1
|
Cooper SK, Ackart DF, Lanni F, Henao-Tamayo M, Anderson GB, Podell BK. Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 2024; 15:1427472. [PMID: 39253081 PMCID: PMC11381408 DOI: 10.3389/fimmu.2024.1427472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
The control of bacterial growth is key to the prevention and treatment of tuberculosis (TB). Granulomas represent independent foci of the host immune response that present heterogeneous capacity for control of bacterial growth. At the whole tissue level, B cells and CD4 or CD8 T cells have an established role in immune protection against TB. Immune cells interact within each granuloma response, but the impact of granuloma immune composition on bacterial replication remains unknown. Here we investigate the associations between immune cell composition, including B cell, CD4, and CD8 T cells, and the state of replicating Mycobacterium tuberculosis (Mtb) within the granuloma. A measure of ribosomal RNA synthesis, the RS ratio®, represents a proxy measure of Mtb replication at the whole tissue level. We adapted the RS ratio through use of in situ hybridization, to identify replicating and non-replicating Mtb within each designated granuloma. We applied a regression model to characterize the associations between immune cell populations and the state of Mtb replication within each respective granuloma. In the evaluation of nearly 200 granulomas, we identified heterogeneity in both immune cell composition and proportion of replicating bacteria. We found clear evidence of directional associations between immune cell composition and replicating Mtb. Controlling for vaccination status and endpoint post-infection, granulomas with lower CD4 or higher CD8 cell counts are associated with a higher percent of replicating Mtb. Conversely, changes in B cell proportions were associated with little change in Mtb replication. This study establishes heterogeneity across granulomas, demonstrating that certain immune cell types are differentially associated with control of Mtb replication. These data suggest that evaluation at the granuloma level may be imperative to identifying correlates of immune protection.
Collapse
Affiliation(s)
- Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - David Forrest Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Faye Lanni
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - G Brooke Anderson
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Consortium for Applied Microbial Metrics, Aurora, CO, United States
| |
Collapse
|
2
|
Brassington K, Kanellakis P, Cao A, Toh BH, Peter K, Bobik A, Kyaw T. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts. Front Immunol 2022; 13:1040233. [PMID: 36483558 PMCID: PMC9724649 DOI: 10.3389/fimmu.2022.1040233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Cardiac fibrosis is central to heart failure (HF), especially HF with preserved ejection fraction (HFpEF), often caused by hypertension. Despite fibrosis causing diastolic dysfunction and impaired electrical conduction, responsible for arrhythmia-induced sudden cardiac death, the mechanisms are poorly defined and effective therapies are lacking. Here we show that crosstalk between cardiac cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is essential for development of non-ischemic hypertensive cardiac fibrosis. Methods and results CD8 T cell depletion in hypertensive mice, strongly attenuated CF, reduced cardiac apoptosis and improved ventricular relaxation. Interaction between cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is highly dependent on the CD8+ T cells expressing the innate stress-sensing receptor NKG2D and stressed cardiomyocytes expressing the NKG2D activating ligand RAE-1. The interaction between NKG2D and RAE-1 results in CD8+ T cell activation, release of perforin, cardiomyocyte apoptosis, increased numbers of TGF-β1 expressing macrophages and fibrosis. Deleting NKG2D or perforin from CD8+ T cells greatly attenuates these effects. Activation of the cytoplasmic DNA-STING-TBK1-IRF3 signaling pathway in overly stressed cardiomyocytes is responsible for elevating RAE-1 and MCP-1, a macrophage attracting chemokine. Inhibiting STING activation greatly attenuates cardiomyocyte RAE-1 expression, the cardiomyocyte apoptosis, TGF-β1 and fibrosis. Conclusion Our data highlight a novel pathway by which CD8 T cells contribute to an early triggering mechanism in CF development; preventing CD8+ T cell activation by inhibiting the cardiomyocyte RAE-1-CD8+ T cell-NKG2D axis holds promise for novel therapeutic strategies to limit hypertensive cardiac fibrosis.
Collapse
Affiliation(s)
- Kurt Brassington
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Cao
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Tin Kyaw,
| |
Collapse
|
3
|
Wu KX, Wang XT, Hu XL, Jiang XY, Zhuang JC, Xu YZ, Lin LR, Tong ML, Yang TC, Liu LL. LncRNA-ENST00000421645 Upregulates Kank1 to Inhibit IFN-γ Expression and Promote T Cell Apoptosis in Neurosyphilis. Front Microbiol 2021; 12:749171. [PMID: 34917045 PMCID: PMC8669649 DOI: 10.3389/fmicb.2021.749171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs are involved in many infectious diseases. Our previous studies showed that lncRNA-ENST00000421645 expression is increased in T lymphocytes of neurosyphilis patients compared to healthy controls. However, whether lncRNA-ENST00000421645 has biological functions remains unclear. The current study was undertaken to understand the mechanism of lncRNA-ENST00000421645 in T lymphocyte function in neurosyphilis patients. The lncRNA-ENST00000421645 pull-down assay showed that lncRNA-ENST00000421645 acted on the acetylase NAT10. The chromatin immunoprecipitation (ChIP)-PCR results showed that lncRNA-ENST00000421645 promoted the acetylation of histone H3K27 adjacent to the Kank1 promoter, thereby promoting Kank1 protein expression. Kank1 promotes 14-3-3 protein expression, inhibits NF-kB activation, inhibits IFN-γ secretion by T lymphocytes, and promotes T lymphocyte apoptosis. Taken together, our findings suggest a novel mechanism that LncRNA-ENST00000421645 upregulates Kank1 to inhibit IFN-γ expression and promote T cell apoptosis in neurosyphilis.
Collapse
Affiliation(s)
- Kai-Xuan Wu
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xin-Lin Hu
- Department of Dermatology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiao-Yong Jiang
- Department of Dermatology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Jing-Cong Zhuang
- Department of Neurology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yan-Zhu Xu
- Department of Dermatology, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, School of Medical, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Coordinated In Vitro Release of Granulysin, Perforin and IFN-γ in TB and HIV/TB Co-Infection Associated with Clinical Outcomes before and after Anti-TB Treatment. Pathogens 2020; 9:pathogens9080655. [PMID: 32823923 PMCID: PMC7459825 DOI: 10.3390/pathogens9080655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 01/14/2023] Open
Abstract
Granule-associated killing molecules released from cytotoxic T lymphocytes participate as a crucial step in immunity against tuberculosis (TB), but the role of coordinated production remains controversial. Coordinated release of effector molecules in vitro after stimulating peripheral blood mononuclear cells (PBMCs) of active TB or HIV/TB coinfection patients with PPD, purified protein derivative of tuberculin and avirulent Mtb, H37Ra, an attenuated strain were investigated in association with clinical outcomes. Perforin, granzyme-B, granulysin and IFN-γ were measured using ELISA. Before anti-TB treatment, PBMCs of TB stimulated with PPD or H37Ra released higher perforin, granzyme-B, and granulysin levels than in HIV/TB and released significantly higher IFN-γ (p = 0.045, p = 0.022). Granulysin positively correlated with perforin in TB (p = 0.042, r = 0.385), HIV/TB coinfection (p = 0.003, r = 0.941) after PPD stimulation, and after H37Ra stimulation in TB (p = 0.005, r = 0.549), but negatively correlated with granzyme B in TB (p = 0.042, r = −0.386), HIV/TB coinfection (p = 0.042, r = 0.754) were noted. After anti-TB treatment, increased levels of perforin, granulysin and IFN-γ in TB or HIV/TB upon PPD or H37Ra stimulation, and decreased granzyme-B levels after PPD (p = 0.003) or H37Ra (p = 0.028) stimulation in TB were observed. These results suggest that granulysin may act synergistic with perforin and IFN-γ in TB, indicating its crucial function in host immunity to tuberculosis. Future studies with larger numbers of patients ought to be conducted in the future.
Collapse
|
5
|
Facciuolo A, Lee AH, Gonzalez Cano P, Townsend HGG, Falsafi R, Gerdts V, Potter A, Napper S, Hancock REW, Mutharia LM, Griebel PJ. Regional Dichotomy in Enteric Mucosal Immune Responses to a Persistent Mycobacterium avium ssp. paratuberculosis Infection. Front Immunol 2020; 11:1020. [PMID: 32547548 PMCID: PMC7272674 DOI: 10.3389/fimmu.2020.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H. Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | - Hugh G. G. Townsend
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Volker Gerdts
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - R. E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Lucy M. Mutharia
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philip J. Griebel
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Abstract
Interferon gamma, referred to here as IFN-γ, is a major component in immunological cell signaling and is a critical regulatory protein for overall immune system function. First discovered in 1965 (Wheelock Science 149: (3681)310-311, 1965), IFN-γ is the only Type II interferon identified. Its expression is both positively and negatively controlled by different factors. In this chapter, we will review the transcriptional and post-transcriptional control of IFN-γ expression. In the transcriptional control part, the regular activators and suppressors are summarized, we will also focus on the epigenetic control, such as chromosome access, DNA methylation, and histone acetylation. The more we learn about the control of this regulatory protein will allow us to apply this knowledge in the future to effectively manipulate IFN-γ expression for the treatment of infections, cancer, inflammation, and autoimmune diseases.
Collapse
|
7
|
Barreira-Silva P, Torrado E, Nebenzahl-Guimaraes H, Kallenius G, Correia-Neves M. Aetiopathogenesis, immunology and microbiology of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Dirix V, Corbière V, Wyndham-Thomas C, Selis E, Allard S, Hites M, Aerts L, Giese T, Mascart F. Blood tolerogenic monocytes and low proportions of dendritic cell subpopulations are hallmarks of human tuberculosis. J Leukoc Biol 2018; 103:945-954. [PMID: 29489031 DOI: 10.1002/jlb.4a1117-448r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The immune mechanisms underlying the pathogenesis of tuberculosis (TB) need better understanding to improve TB management, as the disease still causes more than 1.5 million deaths annually. This study tested the hypothesis that a modulation of the proportions or activation status of APC during Mycobacterium tuberculosis infection may impact on the course of the disease. PROCEDURE Proportions of circulating APC subsets and the expression of stimulatory (CD86), inhibitory (ILT-3, ILT-4, ILT-7), or apoptosis-inducing (PDL-1, PDL-2) molecules were analyzed in 2 independent cohorts, on blood monocytes and dendritic cell (DC) subsets from patients with active or latent TB infection (aTB /LTBI) and from uninfected subjects. RESULTS Higher proportions of classical CD14+ CD16- and intermediate CD14+ CD16+ monocytes, and lower proportions of plasmacytoid DC (pDC) and type 2 myeloid DC were observed in the blood from untreated patients with aTB compared with those with LTBI and with healthy subjects, with an early normalization of the proportions of pDC during treatment. In addition, monocytes from M. tuberculosis-infected subjects expressed higher levels of ILT-3, ILT-4, and PDL-1 compared with healthy controls, these differences being more important for patients with aTB than for those with LTBI. CONCLUSIONS These results confirm the hypothesis of a modulation of the proportions and activation status of APC during M. tuberculosis infection and suggest that these cells could play a role in driving the course of M. tuberculosis infection.
Collapse
Affiliation(s)
- Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Chloé Wyndham-Thomas
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Elodie Selis
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Sabine Allard
- Department of Internal Medicine and Infectious Diseases, UZ Brussel, Brussels, Belgium
| | - Maya Hites
- Department of Internal Medicine and Infectious Diseases, Hôpital Erasme, Brussels, Belgium
| | - Laetitia Aerts
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Thomas Giese
- Laboratory of Molecular Immunodiagnostics, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Immunobiology Clinic, Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
9
|
Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection. Cell Rep 2017; 18:2752-2765. [PMID: 28297677 DOI: 10.1016/j.celrep.2017.02.057] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022] Open
Abstract
Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1Mmar) that induces the cGas/STING/TBK1/IRF-3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8+ T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4+ Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1Mmar confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis.
Collapse
|
10
|
Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection. mBio 2017; 8:mBio.01514-17. [PMID: 29066547 PMCID: PMC5654932 DOI: 10.1128/mbio.01514-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF−/−) are highly susceptible to infection with Mycobacterium tuberculosis, and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis. However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4+ T cells as the infection progresses. M. tuberculosis-specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis. Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis. While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis. In this study, we demonstrate that CD4+, CD8+, and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs.
Collapse
|
11
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Jiang H, Gong H, Zhang Q, Gu J, Liang L, Zhang J. Decreased expression of perforin in CD8 + T lymphocytes in patients with Mycobacterium tuberculosis infection and its potential value as a marker for efficacy of treatment. J Thorac Dis 2017; 9:1353-1360. [PMID: 28616288 DOI: 10.21037/jtd.2017.05.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cytolytic activity against mycobacteria tuberculosis (MTB) within the infected macrophage is a crucial step in the immunity against TB infection, as MTB is an intracellular bacterium. Cytotoxic molecules such as perforin and granzymes produced by cytolytic T cells directly participate in this process. In this study, we evaluated the cytotoxicity function employing flow cytometry analysis of the level of expression of interferon-γ (IFN-γ), perforin and granzyme B in CD8+ T cells from patients with active pulmonary TB (PTB), stable PTB and healthy controls, and explored whether MTB antigen (MTB Ag)-stimulated cytotoxic molecules would be useful for monitoring responses to anti-TB treatment. METHODS Intracellular IFN-γ, perforin, and granzyme B were measured by flow cytometry in CD8+ T lymphocyte populations from peripheral blood mononuclear cells before and after stimulation with ESAT-6 and CFP-10 peptides for 72 hours. A total of 38 healthy controls, 52 PTB patients after treatment for 2 months and 58 patients with active PTB were enrolled. RESULTS The positive rate of IFN-γ+ CD8+ T cells was expressed higher in active PTB patients and stable PTB compared to healthy controls. Expression of perforin in CD8+ T lymphocytes was lower in the active PTB than the stable PTB. Positive downregulation of perforin and granzyme B after stimulation with ESAT-6 and CFP-10 peptides in active PTB and stable PTB was seen. IFN-γ was upregulated after stimulation. ROC curve analysis showed that the area under the curve (AUC) of perforin and perforin + IFN-γ after stimulation were 0.766 (P=0.000), 0.802 (P=0.000), respectively. CONCLUSIONS Our results show that expression of perforin in CD8+ T lymphocytes is downregulated in PTB infection and ESAT-6 and CFP-10 peptides might participate in the downregulation process. This finding cautiously suggests that MTB Ag-stimulated perforin downregulation and IFN-γ upregulation might be a potential index for monitoring therapy response in active PTB patients.
Collapse
Affiliation(s)
- Hongbin Jiang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Huili Gong
- Tuberculosis Section, Shanghai Pudong New Area Pulmonary Hospital, Shanghai 201209, China
| | - Qing Zhang
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Liang
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jun Zhang
- Department of Laboratory Medicine, Shanghai DeltaHealth Hospital, Shanghai 201702, China
| |
Collapse
|
13
|
Fu Y, Xu X, Xue J, Duan W, Yi Z. Deregulated lncRNAs in B Cells from Patients with Active Tuberculosis. PLoS One 2017; 12:e0170712. [PMID: 28125665 PMCID: PMC5268381 DOI: 10.1371/journal.pone.0170712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Role of lncRNAs in human adaptive immune response to TB infection is largely unexplored. To address this issue, here we characterized lncRNA expression profile in primary human B cell response to TB infection using microarray assay. Several lncRNAs and mRNAs were chosen for RT-qPCR validation. Bioinformatics prediction was applied to delineate function of the deregulated mRNAs. We found that 844 lncRNAs and 597 mRNAs were differentially expressed between B cell samples from individuals with or without TB. KEGG pathway analysis for the deregulated mRNAs indicated a number of pathways, such as TB, TLR signaling pathway and antigen processing and presentation. Moreover, corresponding to the dysregulation of many lncRNAs, we also found that their adjacent protein-coding genes were also deregulated. Functional annotation for the corresponding mRNAs showed that these lncRNAs were mainly associated with TLR signaling, TGF-β signaling. Interestingly, SOCS3, which is a critical negative regulator of cytokine response to TB infection and its nearby lncRNA XLOC_012582, were highly expressed in active TB B cells. Subsequent RT-qPCR results confirmed the changes. Whether upregulated XLOC_012582 causes SOCS3 overexpression and is eventually involved in the context of exacerbations of active TB represents an interesting issue that deserves to be further explored. Taken together, for the first time, we identified a set of deregulated lncRNAs in active TB B cells and their functions were predicted. Such findings provided novel insight into the pathogenesis of TB and further studies should focus on the function and pathogenic mechanisms of the lncRNAs involved in active TB.
Collapse
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Shandong, Weifang, China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong, Weifang, China
- * E-mail: (YF); (ZY)
| | - Xianqin Xu
- Department of Clinical Skill Laboratory of Clinical Medicine College, Weifang Medical University, Shandong, Weifang, China
| | - Junfang Xue
- Department of Surgery of Gaomi City people's Hospital, Shandong, Weifang, China
| | - Wenping Duan
- Department of Nursing of Affiliated Hospital of Weifang Medical University, Shandong, Weifang, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong, Weifang, China
- * E-mail: (YF); (ZY)
| |
Collapse
|
14
|
Ding Y, Zheng H, Feng C, Wang B, Liu C, Mi K, Cao H, Meng S. Heat-Shock Protein gp96 Enhances T Cell Responses and Protective Potential to Bacillus Calmette-Guérin Vaccine. Scand J Immunol 2017; 84:222-8. [PMID: 27417661 DOI: 10.1111/sji.12463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/12/2016] [Indexed: 01/28/2023]
Abstract
The commonly used Bacillus Calmette-Guérin (BCG) vaccine only induces moderate T cell responses and is less effective in protecting against pulmonary tuberculosis (TB) in adults and ageing populations. Thus, developing new TB vaccine candidates is an important strategy against the spread of Mycobacterium tuberculosis. Here, we demonstrated that immunization with heat-shock protein gp96 as an adjuvant led to a significantly increased CD4(+) and CD8(+) T cell response to a BCG vaccine. Secretion of the Th1-type cytokines was increased by splenocytes from gp96-immunized mice. In addition, adding gp96 as an adjuvant effectively improved the protection against intravenous challenge with Mycobacterium bovis BCG in mice. Our study reveals the novel property of gp96 in boosting the vaccine-specific T cell response and its potential use as an adjuvant for BCG vaccines against mycobacterial infection.
Collapse
Affiliation(s)
- Y Ding
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - C Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - B Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - C Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - K Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - H Cao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - S Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| |
Collapse
|
15
|
Booty MG, Barreira-Silva P, Carpenter SM, Nunes-Alves C, Jacques MK, Stowell BL, Jayaraman P, Beamer G, Behar SM. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection. Sci Rep 2016; 6:36720. [PMID: 27819295 PMCID: PMC5098191 DOI: 10.1038/srep36720] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022] Open
Abstract
IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R−/− mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R−/− T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.
Collapse
Affiliation(s)
- Matthew G Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US.,Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts 02115, US
| | - Palmira Barreira-Silva
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stephen M Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US
| | - Miye K Jacques
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US
| | - Britni L Stowell
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, US
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, US
| |
Collapse
|
16
|
Trentini MM, de Oliveira FM, Kipnis A, Junqueira-Kipnis AP. The Role of Neutrophils in the Induction of Specific Th1 and Th17 during Vaccination against Tuberculosis. Front Microbiol 2016; 7:898. [PMID: 27375607 PMCID: PMC4901074 DOI: 10.3389/fmicb.2016.00898] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/26/2016] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium tuberculosis causes tuberculosis (TB), a disease that killed more than 1.5 million people worldwide in 2014, and the Bacillus Calmette Guérin (BCG) vaccine is the only currently available vaccine against TB. However, it does not protect adults. Th1 and Th17 cells are crucial for TB control, as well as the neutrophils that are directly involved in DC trafficking to the draining lymph nodes and the activation of T lymphocytes during infection. Although several studies have shown the importance of neutrophils during M. tuberculosis infection, none have shown its role in the development of a specific response to a vaccine. The vaccine mc2-CMX was shown to protect mice against M. tuberculosis challenge, mainly due to specific Th1 and Th17 cells. This study evaluated the importance of neutrophils in the generation of the Th1- and Th17-specific responses elicited by this vaccine. The vaccine injection induced a neutrophil rich lesion with a necrotic central area. The IL-17 KO mice did not generate vaccine-specific Th1 cells. The vaccinated IL-22 KO mice exhibited Th1- and Th17-specific responses. Neutrophil depletion during vaccination abrogated the induction of Th1-specific responses and prohibited the bacterial load reduction observed in the vaccinated animals. The results show, for the first time, the role of neutrophils in the generation of specific Th1 and Th17 cells in response to a tuberculosis vaccine.
Collapse
Affiliation(s)
- Monalisa M Trentini
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| | - Fábio M de Oliveira
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| | - André Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| | - Ana P Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| |
Collapse
|