1
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
2
|
Look A, Burns D, Tews I, Roghanian A, Mansour S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front Immunol 2023; 14:1176724. [PMID: 37153585 PMCID: PMC10154573 DOI: 10.3389/fimmu.2023.1176724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.
Collapse
Affiliation(s)
- Alex Look
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Brandolini L, d'Angelo M, Novelli R, Castelli V, Giorgio C, Sirico A, Cocchiaro P, D'Egidio F, Benedetti E, Cristiano C, Bugatti A, Ruocco A, Amendola PG, Talarico C, Manelfi C, Iaconis D, Beccari A, Quadros AU, Cunha TM, Caruso A, Russo R, Cimini A, Aramini A, Allegretti M. Paclitaxel binds and activates C5aR1: A new potential therapeutic target for the prevention of chemotherapy-induced peripheral neuropathy and hypersensitivity reactions. Cell Death Dis 2022; 13:500. [PMID: 35614037 PMCID: PMC9130998 DOI: 10.1038/s41419-022-04964-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and hypersensitivity reactions (HSRs) are among the most frequent and impairing side effects of the antineoplastic agent paclitaxel. Here, we demonstrated that paclitaxel can bind and activate complement component 5a receptor 1 (C5aR1) and that this binding is crucial in the etiology of paclitaxel-induced CIPN and anaphylaxis. Starting from our previous data demonstrating the role of interleukin (IL)-8 in paclitaxel-induced neuronal toxicity, we searched for proteins that activate IL-8 expression and, by using the Exscalate platform for molecular docking simulations, we predicted the high affinity of C5aR1 with paclitaxel. By in vitro studies, we confirmed the specific and competitive nature of the C5aR1-paclitaxel binding and found that it triggers intracellularly the NFkB/P38 pathway and c-Fos. In F11 neuronal cells and rat dorsal root ganglia, C5aR1 inhibition protected from paclitaxel-induced neuropathological effects, while in paclitaxel-treated mice, the absence (knock-out mice) or the inhibition of C5aR1 significantly ameliorated CIPN symptoms-in terms of cold and mechanical allodynia-and reduced the chronic pathological state in the paw. Finally, we found that C5aR1 inhibition can counteract paclitaxel-induced anaphylactic cytokine release in macrophages in vitro, as well as the onset of HSRs in mice. Altogether these data identified C5aR1 as a key mediator and a new potential pharmacological target for the prevention and treatment of CIPN and HSRs induced by paclitaxel.
Collapse
Affiliation(s)
- Laura Brandolini
- Dompé Farmaceutici SpA, Via Campo di Pile, 67100, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Rubina Novelli
- Dompé Farmaceutici SpA, Via S. Lucia, 20122, Milan, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Cristina Giorgio
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | - Anna Sirico
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | | | - Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonella Bugatti
- Department of Molecular and Traslational Medicine, University of Brescia Medical School, 25123, Brescia, Italy
| | - Anna Ruocco
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | | | - Carmine Talarico
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | - Andrea Beccari
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 80131, Naples, Italy
| | - Andreza U Quadros
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Arnaldo Caruso
- Department of Molecular and Traslational Medicine, University of Brescia Medical School, 25123, Brescia, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, 19122, USA
| | - Andrea Aramini
- Dompé Farmaceutici SpA, Via Campo di Pile, 67100, L'Aquila, Italy
| | | |
Collapse
|
4
|
Lamikanra AA, Tsang HP, Elsiddig S, Spencer M, Curnow E, Danby R, Roberts DJ. The Migratory Properties and Numbers of T Regulatory Cell Subsets in Circulation Are Differentially Influenced by Season and Are Associated With Vitamin D Status. Front Immunol 2020; 11:685. [PMID: 32508805 PMCID: PMC7248210 DOI: 10.3389/fimmu.2020.00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/26/2020] [Indexed: 12/28/2022] Open
Abstract
The control of peripheral immune responses by FOXP3+ T regulatory (Treg) cells is essential for immune tolerance. However, at any given time, Treg frequencies in whole blood can vary more than fivefold between individuals. An understanding of factors that influence Treg numbers and migration within and between individuals would be a powerful tool for cellular therapies that utilize the immunomodulatory properties of Tregs to control pathology associated with inflammation. We sought to understand how season could influence Treg numbers and phenotype by monitoring the proportion of natural thymus-derived Tregs (nTregs) defined as (CD3+CD4+CD25+FOXP3+CD127–/low) cells as a proportion of CD4+ T cells and compared these to all FOXP3+ Tregs (allTregs, CD3+CD25+FOXP3+CD127–/low). We were able to determine changes within individuals during 1 year suggesting an influence of season on nTreg frequencies. We found that, between individuals at any given time, nTreg/CD4+ T cells ranged from 1.8% in February to 8.8% in the summer where median nTreg/CD4 in January and February was 2.4% (range 3.75–1.76) and in July and August was 4.5% (range 8.81–3.17) p = 0.025. Importantly we were able to monitor individual nTreg frequencies throughout the year in donors that started the year with high or low nTregs. Some nTreg variation could be attributed to vitamin D status where normal linear regression estimated that an absolute increase in nTreg/CD4+ by 0.11% could be expected with 10 nmol increase in serum 25 (OH) vitamin D3 (p = 0.005, 95% CI: 0.03–0.19). We assessed migration markers on Tregs for the skin and/or gut. Here cutaneous lymphocyte associated antigen (CLA+) expression on CD25+FOXP3+CD4+/CD4+ was compared with the same population expressing the gut associated integrin, β7. Gut tropic CD25+FOXP3+β7+Tregs/CD4+ had similar dynamics to nTreg/CD4+. Conversely, CD25+FOXP3+CLA+Tregs/CD4+ showed no association with vitamin D status. Important for cellular therapies requiring isolation of Tregs, the absolute number of β7+CD4+CD25+FOXP3+Tregs was positively associated with 25(OH)vitamin D3 (R2 = 0.0208, r = 0.184, p = 0.021) whereas the absolute numbers of CLA+CD4+CD25+FOXP3+Tregs in the periphery were not influenced by vitamin D status. These baseline observations provide new opportunities to utilize seasonal variables that influence Treg numbers and their migratory potential in patients or donors.
Collapse
Affiliation(s)
- Abigail A Lamikanra
- National Health Service Blood and Transplant, Oxford, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoi Pat Tsang
- National Health Service Blood and Transplant, Oxford, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shaza Elsiddig
- National Health Service Blood and Transplant, Oxford, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Spencer
- National Health Service Blood and Transplant, Oxford, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elinor Curnow
- NHS Blood and Transplant, Statistics and Clinical Studies, Bristol, United Kingdom
| | - Robert Danby
- Department of Haematology, Churchill Hospital, Oxford, United Kingdom.,Anthony Nolan Research Institute, London, United Kingdom
| | - David J Roberts
- National Health Service Blood and Transplant, Oxford, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Jimeno R, Lebrusant-Fernandez M, Margreitter C, Lucas B, Veerapen N, Kelly G, Besra GS, Fraternali F, Spencer J, Anderson G, Barral P. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. eLife 2019; 8:51663. [PMID: 31841113 PMCID: PMC6930077 DOI: 10.7554/elife.51663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022] Open
Abstract
Tissue homeostasis is critically dependent on the function of tissue-resident lymphocytes, including lipid-reactive invariant natural killer T (iNKT) cells. Yet, if and how the tissue environment shapes the antigen specificity of iNKT cells remains unknown. By analysing iNKT cells from lymphoid tissues of mice and humans we demonstrate that their T cell receptor (TCR) repertoire is highly diverse and is distinct for cells from various tissues resulting in differential lipid-antigen recognition. Within peripheral tissues iNKT cell recent thymic emigrants exhibit a different TCR repertoire than mature cells, suggesting that the iNKT population is shaped after arrival to the periphery. Consistent with this, iNKT cells from different organs show distinct basal activation, proliferation and clonal expansion. Moreover, the iNKT cell TCR repertoire changes following immunisation and is shaped by age and environmental changes. Thus, post-thymic modification of the TCR-repertoire underpins the distinct antigen specificity for iNKT cells in peripheral tissues
Collapse
Affiliation(s)
- Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Marta Lebrusant-Fernandez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Christian Margreitter
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Natacha Veerapen
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Jo Spencer
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
6
|
Ni Q, Pham NB, Meng WS, Zhu G, Chen X. Advances in immunotherapy of type I diabetes. Adv Drug Deliv Rev 2019; 139:83-91. [PMID: 30528629 DOI: 10.1016/j.addr.2018.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease affecting 3 million individuals in the U.S. The pathogenesis of T1DM is driven by immune-mediated destruction of pancreatic β cells, the source of glucose regulator insulin. While T1DM can be successfully managed with insulin replacement therapy, approaches that can modify the underlying immuno-pathology of β cell destruction has been long sought after. Immunotherapy can attenuate T cell responses against β cell antigens. Given the detailed cellular and molecular definitions of T1DM immune responses, rational immunomodulation can be and have been developed in mouse models, and in some instances, tested in humans. The possibility of identifying individuals who are predisposed to T1DM through genotyping lend to the possibility of preventive vaccines. While much has been accomplished in delineating the mechanisms of immunotherapies, some of which are being tested in humans, long-term preservation of β cells and insulin independency has not been achieved. In this regard, the drug delivery field has much to offer in maximizing the benefits of immune modulators by optimizing spatiotemporal presentation of antigens and costimulatory signals. In this review, we attempt to capture the current state of T1DM immunotherapy by highlighting representative studies.
Collapse
Affiliation(s)
- Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ngoc B Pham
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Wang J, Yang Q, Zhang Q, Yin C, Zhou L, Zhou J, Wang Y, Mi QS. Invariant Natural Killer T Cells Ameliorate Monosodium Urate Crystal-Induced Gouty Inflammation in Mice. Front Immunol 2017; 8:1710. [PMID: 29312287 PMCID: PMC5733058 DOI: 10.3389/fimmu.2017.01710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
Gout is an inflammatory arthritis caused by deposition of intra-articular monosodium urate (MSU) crystal. Previous studies have focused on resident macrophage, infiltrating monocyte, and neutrophil responses to MSU crystal; yet the mechanisms of cellular changes and the potential involvement of other regulatory immune cells remain largely unknown. Invariant natural killer T (iNKT) cells, an innate type of T cell, are involved in the development of various inflammatory diseases. Here, we investigate the role of iNKT cells in MSU crystal-induced gouty inflammation. MSU crystal-induced inflammatory profiles in an air-pouch model were examined in iNKT-deficient CD1d knockout (KO) and wild-type (WT) control mice. To explore potential mechanisms of iNKT cell regulation of gouty inflammation, we cocultured CD4+ or CD4−iNKT cells with bone marrow-derived macrophages (BMDMs). We found that iNKT cells quickly migrated to the site of inflammation upon MSU crystal stimulation in WT mice. The total number of infiltrating cells in CD1d KO mice, especially neutrophils, was dramatically increased at 6 and 12 h (P < 0.01) post-MSU crystal challenge, compared with WT controls. BMDMs cocultured with CD4+iNKT cells produced less tumor necrosis factor-α and expressed higher levels of M2 macrophage markers, including Clec7a, Pdcd1Ig2, and interleukin-4 (P < 0.01), compared with BMDMs cocultured with CD4−iNKT cells or conventional CD4+ T cells. CD4+iNKT cells are one of the key regulators of MSU crystal-induced gouty inflammation through the control of macrophage polarization. iNKT cells may serve as a new therapeutic target for gout.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Qibin Yang
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Rheumatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Quanbo Zhang
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Gerontology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Congcong Yin
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhou
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Jingguo Zhou
- Department of Rheumatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Sheng Mi
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
8
|
Clancy-Thompson E, Chen GZ, Tyler PM, Servos MM, Barisa M, Brennan PJ, Ploegh HL, Dougan SK. Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:159-171. [PMID: 28576977 PMCID: PMC5518629 DOI: 10.4049/jimmunol.1700214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Cell Differentiation
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Transfer Techniques
- Organ Specificity
- Promyelocytic Leukemia Zinc Finger Protein
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Gui Zhen Chen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Marta Barisa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Patrick J Brennan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02215
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215;
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| |
Collapse
|