence indicate that mammalian/mechanistic target of rapamycin (mTOR), a central regulator of cell metabolism, regulates the functions of semaphorins in various types of cells, revealing a novel link between semaphorins and cell metabolism. In this review, we discuss recent advances in the immunometabolic functions of semaphorins, with a particular focus on mTOR signaling.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Yue T, Zhan X, Zhang D, Jain R, Wang KW, Choi JH, Misawa T, Su L, Quan J, Hildebrand S, Xu D, Li X, Turer E, Sun L, Moresco EMY, Beutler B. SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity. Science 2021; 372:372/6543/eaba4220. [PMID: 33986151 PMCID: PMC8442736 DOI: 10.1126/science.aba4220] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/02/2020] [Accepted: 03/25/2021] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell-specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2's mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.
Collapse
Affiliation(s)
- Tao Yue
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duanwu Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruchi Jain
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kuan-wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emre Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Correspondence to:
| |
Collapse
|
10
|
Lin L, Wang Y, Bian S, Sun L, Guo Z, Kong D, Zhao L, Guo D, Li Q, Wu M, Wang Y, Wang Y, Li Y. A circular RNA derived from PLXNB2 as a valuable predictor of the prognosis of patients with acute myeloid leukaemia. J Transl Med 2021; 19:123. [PMID: 33757550 PMCID: PMC7988933 DOI: 10.1186/s12967-021-02793-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND As a common haematological malignancy, acute myeloid leukaemia (AML), particularly with extramedullary infiltration (EMI), often results in a high mortality rate and poor prognosis. Circular RNAs (circRNAs) regulate biological and pathogenic processes, suggesting a potential role in AML. We have previously described the overall alterations in circRNAs and their regulatory networks between patients with AML presenting with and without EMI. This study aims to find new prognostic and therapeutic targets potentially associated with AML. METHODS qRT-PCR was performed on samples from 40 patients with AML and 15 healthy controls. The possibility of using circPLXNB2 (circRNA derived from PLXNB2) as a diagnostic and prognostic biomarker for AML was analysed with multiple statistical methods. In vitro, the function of circPLXNB2 was studied by lentivirus transfection, CCK-8 assays, flow cytometry, and Transwell experiments. Western blotting and qRT-PCR were performed to detect the expression of related proteins and genes. The distribution of circPLXNB2 in cells was observed using RNA fluorescence in situ hybridization (RNA-FISH). We also investigated the role of circPLXNB2 by establishing AML xenograft models in NOD/SCID mice. RESULTS By analysing the results of qRT-PCR detection of clinical samples, the expression of the circPLXNB2 and PLXNB2 mRNAs were significantly increased in patients with AML, more specifically in patients with AML presenting with EMI. High circPLXNB2 expression was associated with an obviously shorter overall survival and leukaemia-free survival of patients with AML. The circPLXNB2 expression was positively correlated with PLXNB2 mRNA expression, as evidenced by Pearson's correlation analysis. RNA-FISH revealed that circPLXNB2 is mainly located in the nucleus. In vitro and in vivo, circPLXNB2 promoted cell proliferation and migration and inhibited apoptosis. Notably, circPLXNB2 also increased the expression of PLXNB2, BCL2 and cyclin D1, and reduced the expression of BAX. CONCLUSION In summary, we validated the high expression of circPLXNB2 and PLXNB2 in patients with AML. Elevated circPLXNB2 levels were associated with poor clinical outcomes in patients with AML. Importantly, circPLXNB2 accelerated tumour growth and progression, possibly by regulating PLXNB2 expression. Our study highlights the potential of circPLXNB2 as a new prognostic predictor and therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Leilei Lin
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Yu Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Sicheng Bian
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Desheng Kong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, 37 Yiyuan Street, Nan Gang District, Harbin, 150001, China
| | - Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Dan Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Qi Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Min Wu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Yuhuang Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Yuying Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nan Gang District, Harbin, 150001, China.
| |
Collapse
|
11
|
Zhou L, He X, Cai P, Li T, Peng R, Dang J, Li Y, Li H, Huang F, Shi G, Xie C, Lu Y, Chen Y. Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cell Mol Immunol 2021; 18:698-710. [PMID: 33446887 DOI: 10.1038/s41423-020-00623-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune condition in which the immune system destroys insulin-producing pancreatic β cells. In addition to well-established pathogenic effector T cells, regulatory T cells (Tregs) have also been shown to be defective in T1D. Thus, an increasing number of therapeutic approaches are being developed to target Tregs. However, the role and mechanisms of TGF-β-induced Tregs (iTregs) in T1D remain poorly understood. Here, using a streptozotocin (STZ)-induced preclinical T1D mouse model, we found that iTregs could ameliorate the development of T1D and preserve β cell function. The preventive effect was associated with the inhibition of type 1 cytotoxic T (Tc1) cell function and rebalancing the Treg/Tc1 cell ratio in recipients. Furthermore, we showed that the underlying mechanisms were due to the TGF-β-mediated combinatorial actions of mTOR and TCF1. In addition to the preventive role, the therapeutic effects of iTregs on the established STZ-T1D and nonobese diabetic (NOD) mouse models were tested, which revealed improved β cell function. Our findings therefore provide key new insights into the basic mechanisms involved in the therapeutic role of iTregs in T1D.
Collapse
Affiliation(s)
- Li Zhou
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Peihong Cai
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Rongdong Peng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yue Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
12
|
Meng F, Zhu T, Yao H, Ling Z, Feng Y, Li G, Li J, Sun X, Chen J, Meng C, Jiao X, Yin Y. A Cross-Protective Vaccine Against 4b and 1/2b Listeria monocytogenes. Front Microbiol 2020; 11:569544. [PMID: 33362730 PMCID: PMC7759533 DOI: 10.3389/fmicb.2020.569544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne zoonotic pathogen that causes listeriosis with a mortality rate of 20-30%. Serovar 4b and 1/2b isolates account for most of listeriosis outbreaks, however, no listeriosis vaccine is available for either prophylactic or therapeutic use. Here, we developed a triple-virulence-genes deletion vaccine strain, and evaluated its safety, immunogenicity, and cross-protective efficiency. The virulence of NTSNΔactA/plcB/orfX was reduced 794-folds compared with the parental strain. Additionally, it was completely eliminated in mice at day 7 post infection and no obvious pathological changes were observed in the organs of mice after prime-boost immunization for 23 days. These results proved that the safety of the Lm vaccine strain remarkably increased. More importantly, the NTSNΔactA/plcB/orfX strain stimulated higher anti-Listeriolysin O (LLO) antibodies, induced significantly higher expression of IFN-γ, TNF-α, IL-17, and IL-6 than the control group, and afforded 100% protection against serovar 4b and 1/2b challenges. Taken together, our research demonstrates that the triple-genes-deletion vaccine has high safety, can elicit strong Th1 type immune response, and affords efficient cross-protection against two serovar Lm strains. It is a promising vaccine for prevention of listeriosis.
Collapse
Affiliation(s)
- Fanzeng Meng
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Tengfei Zhu
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Hao Yao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhiting Ling
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Youwei Feng
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Guo Li
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jing Li
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinyu Sun
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiaqi Chen
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yuelan Yin
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Carvalheiro T, Rafael-Vidal C, Malvar-Fernandez B, Lopes AP, Pego-Reigosa JM, Radstake TRDJ, Garcia S. Semaphorin4A-Plexin D1 Axis Induces Th2 and Th17 While Represses Th1 Skewing in an Autocrine Manner. Int J Mol Sci 2020; 21:ijms21186965. [PMID: 32971928 PMCID: PMC7555002 DOI: 10.3390/ijms21186965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
Semaphorin (Sema)4A is a transmembrane glycoprotein that is elevated in several autoimmune diseases such as systemic sclerosis, rheumatoid arthritis and multiple sclerosis. Sema4A has a key role in the regulation of Thelper Th1 and Th2 differentiation and we recently demonstrated that CD4+ T cell activation induces the expression of Sema4A. However, the autocrine role of Sema4A on Th cell differentiation remains unknown. Naïve Th cells from healthy controls were cell sorted and differentiated into Th1, Th2 and Th17 in the presence or absence of a neutralizing antibody against the Sema4A receptor PlexinD1. Gene expression was determined by quantitative PCR and protein expression by ELISA and flow cytometry. We found that the expression of Sema4A is induced during Th1, Th2 and Th17 differentiation. PlexinD1 neutralization induced the differentiation of Th1 cells, while reduced the Th2 and Th17 skewing. These effects were associated with an upregulation of the transcription factor T-bet by Th1 cells, and to downregulation of GATA3 and RORγt in Th2 cells and Th17 cells, respectively. Finally, PlexinD1 neutralization regulates the systemic sclerosis patients serum-induced cytokine production by CD4+ T cells. Therefore, the autocrine Sema4A-PlexinD1 signaling acts as a negative regulator of Th1 skewing but is a key mediator on Th2 and Th17 differentiation, suggesting that dysregulation of this axis might be implicated in the pathogenesis of CD4+ T cell-mediated diseases.
Collapse
Affiliation(s)
- Tiago Carvalheiro
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36312 Vigo, Spain
| | - Beatriz Malvar-Fernandez
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Ana P. Lopes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Jose M. Pego-Reigosa
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36312 Vigo, Spain
| | - Timothy R. D. J. Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Samuel Garcia
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36312 Vigo, Spain
- Correspondence: ; Tel.: +34-986-515-463
| |
Collapse
|
14
|
Liu C, Somasundaram A, Manne S, Gocher AM, Szymczak-Workman AL, Vignali KM, Scott EN, Normolle DP, John Wherry E, Lipson EJ, Ferris RL, Bruno TC, Workman CJ, Vignali DAA. Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nat Immunol 2020; 21:1010-1021. [PMID: 32661362 PMCID: PMC7442600 DOI: 10.1038/s41590-020-0733-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Robust CD8+ T cell memory is essential for long-term protective immunity, but is often compromised in cancer where T cell exhaustion leads to loss of memory precursors. Immunotherapy via checkpoint blockade may not effectively reverse this defect, potentially underlying disease relapse. Here we report that mice with a CD8+ T cell-restricted neuropilin-1 (NRP1) deletion exhibited substantially enhanced protection from tumor re-challenge and sensitivity to anti-PD1 immunotherapy, despite unchanged primary tumor growth. Mechanistically, NRP1 cell-intrinsically limited the self-renewal of the CD44+PD1+TCF1+TIM3– progenitor exhausted T cells (pTEX), which was associated with their reduced ability to induce c-Jun/AP-1 expression upon T cell receptor (TCR) re-stimulation, a mechanism that may contribute to terminal T cell exhaustion at the cost of memory differentiation in wildtype tumor-bearing hosts. These data suggest that blockade of NRP1, a unique “immune memory checkpoint”, may promote the development of long-lived tumor-specific TMEM that are essential for durable anti-tumor immunity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ashwin Somasundaram
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, and Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Angela M Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ellen N Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel P Normolle
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, and Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert L Ferris
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Huang H, Long L, Zhou P, Chapman NM, Chi H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol Rev 2020; 295:15-38. [PMID: 32212344 PMCID: PMC8101438 DOI: 10.1111/imr.12845] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved serine/threonine kinase mTOR (mechanistic target of rapamycin) forms the distinct protein complexes mTORC1 and mTORC2 and integrates signals from the environment to coordinate downstream signaling events and various cellular processes. T cells rely on mTOR activity for their development and to establish their homeostasis and functional fitness. Here, we review recent progress in our understanding of the upstream signaling and downstream targets of mTOR. We also provide an updated overview of the roles of mTOR in T-cell development, homeostasis, activation, and effector-cell fate decisions, as well as its important impacts on the suppressive activity of regulatory T cells. Moreover, we summarize the emerging roles of mTOR in T-cell exhaustion and transdifferentiation. A better understanding of the contribution of mTOR to T-cell fate decisions will ultimately aid in the therapeutic targeting of mTOR in human disease.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Peipei Zhou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
16
|
Xiao C, Luo Y, Zhang C, Zhu Z, Yang L, Qiao H, Fu M, Wang G, Yao X, Li W. Negative regulation of dendritic cell activation in psoriasis mediated via CD100-plexin-B2. J Pathol 2020; 250:409-419. [PMID: 31943215 DOI: 10.1002/path.5383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease in which dendritic cells (DCs) play a pivotal role by inducing Th1/Th17 immune responses; however, the regulation of DC activation in psoriasis remains largely unknown. Previously we found that the level of soluble CD100 was increased in sera of psoriasis patients, and CD100 promoted the activation of inflammasome in keratinocytes. In the present study, CD100 knockout mice were utilized for generation of imiquimod (IMQ)-induced psoriatic dermatitis, with the result that skin inflammation in the early, but not late, phase of the psoriatic dermatitis was significantly exacerbated compared to that in wild-type controls. This was attributed mainly to the deficiency of CD100 in hematopoietic cells. Bone marrow-derived DCs, but not T cells or keratinocytes, from CD100 knockout mice produced significantly increased levels of IL-1β, IL-36, and IL-23 upon stimulation with IMQ in a plexin-B2-dependent manner. Moreover, the surface level of plexin-B2 on DCs of psoriasis patients was lower than that of healthy individuals, and CD100 attenuated IMQ-induced production of IL-1β and IL-36 from monocyte-derived DCs of psoriasis patients. Our results uncovered a negative regulatory mechanism for DCs activation in psoriasis, which was mediated via CD100-plexin-B2 in a cell type- and receptor-specific manner. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yang Luo
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
17
|
Affiliation(s)
- Xiyu Liu
- Japan Union Hospital of Jilin University, Changchun, China
| | | | | | | | - Zhibo Li
- The Second Hospital of Jilin University, Changchun, China
| | - Zhenke Wen
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Chiou B, Neely EB, Mcdevitt DS, Simpson IA, Connor JR. Transferrin and H-ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. J Neurochem 2020; 152:381-396. [PMID: 31339576 PMCID: PMC6980902 DOI: 10.1111/jnc.14834] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/06/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
Iron delivery to the developing brain is essential for energy and metabolic support needed for processes such as myelination and neuronal development. Iron deficiency, especially in the developing brain, can result in a number of long-term neurological deficits that persist into adulthood. There is considerable debate that excess access to iron during development may result in iron overload in the brain and subsequently predispose individuals to age-related neurodegenerative diseases. There is a significant gap in knowledge regarding how the brain acquires iron during development and how biological variables such as development, genetics, and sex impact brain iron status. In this study, we used a mouse model expressing a mutant form of the iron homeostatic regulator protein HFE, (Hfe H63D), the most common gene variant in Caucasians, to determine impact of the mutation on brain iron uptake. Iron uptake was assessed using 59 Fe bound to either transferrin or H-ferritin as the iron carrier proteins. We demonstrate that at postnatal day 22, mutant mice brains take up greater amounts of iron compared with wildtype. Moreover, we introduce H-ferritin as a key protein in brain iron transport during development and identify a sex and genotype effect demonstrating female mutant mice take up more iron by transferrin, whereas male mutant mice take up more iron from H-ferritin at PND22. Furthermore, we begin to elucidate the mechanism for uptake using immunohistochemistry to profile the regional distribution and temporal expression of transferrin receptor and T-cell immunoglobulin and mucin domain 2, the latter is the receptor for H-ferritin. These data demonstrate that sex and genotype have significant effects on iron uptake and that regional receptor expression may play a large role in the uptake patterns during development. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14731.
Collapse
Affiliation(s)
- Brian Chiou
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth B. Neely
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Dillon S. Mcdevitt
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ian A. Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
19
|
Carvalheiro T, Affandi AJ, Malvar-Fernández B, Dullemond I, Cossu M, Ottria A, Mertens JS, Giovannone B, Bonte-Mineur F, Kok MR, Marut W, Reedquist KA, Radstake TR, García S. Induction of Inflammation and Fibrosis by Semaphorin 4A in Systemic Sclerosis. Arthritis Rheumatol 2019; 71:1711-1722. [PMID: 31012544 PMCID: PMC6790618 DOI: 10.1002/art.40915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/18/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To analyze the potential role of semaphorin 4A (Sema4A) in inflammatory and fibrotic processes involved in the pathology of systemic sclerosis (SSc). METHODS Sema4A levels in the plasma of healthy controls (n = 11) and SSc patients (n = 20) were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Sema4A and its receptors in monocytes and CD4+ T cells from healthy controls and SSc patients (n = 6-7 per group) was determined by ELISA and flow cytometry. Th17 cytokine production by CD4+ T cells (n = 5-7) was analyzed by ELISA and flow cytometry. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblast cells (n = 6) was analyzed by quantitative polymerase chain reaction, ELISA, Western blotting, confocal microscopy, and ECM deposition assay. RESULTS Plasma levels of Sema4A, and Sema4A expression by circulating monocytes and CD4+ T cells, were significantly higher in SSc patients than in healthy controls (P < 0.05). Inflammatory mediators significantly up-regulated the secretion of Sema4A by monocytes and CD4+ T cells from SSc patients (P < 0.05 versus unstimulated SSc cells). Functional assays showed that Sema4A significantly enhanced the expression of Th17 cytokines induced by CD3/CD28 in total CD4+ T cells as well in different CD4+ T cell subsets (P < 0.05 versus unstimulated SSc cells). Finally, Sema4A induced a profibrotic phenotype in dermal fibroblasts from both healthy controls and SSc patients, which was abrogated by blocking or silencing the expression of Sema4A receptors. CONCLUSION Our findings indicate that Sema4A plays direct and dual roles in promoting inflammation and fibrosis, 2 main features of SSc, suggesting that Sema4A might be a novel therapeutic target in SSc.
Collapse
Affiliation(s)
- Tiago Carvalheiro
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Alsya J Affandi
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - Ilse Dullemond
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marta Cossu
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Andrea Ottria
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jorre S Mertens
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Barbara Giovannone
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | - Marc R Kok
- Maasstad Hospital Rotterdam, Rotterdam, The Netherlands
| | - Wioleta Marut
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Kris A Reedquist
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Timothy R Radstake
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Samuel García
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Semaphorin Signaling in Cancer-Associated Inflammation. Int J Mol Sci 2019; 20:ijms20020377. [PMID: 30658382 PMCID: PMC6358995 DOI: 10.3390/ijms20020377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.
Collapse
|
21
|
Parsa S, Sharifzadeh S, Monabati A, Seyyedi N, Ranjbaran R, Baghbani MR, Nemati M, Jafarzadeh A. Overexpression of Semaphorin-3A and Semaphorin-4D in the Peripheral Blood from Newly Diagnosed Patients with Chronic Lymphocytic Leukemia. Int J Hematol Oncol Stem Cell Res 2019; 13:25-34. [PMID: 31205625 PMCID: PMC6557972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Semaphorins play prominent roles in physiological and pathological processes such as vascular development, tumor growth and immune responses. Semaphorins have different roles in various kinds of cancers, but there is no study concerning their expression in the chronic lymphocytic leukemia (CLL). This study aimed to assess the SEMA3A, SEMA4A and SEMA4D expression in patients with CLL. Materials and Methods: Peripheral blood specimens were collected from 30 newly-diagnosed untreated patients with CLL and 30 healthy subjects as a control group. The SEMA3A, SEMA4A and SEMA4D expression was determined by real-time PCR method. Results: The fold change expression of SEMA3A and SEMA4D was 7.58 ± 2.66 and 3.20 ± 0.99 in patients with CLL, and was 1.01 ± 0.31 and 1.00 ± 0.27 in healthy subjects, respectively. The CLL patients expressed higher amounts of SEMA3A and SEMA4D in comparison with healthy subjects (P<0.02 and P<0.03, respectively). The fold change expression of SEMA3A in patients with stage II (11.12 ± 5.35) was also higher than patients with stage I (4.49 ± 1.61, P<0.05). No significant difference was also observed in the expression of SEMA4A and SEMA4D between patients with stage I and stage II CLL. In both CLL and control groups, the fold change expression of SEMA3A was higher in men than in women (P<0.03 and P<0.02, respectively). Conclusion: The results of the study indicated elevated expression of the SEMA3A and SEMA4D in patients with CLL. The SEMA3A expression was influenced by tumor stage and gender of participants.
Collapse
Affiliation(s)
- Somayeh Parsa
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Noorossadat Seyyedi
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Baghbani
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Iyer AS, Chapoval SP. Neuroimmune Semaphorin 4A in Cancer Angiogenesis and Inflammation: A Promoter or a Suppressor? Int J Mol Sci 2018; 20:ijms20010124. [PMID: 30598022 PMCID: PMC6337608 DOI: 10.3390/ijms20010124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Neuroimmune semaphorin 4A (Sema4A), a member of semaphorin family of transmembrane and secreted proteins, is an important regulator of neuronal and immune functions. In the nervous system, Sema4A primarily regulates the functional activity of neurons serving as an axon guidance molecule. In the immune system, Sema4A regulates immune cell activation and function, instructing a fine tuning of the immune response. Recent studies have shown a dysregulation of Sema4A expression in several types of cancer such as hepatocellular carcinoma, colorectal, and breast cancers. Cancers have been associated with abnormal angiogenesis. The function of Sema4A in angiogenesis and cancer is not defined. Recent studies have demonstrated Sema4A expression and function in endothelial cells. However, the results of these studies are controversial as they report either pro- or anti-angiogenic Sema4A effects depending on the experimental settings. In this mini-review, we discuss these findings as well as our data on Sema4A regulation of inflammation and angiogenesis, which both are important pathologic processes underlining tumorigenesis and tumor metastasis. Understanding the role of Sema4A in those processes may guide the development of improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Apoorva S Iyer
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Svetlana P Chapoval
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- SemaPlex LLC, Ellicott City, MD 21042, USA.
| |
Collapse
|
23
|
Movassagh H, Koussih L, Shan L, Gounni AS. The regulatory role of semaphorin 3E in allergic asthma. Int J Biochem Cell Biol 2018; 106:68-73. [PMID: 30447428 DOI: 10.1016/j.biocel.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Semaphorins were originally discovered as essential mediators involved in regulation of axonal growth during development of the nervous system. Ubiquitously expressed on various organs, they control several cellular functions by regulating essential signaling pathways. Among them, semaphorin3E binds plexinD1 as the primary receptor and mediates regulatory effects on cell migration, proliferation, and angiogenesis considered major physiological and pathological features in health and disease. Recent in vitro and in vivo experimental evidence demonstrate a key regulator role of semaphorin3E on airway inflammation, hyperresponsivenss and remodeling in allergic asthma. Herein, we aim to provide a broad overview of the biology of semaphorin family and review the recently discovered regulatory role of semaphorin3E in modulating immune cells and structural cells function in the airways. These findings support the concept of semaphorin3E/plexinD1 axis as a therapeutic target in allergic asthma.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
24
|
Liu X, Sun Y, Tian W, Wang F, Lv X, Wang M, Sun T, Zhang J, Wang L, Han M. Sema4A Responds to Hypoxia and Is Involved in Breast Cancer Progression. Biol Pharm Bull 2018; 41:1791-1796. [PMID: 30270262 DOI: 10.1248/bpb.b18-00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Semaphorin4A (Sema4A) is a family member of semaphorins expressed in immune cells and is also related with disease progression of tumor disease. In this study, we investigate the expression and pathological role of Sema4A in breast cancer (BCa). Our data showed that the expression of Sema4A increased in the tissues and serum of BCa patients when compared with normal controls. The expression of Sema4A in BCa cells could be induced by hypoxic treatment, whereas silencing hypoxia-inducible factor (HIF)-1α could attenuate the above induced. Furthermore, chromatin immunoprecipitation (ChIP) analysis demonstrated that HIF-1α could regulate the expression of Sema4A through directly binding to the promoter of Sema4A gene, whose enrichment could be further enhanced by hypoxic stimulation. In addition, silencing Sema4A could inhibit the proliferation, vascular endothelial growth factor (VEGF) production and the phosphorylation of Akt, extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) and signal transduction and activator of transcription (STAT)3, but induce apoptosis of BCa cells in the presence of hypoxia. In contrast, recombinant human Sema4A treatment showed the opposite effects. Taken together, these results suggest that Sema4A could promote progression of BCa in the presence of hypoxia and it may hold potential for treatment target for BCa.
Collapse
Affiliation(s)
- Xiao Liu
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University.,Zibo Central Hospital
| | | | | | | | | | | | | | - Jingjing Zhang
- Clinical Test Department of Shandong Qianfoshan Hospital
| | - Lin Wang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital affiliated to Shandong University
| |
Collapse
|
25
|
Semaphorin 4C Plexin-B2 signaling in peripheral sensory neurons is pronociceptive in a model of inflammatory pain. Nat Commun 2017; 8:176. [PMID: 28765520 PMCID: PMC5539317 DOI: 10.1038/s41467-017-00341-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Semaphorins and their transmembrane receptors, Plexins, are key regulators of axon guidance and development of neuronal connectivity. B-type Plexins respond to Class IV semaphorins and mediate a variety of developmental functions. Here we report that the expression of Plexin-B2 and its high-affinity ligand, Sema4C, persists in peripheral sensory neurons in adult life and is markedly increased in states of persistent pain in mice. Genetic deletion of Sema4C as well as adult-onset loss of Plexin-B2 leads to impairment of the development and duration of inflammatory hypersensitivity. Remarkably, unlike the neurodevelopmental functions of Plexin-B2 that solely rely on Ras signaling, we obtained genetic and pharmacological evidence for a requirement of RhoA-ROCK-dependent mechanisms as well as TRPA1 sensitization in pronociceptive functions of Sema4C-Plexin-B2 signaling in adult life. These results suggest important roles for Plexin-B2 signaling in sensory function that may be of therapeutic relevance in pathological pain. Semaphorins and their receptors are involved in neurodevelopment, but their functions in the adult nervous system are not fully understood. This study finds that semaphorin 4C and its receptor Plexin B are expressed in sensory neurons and are pronociceptive in a mouse model of inflammatory pain.
Collapse
|
26
|
Neuropilin-1 Associated Molecules in the Blood Distinguish Poor Prognosis Breast Cancer: A Cross-Sectional Study. Sci Rep 2017; 7:3301. [PMID: 28607365 PMCID: PMC5468252 DOI: 10.1038/s41598-017-03280-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating plasma and peripheral blood mononuclear (PBMCs) cells provide an informative snapshot of the systemic physiological state. Moreover, they provide a non-invasively accessible compartment to identify biomarkers for personalized medicine in advanced breast cancer. The role of Neuropilin-1 (NRP-1) and its interacting molecules in breast tumor tissue was correlated with cancer progression; however, the clinical impact of their systemic levels was not extensively evaluated. In this cross-sectional study, we found that circulating and tumor tissue expression of NRP-1 and circulating placental growth factor (PlGF) increase in advanced nodal and metastatic breast cancer compared with locally advanced disease. Tumor tissue expression of NRP-1 and PlGF is also upregulated in triple negative breast cancer (TNBC) compared to other subtypes. Conversely, in PBMCs, NRP-1 and its interacting molecules SEMA4A and SNAI1 are significantly downregulated in breast cancer patients compared to healthy controls, indicating a protective role. Moreover, we report differential PBMC expression profiles that correlate inversely with disease stage (SEMA4A, SNAI1, PLXNA1 and VEGFR3) and can differentiate between the TNBC and non-TNBC tumor subtypes (VEGFR3 and PLXNA1). This work supports the importance of NRP-1-associated molecules in circulation to characterize poor prognosis breast cancer and emphasizes on their role as favorable drug targets.
Collapse
|
27
|
Zeng H, Chi H. mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr Opin Immunol 2017; 46:103-111. [PMID: 28535458 DOI: 10.1016/j.coi.2017.04.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway integrates environmental signals and cellular metabolism to regulate T cell development, activation and differentiation. Recent studies reveal the importance of exquisite control of mTOR activity for proper T cell function, and detailed molecular mechanisms that regulate mTOR signaling in different T cell subsets. Here, we review the latest advances in our understanding of the mTOR pathway and its regulation in the differentiation and function of regulatory T cells and effector T cells.
Collapse
Affiliation(s)
- Hu Zeng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
28
|
Mirakaj V, Rosenberger P. Immunomodulatory Functions of Neuronal Guidance Proteins. Trends Immunol 2017; 38:444-456. [PMID: 28438491 DOI: 10.1016/j.it.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Neuronal guidance proteins (NGPs) were originally identified for their role during the embryonic development of the nervous system. Recent years have seen the discovery of NGP functions during immune responses. In this context, NGPs were demonstrated to control leukocyte migration and the release of cytokines during conditions of acute inflammation, such as lung injury or sepsis. However, NGPs also display potent actions in the resolution of inflammation, chronic inflammatory conditions, the development of atherosclerosis, and during ischemia followed by reperfusion. Here, we provide an overview of the current state of knowledge about the role of NGPs in the immune system and describe their immunomodulatory function.
Collapse
Affiliation(s)
- Valbona Mirakaj
- Department of Anesthesia and Intensive Care Medicine, Tübingen University Hospital, Faculty of Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| | - Peter Rosenberger
- Department of Anesthesia and Intensive Care Medicine, Tübingen University Hospital, Faculty of Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| |
Collapse
|
29
|
Xue D, Desjardins M, Kaufman GN, Béland M, Al-Tamemi S, Ahmed E, Tao S, Friedel RH, Mourad W, Mazer BD. Semaphorin 4C: A Novel Component of B-Cell Polarization in Th2-Driven Immune Responses. Front Immunol 2016; 7:558. [PMID: 28003812 PMCID: PMC5141245 DOI: 10.3389/fimmu.2016.00558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/21/2016] [Indexed: 12/27/2022] Open
Abstract
Background Semaphorins are important molecules in embryonic development and multiple semaphorins have been identified as having key roles in immune regulation. To date, there is little known about Semaphorin 4C (Sema4C) in immune biology. We report for the first time that Sema4C is inducible in human and murine B-cells and may be important for normal B-cell development. Methods Human tonsillar B-cells were studied following activation via anti-CD40 antibodies in the presence or absence of representative Th1, Th2, and regulatory cytokines. Murine B-cells from WT and Sema4C−/− mice were similarly stimulated. B-cell phenotyping in WT and Sema4C mutant mice was performed by flow cytometry and lymphoid architecture was studied by immunohistochemistry. Sema4C expression and synapse formation were analyzed by confocal microscopy. Results Gene array studies performed on human tonsillar B-cells stimulated to produce IgE revealed that Sema4C was among the top genes expressed at 24 h, and the only semaphorin to be increased under Th2 conditions. Validation studies demonstrated that human and murine B-cells expressed Sema4C under similar conditions. Sema4C−/− mice had impaired maturation of B-cell follicles in spleens and associated decreases in follicular and marginal zone B-cells as well as impaired IgG and IgA production. In keeping with a potential role in maturation of B-cells, Sema4C was expressed predominantly on CD27+ human B-cells. Within 72 h of B-cell activation, Sema4C was localized to one pole in a synapse-like structure, in association with F-actin, B-cell receptor, and Plexin-B2. Cell polarization was impaired in Sema4C−/− mice. Conclusion We have identified a novel immune semaphorin induced in human and murine B-cells under Th2 conditions. Sema4C appears to be a marker for human memory B-cells. It may be important for B-cell polarization and for the formation of normal splenic follicles.
Collapse
Affiliation(s)
- Di Xue
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Marylin Desjardins
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center, Montreal, QC, Canada; McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada
| | - Gabriel N Kaufman
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Marianne Béland
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Salem Al-Tamemi
- McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada; Sultan Qaboos University Hospital, Muscat, Oman
| | - Eisha Ahmed
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Shao Tao
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | | | - Walid Mourad
- Department of Medicine, University de Montreal , Montreal, QC , Canada
| | - Bruce D Mazer
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center, Montreal, QC, Canada; McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada
| |
Collapse
|
30
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Ito D, Kumanogoh A. The role of Sema4A in angiogenesis, immune responses, carcinogenesis, and retinal systems. Cell Adh Migr 2016; 10:692-699. [PMID: 27736304 PMCID: PMC5160039 DOI: 10.1080/19336918.2016.1215785] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Semaphorins were originally identified as axon guidance cues that regulate the functional activity of axons in the nervous system. In addition, accumulating evidence indicates that semaphorins have multiple functions in physiological and pathogenic processes, including vascular development, tumor progression, and immune responses. Sema4A is a semaphorin expressed in immune cells, and is thus termed an “immune semaphorin.” Sema4A has 4 types of receptors: Plexin D family, Plexin B family, Tim-2, and Nrp-1. Recent studies suggest that Sema4A plays critical roles in many processes including cell–cell interactions, immune-cell activation, differentiation, and migration. In other studies, Sema4A is also associated with carcinogenesis and retinal systems. In this review, we summarize current knowledge regarding the biology of Sema4A in relation to angiogenesis, immune responses, colorectal cancer, and the retina.
Collapse
Affiliation(s)
- Daisuke Ito
- a Department of Respiratory Medicine , Allergy and Rheumatic Disease, Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| | - Atsushi Kumanogoh
- a Department of Respiratory Medicine , Allergy and Rheumatic Disease, Osaka University Graduate School of Medicine , Suita , Osaka , Japan
| |
Collapse
|
32
|
Gurrapu S, Tamagnone L. Transmembrane semaphorins: Multimodal signaling cues in development and cancer. Cell Adh Migr 2016; 10:675-691. [PMID: 27295627 DOI: 10.1080/19336918.2016.1197479] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semaphorins constitute a large family of membrane-bound and secreted proteins that provide guidance cues for axon pathfinding and cell migration. Although initially discovered as repelling cues for axons in nervous system, they have been found to regulate cell adhesion and motility, angiogenesis, immune function and tumor progression. Notably, semaphorins are bifunctional cues and for instance can mediate both repulsive and attractive functions in different contexts. While many studies focused so far on the function of secreted family members, class 1 semaphorins in invertebrates and class 4, 5 and 6 in vertebrate species comprise around 14 transmembrane semaphorin molecules with emerging functional relevance. These can signal in juxtacrine, paracrine and autocrine fashion, hence mediating long and short range repulsive and attractive guidance cues which have a profound impact on cellular morphology and functions. Importantly, transmembrane semaphorins are capable of bidirectional signaling, acting both in "forward" mode via plexins (sometimes in association with receptor tyrosine kinases), and in "reverse" manner through their cytoplasmic domains. In this review, we will survey known molecular mechanisms underlying the functions of transmembrane semaphorins in development and cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| | - Luca Tamagnone
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| |
Collapse
|
33
|
Keating R, McGargill MA. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Front Immunol 2016; 7:180. [PMID: 27242787 PMCID: PMC4862984 DOI: 10.3389/fimmu.2016.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases.
Collapse
Affiliation(s)
- Rachael Keating
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | | |
Collapse
|
34
|
Maleki KT, Cornillet M, Björkström NK. Soluble SEMA4D/CD100: A novel immunoregulator in infectious and inflammatory diseases. Clin Immunol 2015; 163:52-9. [PMID: 26732857 DOI: 10.1016/j.clim.2015.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
SEMA4D/CD100 is a homodimeric protein belonging to the semaphorin family of axonal guidance proteins. Semaphorin family members have received increased attention lately due to their diverse functions in the immune system. SEMA4D was the first semaphorin described to have immune functions and serves important roles in T cell priming, antibody production, and cell-to-cell adhesion. Proteolytic cleavage of SEMA4D from the cell surface gives rise to a soluble fragment of SEMA4D (sSEMA4D). Similar to the transmembranal form, sSEMA4D is thought to have immunoregulatory properties. While the exact mechanisms responsible for SEMA4D shedding remain to be elucidated, emerging data have revealed associations between elevated systemic sSEMA4D levels and severity of infectious and inflammatory diseases. This review summarizes the literature concerning sSEMA4D and discusses its potential as a novel prognostic immune-biomarker and potential target for immunotherapy.
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| |
Collapse
|
35
|
Lee DY. Roles of mTOR Signaling in Brain Development. Exp Neurobiol 2015; 24:177-85. [PMID: 26412966 PMCID: PMC4580744 DOI: 10.5607/en.2015.24.3.177] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.
Collapse
Affiliation(s)
- Da Yong Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|