1
|
Wang WB, Lin YD, Zhao L, Liao C, Zhang Y, Davila M, Sun J, Chen Y, Xiong N. Developmentally programmed early-age skin localization of iNKT cells supports local tissue development and homeostasis. Nat Immunol 2023; 24:225-238. [PMID: 36624165 DOI: 10.1038/s41590-022-01399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Skin is exposed to various environmental assaults and undergoes morphological changes immediately after birth. Proper localization and function of immune cells in the skin is crucial for protection and establishment of skin tissue homeostasis. Here we report the discovery of a developmentally programmed process that directs preferential localization of invariant natural killer T (iNKT) cells to the skin for early local homeostatic regulation. We show that iNKT cells are programmed predominantly with a CCR10+ skin-homing phenotype during thymic development in infant and young mice. Early skin localization of iNKT cells is critical for proper commensal bacterial colonization and tissue development. Mechanistically, skin iNKT cells provide a local source of transferrin that regulates iron metabolism in hair follicle progenitor cells and helps hair follicle development. These findings provide molecular insights into the establishment and physiological functions of iNKT cells in the skin during early life.
Collapse
Affiliation(s)
- Wei-Bei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Micha Davila
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jasmine Sun
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yidong Chen
- Department of Population Health Sciences, and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Li C, Lin YD, Wang WB, Xu M, Zhang N, Xiong N. Differential regulation of CD8 + CD86 + Vγ1.1 + γδT cell responses in skin barrier tissue protection and homeostatic maintenance. Eur J Immunol 2022; 52:1498-1509. [PMID: 35581932 DOI: 10.1002/eji.202249793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Compared to αβT cells, γδT cells are more innate-like and preferentially function as the first line of defense in barrier tissues. Certain populations of γδT cells possess adaptive immune cell properties but their regulation is not well understood. We herein report that while innate-like γδT17 cells dominated in the skin of WT mice, Vγ1.1+ γδT cells with adaptive T cell-like properties predominantly expanded in the skin of TCRβ-/- and B2m-/- mice. Commensal bacteria drove expansion of Vγ1.1+ skin γδT cells, functional properties of which correlated with local immune requirements. That is, Vγ1.1+ skin γδT cells in TCRβ-/- mice were a heterogeneous population; while Vγ1.1+ skin γδT cells in B2m-/- mice were mostly CD8+ CD86+ cells that had a similar function of CD8+ CD86+ skin αβT cells in supporting local Treg cells. We also found that intrinsic TGF-β receptor 2-derived signals in skin CD8+ αβT and γδT cells are required for their expression of CD86, a molecule important in supporting skin Treg cells. Our findings reveal broad functional potentials of γδT cells that are coordinately regulated with αβT cells to help maintain local tissue homeostasis.
Collapse
Affiliation(s)
- Chao Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Yang-Ding Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Wei-Bei Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Ming Xu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Na Xiong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Dermatology and Cutaneous Surgery, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Davila ML, Xu M, Huang C, Gaddes ER, Winter L, Cantorna MT, Wang Y, Xiong N. CCL27 is a crucial regulator of immune homeostasis of the skin and mucosal tissues. iScience 2022; 25:104426. [PMID: 35663027 PMCID: PMC9157018 DOI: 10.1016/j.isci.2022.104426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Abundant immune cells reside in barrier tissues. Understanding the regulation of these cells can yield insights on their roles in tissue homeostasis and inflammation. Here, we report that the chemokine CCL27 is critical for establishment of resident lymphocytes and immune homeostasis in barrier tissues. CCL27 expression is associated with normal skin and hair follicle development independent of commensal bacterial stimulation, indicative of a homeostatic role for the chemokine. Accordingly, in the skin of CCL27-knockout mice, there is a reduced presence and dysregulated localization of T cells that express CCR10, the cognate receptor to CCL27. Besides, CCL27-knockout mice have overreactive skin inflammatory responses in an imiquimod-induced model of psoriasis. Beyond the skin, CCL27-knockout mice have increased infiltration of CCR10+ T cells into lungs and reproductive tracts, the latter of which also exhibit spontaneous inflammation. Our findings demonstrate that CCL27 is critical for immune homeostasis across barrier tissues.
Collapse
Affiliation(s)
- Micha L Davila
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Ming Xu
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Chengyu Huang
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Erin R Gaddes
- Department of Biomedical Engineering, 526 CBEB, The Pennsylvania State University, University Park, PA 16802, USA
| | - Levi Winter
- Pathobiology Graduate Program, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margherita T Cantorna
- Pathobiology Graduate Program, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, 526 CBEB, The Pennsylvania State University, University Park, PA 16802, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA.,Department of Medicine-Division of Dermatology and Cutaneous Surgery University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Leijten EF, van Kempen TS, Olde Nordkamp MA, Pouw JN, Kleinrensink NJ, Vincken NL, Mertens J, Balak DMW, Verhagen FH, Hartgring SA, Lubberts E, Tekstra J, Pandit A, Radstake TR, Boes M. Tissue-Resident Memory CD8+ T Cells From Skin Differentiate Psoriatic Arthritis From Psoriasis. Arthritis Rheumatol 2021; 73:1220-1232. [PMID: 33452865 PMCID: PMC8362143 DOI: 10.1002/art.41652] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To compare immune cell phenotype and function in psoriatic arthritis (PsA) versus psoriasis in order to better understand the pathogenesis of PsA. METHODS In-depth immunophenotyping of different T cell and dendritic cell subsets was performed in patients with PsA, psoriasis, or axial spondyloarthritis and healthy controls. Subsequently, we analyzed cells from peripheral blood, synovial fluid (SF), and skin biopsy specimens using flow cytometry, along with high-throughput transcriptome analyses and functional assays on the specific cell populations that appeared to differentiate PsA from psoriasis. RESULTS Compared to healthy controls, the peripheral blood of patients with PsA was characterized by an increase in regulatory CD4+ T cells and interleukin-17A (IL-17A) and IL-22 coproducing CD8+ T cells. One population specifically differentiated PsA from psoriasis: i.e., CD8+CCR10+ T cells were enriched in PsA. CD8+CCR10+ T cells expressed high levels of DNAX accessory molecule 1 and were effector memory cells that coexpressed skin-homing receptors CCR4 and cutaneous lymphocyte antigen. CD8+CCR10+ T cells were detected under inflammatory and homeostatic conditions in skin, but were not enriched in SF. Gene profiling further revealed that CD8+CCR10+ T cells expressed GATA3, FOXP3, and core transcriptional signature of tissue-resident memory T cells, including CD103. Specific genes, including RORC, IFNAR1, and ERAP1, were up-regulated in PsA compared to psoriasis. CD8+CCR10+ T cells were endowed with a Tc2/22-like cytokine profile, lacked cytotoxic potential, and displayed overall regulatory function. CONCLUSION Tissue-resident memory CD8+ T cells derived from the skin are enhanced in the circulation of patients with PsA compared to patients with psoriasis alone. This may indicate that aberrances in cutaneous tissue homeostasis contribute to arthritis development.
Collapse
MESH Headings
- Adult
- Aminopeptidases/genetics
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Case-Control Studies
- Female
- Forkhead Transcription Factors/genetics
- GATA3 Transcription Factor/genetics
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Humans
- Immunologic Memory/immunology
- Immunophenotyping
- Integrin alpha Chains/genetics
- Interleukin-17/immunology
- Interleukins/immunology
- Male
- Middle Aged
- Minor Histocompatibility Antigens/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Oligosaccharides/metabolism
- Psoriasis/genetics
- Psoriasis/immunology
- Psoriasis/pathology
- Receptor, Interferon alpha-beta/genetics
- Receptors, CCR10/metabolism
- Receptors, CCR4/metabolism
- Sialyl Lewis X Antigen/analogs & derivatives
- Sialyl Lewis X Antigen/metabolism
- Skin/immunology
- Skin/pathology
- Spondylarthropathies/genetics
- Spondylarthropathies/immunology
- Spondylarthropathies/pathology
- Synovial Fluid/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Interleukin-22
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jorre Mertens
- University Medical Center UtrechtUtrechtThe Netherlands
| | | | | | | | - Erik Lubberts
- Erasmus University Medical CenterRotterdamThe Netherlands
| | | | | | | | - Marianne Boes
- University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
5
|
Karnezis T, Farnsworth RH, Harris NC, Williams SP, Caesar C, Byrne DJ, Herle P, Macheda ML, Shayan R, Zhang YF, Yazar S, Takouridis SJ, Gerard C, Fox SB, Achen MG, Stacker SA. CCL27/CCL28-CCR10 Chemokine Signaling Mediates Migration of Lymphatic Endothelial Cells. Cancer Res 2019; 79:1558-1572. [PMID: 30709930 DOI: 10.1158/0008-5472.can-18-1858] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
Metastasis via the lymphatic vasculature is an important step in cancer progression. The formation of new lymphatic vessels (lymphangiogenesis), or remodeling of existing lymphatics, is thought to facilitate the entry and transport of tumor cells into lymphatic vessels and on to distant organs. The migration of lymphatic endothelial cells (LEC) toward guidance cues is critical for lymphangiogenesis. While chemokines are known to provide directional navigation for migrating immune cells, their role in mediating LEC migration during tumor-associated lymphangiogenesis is not well defined. Here, we undertook gene profiling studies to identify chemokine-chemokine receptor pairs that are involved in tumor lymphangiogenesis associated with lymph node metastasis. CCL27 and CCL28 were expressed in tumor cells with metastatic potential, while their cognate receptor, CCR10, was expressed by LECs and upregulated by the lymphangiogenic growth factor VEGFD and the proinflammatory cytokine TNFα. Migration assays demonstrated that LECs are attracted to both CCL27 and CCL28 in a CCR10-dependent manner, while abnormal lymphatic vessel patterning in CCR10-deficient mice confirmed the significant role of CCR10 in lymphatic patterning. In vivo analyses showed that LECs are recruited to a CCL27 or CCL28 source, while VEGFD was required in combination with these chemokines to enable formation of coherent lymphatic vessels. Moreover, tumor xenograft experiments demonstrated that even though CCL27 expression by tumors enhanced LEC recruitment, the ability to metastasize was dependent on the expression of VEGFD. These studies demonstrate that CCL27 and CCL28 signaling through CCR10 may cooperate with inflammatory mediators and VEGFD during tumor lymphangiogenesis. SIGNIFICANCE: The study shows that the remodeling of lymphatic vessels in cancer is influenced by CCL27 and CCL28 chemokines, which may provide a future target to modulate metastatic spread.
Collapse
Affiliation(s)
- Tara Karnezis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Nicole C Harris
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Steven P Williams
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Carol Caesar
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David J Byrne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Prad Herle
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Maria L Macheda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ramin Shayan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - You-Fang Zhang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sezer Yazar
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon J Takouridis
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Craig Gerard
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Marc G Achen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends Immunol 2018; 39:734-747. [PMID: 30001872 DOI: 10.1016/j.it.2018.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Cellular immunity is governed by a complex network of migratory cues that enable appropriate immune cell responses in a timely and spatially controlled fashion. This review focuses on the chemokines and their receptors regulating the steady-state localisation of immune cells within healthy peripheral tissues. Steady-state immune cell traffic is not well understood but is thought to involve constitutive (homeostatic) chemokines. The recent discovery of tissue-resident memory T cells (TRM cells) illustrates our need for understanding how chemokines control immune cell mobilisation and/or retention. These studies will be critical to unravel novel pathways for preserving tissue function (aging) and preventing tissue disease (vaccination).
Collapse
|
7
|
Šahmatova L, Sügis E, Šunina M, Hermann H, Prans E, Pihlap M, Abram K, Rebane A, Peterson H, Peterson P, Kingo K, Kisand K. Signs of innate immune activation and premature immunosenescence in psoriasis patients. Sci Rep 2017; 7:7553. [PMID: 28790368 PMCID: PMC5548718 DOI: 10.1038/s41598-017-07975-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects skin and is associated with systemic inflammation and many serious comorbidities ranging from metabolic syndrome to cancer. Important discoveries about psoriasis pathogenesis have enabled the development of effective biological treatments blocking the T helper 17 pathway. However, it has not been settled whether psoriasis is a T cell-mediated autoimmune disease or an autoinflammatory disorder that is driven by exaggerated innate immune signalling. Our comparative gene expression and hierarchical cluster analysis reveal important gene circuits involving innate receptors. Innate immune activation is indicated by increased absent in melanoma 2 (AIM2) inflammasome gene expression and active caspase 1 staining in psoriatic lesional skin. Increased eomesodermin (EOMES) expression in lesional and non-lesional skin is suggestive of innate-like virtual memory CD8+ T cell infiltration. We found that signs of systemic inflammation were present in most of the patients, correlated with the severity of the disease, and pointed to IL-6 involvement in the pathogenesis of psoriatic arthritis. Among the circulating T cell subpopulations, we identified a higher proportion of terminally differentiated or senescent CD8+ T cells, especially in patients with long disease duration, suggesting premature immunosenescence and its possible implications for psoriasis co-morbidities.
Collapse
Affiliation(s)
- Liisi Šahmatova
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Elena Sügis
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd, Tartu, Estonia
| | - Marina Šunina
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen Hermann
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ele Prans
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
8
|
Establishment and function of tissue-resident innate lymphoid cells in the skin. Protein Cell 2017; 8:489-500. [PMID: 28271445 PMCID: PMC5498338 DOI: 10.1007/s13238-017-0388-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.
Collapse
|
9
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
10
|
Abeywardane A, Caviness G, Choi Y, Cogan D, Gao A, Goldberg D, Heim-Riether A, Jeanfavre D, Klein E, Kowalski JA, Mao W, Miller C, Moss N, Ramsden P, Raymond E, Skow D, Smith-Keenan L, Snow RJ, Wu F, Wu JP, Yu Y. N-Arylsulfonyl-α-amino carboxamides are potent and selective inhibitors of the chemokine receptor CCR10 that show efficacy in the murine DNFB model of contact hypersensitivity. Bioorg Med Chem Lett 2016; 26:5277-5283. [DOI: 10.1016/j.bmcl.2016.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
|