1
|
Biniaris-Georgallis SI, Aschman T, Stergioula K, Schreiber F, Jafari V, Taranko A, Karmalkar T, Kasapi A, Lenac Rovis T, Jelencic V, Bejarano DA, Fabry L, Papacharalampous M, Mattiola I, Molgora M, Hou J, Hublitz KW, Heinrich F, Guerra GM, Durek P, Patone G, Lindberg EL, Maatz H, Hölsken O, Krönke G, Mortha A, Voll RE, Clarke AJ, Hauser AE, Colonna M, Thurley K, Schlitzer A, Schneider C, Stamatiades EG, Mashreghi MF, Jonjic S, Hübner N, Diefenbach A, Kanda M, Triantafyllopoulou A. Amplification of autoimmune organ damage by NKp46-activated ILC1s. Nature 2024; 634:952-960. [PMID: 39137897 DOI: 10.1038/s41586-024-07907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
In systemic lupus erythematosus, loss of immune tolerance, autoantibody production and immune complex deposition are required but not sufficient for organ damage1. How inflammatory signals are initiated and amplified in the setting of autoimmunity remains elusive. Here we set out to dissect layers and hierarchies of autoimmune kidney inflammation to identify tissue-specific cellular hubs that amplify autoinflammatory responses. Using high-resolution single-cell profiling of kidney immune and parenchymal cells, in combination with antibody blockade and genetic deficiency, we show that tissue-resident NKp46+ innate lymphoid cells (ILCs) are crucial signal amplifiers of disease-associated macrophage expansion and epithelial cell injury in lupus nephritis, downstream of autoantibody production. NKp46 signalling in a distinct subset of group 1 ILCs (ILC1s) instructed an unconventional immune-regulatory transcriptional program, which included the expression of the myeloid cell growth factor CSF2. CSF2 production by NKp46+ ILCs promoted the population expansion of monocyte-derived macrophages. Blockade of the NKp46 receptor (using the antibody clone mNCR1.15; ref. 2) or genetic deficiency of NKp46 abrogated epithelial cell injury. The same cellular and molecular patterns were operative in human lupus nephritis. Our data provide support for the idea that NKp46+ ILC1s promote parenchymal cell injury by granting monocyte-derived macrophages access to epithelial cell niches. NKp46 activation in ILC1s therefore constitutes a previously unrecognized, crucial tissue rheostat that amplifies organ damage in autoimmune hosts, with broad implications for inflammatory pathologies and therapies.
Collapse
Affiliation(s)
- Stylianos-Iason Biniaris-Georgallis
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
| | - Tom Aschman
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
| | - Katerina Stergioula
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Frauke Schreiber
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Vajiheh Jafari
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Anna Taranko
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Tejal Karmalkar
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Ana Kasapi
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelencic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Lea Fabry
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Michail Papacharalampous
- Department of Rheumatology and Clinical Immunology, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irene Mattiola
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Karolin W Hublitz
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Frederik Heinrich
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | | | - Pawel Durek
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Oliver Hölsken
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin, Berlin, BIH Academy, Junior Clinician Scientist Program, Berlin, Germany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kevin Thurley
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | - Efstathios G Stamatiades
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
| | - Andreas Diefenbach
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany.
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| | - Antigoni Triantafyllopoulou
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Campus Mitte, Berlin, Germany.
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, Berlin, Germany.
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
2
|
Zeng X, Alimu X, Bahabayi A, Zhang Z, Zheng M, Yuan Z, Liu T, Liu C. Helios characterized circulating follicular helper T cells with enhanced functional phenotypes and was increased in patients with systemic lupus erythematosus. Clin Exp Med 2024; 24:5. [PMID: 38240853 PMCID: PMC10799143 DOI: 10.1007/s10238-023-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 01/22/2024]
Abstract
Helios was related to the immunosuppressive capacity and stability of regulatory T cells. However, the significance of Helios in follicular help T (TFH) and follicular regulatory T (TFR) cells is unclear. This research aimed to clarify the significance of Helios (IKZF2) in TFH and TFR cells and its clinical value in systemic lupus erythematosus (SLE). IKZF2 mRNA in different cell subsets was analyzed. Helios+ percentages in TFH and TFR cells were identified in the peripheral blood of 75 SLE patients and 62 HCs (healthy controls). PD-1 and ICOS expression were compared between Helios+ and Helios- cells. The capacity of TFH cells to secrete IL-21 and TFR cells to secrete IL-10 was measured. Correlation analysis and receiver operating characteristic (ROC) curve analysis were conducted to assess the clinical significance of Helios-related TFH and TFR cell subsets in SLE. There was Helios expression in TFH and TFR cells. PD-1 and ICOS were lower in Helios+ TFR than in Helios- TFR. ICOS was increased in Helios+ TFH cells compared with Helios- TFH cells, and ICOS in Helios+ TFH cells was downregulated in SLE. Helios+ TFH cells secreted more IL-21 than Helios- TFH cells, and Helios+ TFH cells from SLE patients had a stronger IL-21 secretion than HCs. Helios+ TFH percentages were negatively correlated with C3 and C4 and positively related to CRP and SLEDAI, and the AUC of Helios+ TFH to distinguish SLE from HC was 0.7959. Helios characterizes circulating TFH cells with enhanced function. Increased Helios+ TFH cells could reflect the autoimmune status of SLE.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
3
|
Sheppard S, Schuster IS, Andoniou CE, Cocita C, Adejumo T, Kung SKP, Sun JC, Degli-Esposti MA, Guerra N. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s. Cell Rep 2019; 22:3385-3392. [PMID: 29590608 PMCID: PMC5896200 DOI: 10.1016/j.celrep.2018.03.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s) and a subset of natural killer (NK) cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, 408 East 69th Street, New York, NY 10065, USA
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Clement Cocita
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Thomas Adejumo
- Medical Research Center, Hammersmith Hospital, London W12 0NN, UK
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0T5, Manitoba, Canada
| | - Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, 408 East 69th Street, New York, NY 10065, USA
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Thornton AM, Shevach EM. Helios: still behind the clouds. Immunology 2019; 158:161-170. [PMID: 31517385 DOI: 10.1111/imm.13115] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells are a subset of CD4+ T cells that are critical for the maintenance of self-tolerance. The forkhead box transcription factor Foxp3 is a master regulator for the Treg phenotype and function and its expression is essential in Treg cells, as the loss of Foxp3 results in lethal autoimmunity. Two major subsets of Treg cells have been described in vivo; thymus-derived Treg (tTreg) cells that develop in the thymus and peripherally induced Treg (pTreg) cells that are derived from conventional CD4+ Foxp3- T cells and are converted in peripheral tissues to cells that express Foxp3 and acquire suppressive ability. The transcription factor Helios, a member of the Ikaros transcription factor family, is expressed in 60-70% of Treg cells in both mouse and man, and is believed to be a marker of tTreg cells. In this review, we discuss the role and function of Helios in Treg cells, the controversy surrounding the use of Helios as a marker of tTreg cells, and how Helios controls specific aspects of the Treg cell program.
Collapse
Affiliation(s)
- Angela M Thornton
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2019; 286:6-22. [PMID: 30294966 PMCID: PMC6446816 DOI: 10.1111/imr.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady‐state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long‐term immune protection.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Jacquelot
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Berhani O, Glasner A, Kahlon S, Duev-Cohen A, Yamin R, Horwitz E, Enk J, Moshel O, Varvak A, Porgador A, Jonjic S, Mandelboim O. Human anti-NKp46 antibody for studies of NKp46-dependent NK cell function and its applications for type 1 diabetes and cancer research. Eur J Immunol 2018; 49:228-241. [PMID: 30536875 DOI: 10.1002/eji.201847611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that efficiently eliminate cancerous and infected cells. NKp46 is an important NK activating receptor shown to participate in recognition and activation of NK cells against pathogens, tumor cells, virally infected cells, and self-cells in autoimmune conditions, including type I and II diabetes. However, some of the NKp46 ligands are unknown and therefore investigating human NKp46 activity and its critical role in NK cell biology is problematic. We developed a unique anti-human NKp46 monocloncal antibody, denoted hNKp46.02 (02). The 02 mAb can induce receptor internalization and degradation. By binding to a unique epitope on a particular domain of NKp46, 02 lead NKp46 to lysosomal degradation. This downregulation therefore enables the investigation of all NKp46 activities. Indeed, using the 02 mAb we determined NK cell targets which are critically dependent on NKp46 activity, including certain tumor cells lines and human pancreatic beta cells. Most importantly, we showed that a toxin-conjugated 02 inhibits the growth of NKp46-positive cells; thus, exemplifying the potential of 02 in becoming an immunotherapeutic drug to treat NKp46-dependent diseases, such as, type I diabetes and NK and T cell related malignancies.
Collapse
Affiliation(s)
- Orit Berhani
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ariella Glasner
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shira Kahlon
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alexandra Duev-Cohen
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Rachel Yamin
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jonatan Enk
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Alexandar Varvak
- Chromatography Unit, Scientific Equipment Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Stipan Jonjic
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Almeida FF, Tognarelli S, Marçais A, Kueh AJ, Friede ME, Liao Y, Willis SN, Luong K, Faure F, Mercier FE, Galluso J, Firth M, Narni-Mancinelli E, Rais B, Scadden DT, Spallotta F, Weil S, Giannattasio A, Kalensee F, Zöller T, Huntington ND, Schleicher U, Chiocchetti AG, Ugolini S, Herold MJ, Shi W, Koch J, Steinle A, Vivier E, Walzer T, Belz GT, Ullrich E. A point mutation in the Ncr1 signal peptide impairs the development of innate lymphoid cell subsets. Oncoimmunology 2018; 7:e1475875. [PMID: 30288342 PMCID: PMC6169588 DOI: 10.1080/2162402x.2018.1475875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/01/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023] Open
Abstract
NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sara Tognarelli
- Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Andrew J Kueh
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Miriam E Friede
- Institute for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Yang Liao
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon N Willis
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kylie Luong
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fabrice Faure
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | | | - Justine Galluso
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Matthew Firth
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilie Narni-Mancinelli
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Sandra Weil
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Ariane Giannattasio
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Franziska Kalensee
- Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Tobias Zöller
- Institute for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Nicholas D Huntington
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ulrike Schleicher
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas G Chiocchetti
- Molecular Genetics Laboratory, Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Sophie Ugolini
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Marco J Herold
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wei Shi
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Joachim Koch
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, Mainz, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Eric Vivier
- CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, Marseille, France.,Innate Pharma, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Marseille Immunopole, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Evelyn Ullrich
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Division of Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Marin AV, Cárdenas PP, Jiménez-Reinoso A, Muñoz-Ruiz M, Regueiro JR. Lymphocyte integration of complement cues. Semin Cell Dev Biol 2018; 85:132-142. [PMID: 29438807 DOI: 10.1016/j.semcdb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
We address current data, views and puzzles on the emerging topic of regulation of lymphocytes by complement proteins or fragments. Such regulation is believed to take place through complement receptors (CR) and membrane complement regulators (CReg) involved in cell function or protection, respectively, including intracellular signalling. Original observations in B cells clearly support that complement cues through CR improve their performance. Other lymphocytes likely integrate complement-derived signals, as most lymphoid cells constitutively express or regulate CR and CReg upon activation. CR-induced signals, particularly by anaphylatoxins, clearly regulate lymphoid cell function. In contrast, data obtained by CReg crosslinking using antibodies are not always confirmed in human congenital deficiencies or knock-out mice, casting doubts on their physiological relevance. Unsurprisingly, human and mouse complement systems are not completely homologous, adding further complexity to our still fragmentary understanding of complement-lymphocyte interactions.
Collapse
Affiliation(s)
- Ana V Marin
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula P Cárdenas
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Miguel Muñoz-Ruiz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Jose R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
9
|
Jang Y, Gerbec ZJ, Won T, Choi B, Podsiad A, B Moore B, Malarkannan S, Laouar Y. Cutting Edge: Check Your Mice-A Point Mutation in the Ncr1 Locus Identified in CD45.1 Congenic Mice with Consequences in Mouse Susceptibility to Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1982-1987. [PMID: 29440507 DOI: 10.4049/jimmunol.1701676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
B6.SJL-Ptprca Pepcb /Boy (CD45.1) mice have been used in hundreds of congenic competitive transplants, with the presumption that they differ from C57BL/6 mice only at the CD45 locus. In this study, we describe a point mutation in the natural cytotoxicity receptor 1 (Ncr1) locus fortuitously identified in the CD45.1 strain. This point mutation was mapped at the 40th nucleotide of the Ncr1 locus causing a single amino acid mutation from cysteine to arginine at position 14 from the start codon, resulting in loss of NCR1 expression. We found that these mice were more resistant to CMV due to a hyper innate IFN-γ response in the absence of NCR1. In contrast, loss of NCR1 increased susceptibility to influenza virus, a result that is consistent with the role of NCR1 in the recognition of influenza Ag, hemagglutinin. This work sheds light on potential confounding experimental interpretation when this congenic strain is used as a tool for tracking lymphocyte development.
Collapse
Affiliation(s)
- Youngsoon Jang
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Zachary J Gerbec
- Blood Center of Wisconsin, Milwaukee, WI 53226.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Taejoon Won
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Bongkum Choi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Amy Podsiad
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Subramaniam Malarkannan
- Blood Center of Wisconsin, Milwaukee, WI 53226.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
10
|
Glasner A, Levi A, Enk J, Isaacson B, Viukov S, Orlanski S, Scope A, Neuman T, Enk CD, Hanna JH, Sexl V, Jonjic S, Seliger B, Zitvogel L, Mandelboim O. NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity 2018; 48:107-119.e4. [DOI: 10.1016/j.immuni.2017.12.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/15/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
11
|
Glasner A, Oiknine-Djian E, Weisblum Y, Diab M, Panet A, Wolf DG, Mandelboim O. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules. J Virol 2017; 91:e00785-17. [PMID: 28878071 PMCID: PMC5660495 DOI: 10.1128/jvi.00785-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus.IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection.
Collapse
Affiliation(s)
- Ariella Glasner
- Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Mohammad Diab
- Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and Chanock Center for Virology, IMRIC, Faculty of Medicine, The Hebrew University Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
12
|
Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep 2017; 7:13090. [PMID: 29026144 PMCID: PMC5638832 DOI: 10.1038/s41598-017-12998-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 01/20/2023] Open
Abstract
Natural Killer (NK) cells employ activating receptors like the Natural Cytotoxicity Receptors (NCRs: NKp30, NKp44 and NKp46), of which only NKp46 has a mouse orthologue (Ncr1), to eliminate abnormal cells. NKp46/Ncr1 is considered a selective marker for NK cells, although it is also found on a subset of ILCs, where it appears to be without function. The influenza virus hemagglutinin (HA) was the first ligand identified for Ncr1/NKp46 followed by other viral, bacterial and even fungal ligands. NKp46/Ncr1 also recognizes unknown self and tumor ligands. Here we describe the generation of a transgenic mouse where the Ncr1 gene is expressed in the Rosa locus, preceded by a floxed stop sequence allowing Ncr1/NKp46 expression in various tissues upon crossing with Cre transgenic mouse lines. Surprisingly, while several crossings were attempted, Ncr1 overexpression was successful only where cre recombinase expression was dependent on the Ncr1 promoter. Ncr1 overexpression in NK cells increased NK cell immunity in two hallmark Ncr1 related pathologies, influenza virus infection and B16 melanoma. These data suggest that increasing NK cell cytotoxicity by enforced NKp46/Ncr1 expression serves as a potential therapeutic opportunity for the treatment of various pathologies, and in immunotherapy.
Collapse
|
13
|
NKp46 Recognizes the Sigma1 Protein of Reovirus: Implications for Reovirus-Based Cancer Therapy. J Virol 2017; 91:JVI.01045-17. [PMID: 28724773 DOI: 10.1128/jvi.01045-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
The recent approval of oncolytic virus for therapy of melanoma patients has increased the need for precise evaluation of the mechanisms by which oncolytic viruses affect tumor growth. Here we show that the human NK cell-activating receptor NKp46 and the orthologous mouse protein NCR1 recognize the reovirus sigma1 protein in a sialic-acid-dependent manner. We identify sites of NKp46/NCR1 binding to sigma1 and show that sigma1 binding by NKp46/NCR1 leads to NK cell activation in vitro Finally, we demonstrate that NCR1 activation is essential for reovirus-based therapy in vivo Collectively, we have identified sigma1 as a novel ligand for NKp46/NCR1 and demonstrated that NKp46/NCR1 is needed both for clearance of reovirus infection and for reovirus-based tumor therapy.IMPORTANCE Reovirus infects much of the population during childhood, causing mild disease, and hence is considered to be efficiently controlled by the immune system. Reovirus also specifically infects tumor cells, leading to tumor death, and is currently being tested in human clinical trials for cancer therapy. The mechanisms by which our immune system controls reovirus infection and tumor killing are not well understood. We report here that natural killer (NK) cells recognize a viral protein named sigma1 through the NK cell-activating receptor NKp46. Using several mouse tumor models, we demonstrate the importance of NK cells in protection from reovirus infection and in reovirus killing of tumors in vivo Collectively, we identify a new ligand for the NKp46 receptor and provide evidence for the importance of NKp46 in the control of reovirus infections and in reovirus-based cancer therapy.
Collapse
|
14
|
Miletic A, Lenartic M, Popovic B, Brizic I, Trsan T, Miklic K, Mandelboim O, Krmpotic A, Jonjic S. NCR1-deficiency diminishes the generation of protective murine cytomegalovirus antibodies by limiting follicular helper T-cell maturation. Eur J Immunol 2017. [PMID: 28643847 DOI: 10.1002/eji.201646763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NKp46/NCR1 is an activating NK-cell receptor implicated in the control of various viral and bacterial infections. Recent findings also suggest that it plays a role in shaping the adaptive immune response to pathogens. Using NCR1-deficient (NCR1gfp/gfp ) mice, we provide evidence for the role of NCR1 in antibody response to mouse cytomegalovirus infection (MCMV). The absence of NCR1 resulted in impaired maturation, function and NK-cell migration to regional lymph nodes. In addition, CD4+ T-cell activation and follicular helper T-cell (Tfh) generation were reduced, leading to inferior germinal center (GC) B-cell maturation. As a consequence, NCR1gfp/gfp mice produced lower amounts of MCMV-specific antibodies upon infection, which correlated with lower number of virus-specific antibody secreting cells in analyzed lymph nodes.
Collapse
Affiliation(s)
- Antonija Miletic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia
| | - Branka Popovic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ofer Mandelboim
- The Lautenberg Center, Department of Immunology and Cancer Research, Hebrew University, Jerusalem, Israel
| | - Astrid Krmpotic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
15
|
Liao Y, Liu X, Huang Y, Huang H, Lu Y, Zhang Y, Shu S, Fang F. Expression pattern of CD11c on lung immune cells after disseminated murine cytomegalovirus infection. Virol J 2017; 14:132. [PMID: 28720115 PMCID: PMC5516330 DOI: 10.1186/s12985-017-0801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/10/2017] [Indexed: 12/27/2022] Open
Abstract
Background Cytomegalovirus (CMV) infection occurs frequently and is widespread globally. Numerous studies have shown that various types of immune cells play roles in mediating the response to CMV infection. CD11c, a commonly used dendritic cell (DC) marker, is expressed by other immune cells as well, such as T cells. This study analyzed the immune cells that express CD11c and monitored the expression level of their specific cell surface markers in the lung following a disseminated murine (M)CMV infection. Methods Mouse models of disseminated MCMV infection were used; uninfected and lipopolysaccharide (LPS)-treated mice were used as controls. At 1, 3 and 7 days following infection, single cell suspensions prepared from freshly digested lung tissue were stained for CD11c, CD86 and MHC II. Stained cells were analyzed using flow cytometry. Peripheral blood and single cell suspensions from spleen were sorted as well. Then these cells were subjected to analyze the CD11c expression pattern on natural killer (NK) cells and T cells. Results This assay showed that after MCMV infection, the expression of CD86 on pulmonary CD11chiMHC-IIhi cells (encompassing conventional DCs) was higher at 3 days post-infection than at 1 or 7 days post-infection, accompanied by a downregulation of MHC II. In addition, expression of CD11c was greatly increased in the MCMV infection group at 7 days post infection. This study also detected a large population of cells displaying an intermediate level of expression of CD11c (CD11cint); these cells were in the MCMV groups exclusively, and were subsequently identified as CD8+ T cells. In lung, spleen and blood, different proportions of CD11cint cells among the NK cell and T cell populations were observed between the BALB/c and C57BL/6 mice with or without MCMV infection. The expression level of NKp46 in NK cells dropped to a lower level after MCMV infection. Conclusions The findings collectively indicate that CD11cintCD8+ T cells might play a key role in anti-MCMV adaptive immune response in lungs, as well as in spleen and blood. B220+CD11cint NK cells might be a more effective type of NK cell, participating in anti-MCMV infection. The downregulation of NKp46, in particular, might be linked with the immune evasion of MCMV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0801-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Liao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heyu Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuanyuan Lu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanan Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Expression and function of NKp46 W32R: the human homologous protein of mouse NKp46 W32R (Noé). Sci Rep 2017; 7:40944. [PMID: 28134248 PMCID: PMC5278390 DOI: 10.1038/srep40944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells eradicate infected cells and tumors following the triggering of activating receptors, like the Natural Cytotoxicity Receptors (NCRs), which include NKp30, NKp44 and NKp46. NKp46 is the only NCR expressed in mice (mNKp46), and except for some Innate Lymphoid Cell (ILC) populations (ILC1/3 subsets), its expression is restricted to NK cells. Previously, a mouse named Noé was generated in which a random point mutation (W32R) impaired the cell surface expression of mNKp46. Interestingly, the Noé mice NK cells expressed twice as much of the transcription factor Helios, and displayed general non-NKp46 specific hyperactivity. We recently showed that the mNKp46 W32R (Noé) protein was expressed on the surface of various cells; albeit slowly and unstably, that it is aberrantly glycosylated and accumulates in the ER. Interestingly, the Tryptophan (Trp) residue in position 32 is conserved between humans and mice. Therefore, we studied here the human orthologue protein of mNKp46 W32R, the human NKp46 W32R. We demonstrated that NKp46 W32R is aberrantly glycosylated, accumulates in the ER, and is unstable on the cell surface. Furthermore, we showed that overexpression of NKp46 W32R or Helios resulted in augmented NK cell activation, which may be applied to boost NK activity for therapeutic applications.
Collapse
|