1
|
Pérez M, Buey B, Corral P, Giraldos D, Latorre E. Microbiota-Derived Short-Chain Fatty Acids Boost Antitumoral Natural Killer Cell Activity. J Clin Med 2024; 13:3885. [PMID: 38999461 PMCID: PMC11242436 DOI: 10.3390/jcm13133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The intestinal microbiota can regulate numerous host functions, including the immune response. Through fermentation, the microbiota produces and releases microbial metabolites such as short-chain fatty acids (SCFAs), which can affect host homeostasis. There is growing evidence that the gut microbiome can have a major impact on cancer. Specific gut microbial composition and metabolites are associated with tumor status in the host. However, their effects on the antitumor response have scarcely been investigated. Natural killer (NK) cells play an important role in antitumor immunity due to their ability to directly identify and eliminate tumor cells. Methods: The aim of this study was to investigate the effects of SCFAs on antitumoral NK cell activity, using NK-92 cell line. Results: Here, we describe how SCFAs can boost antitumoral NK cell activity. The SCFAs induced the release of NK extracellular vesicles and reduced the secretion of the anti-inflammatory cytokine IL-10. The SCFAs also increased the cytotoxicity of the NK cells against multiple myeloma cells. Conclusions: Our results indicate, for the first time, the enormous potential of SCFAs in regulating antitumoral NK cell defense, where modulation of the SCFAs' production could play a fundamental role in cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Corral
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - David Giraldos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
2
|
Wang S, Lin X, Tang Y, Liang Y, Zhang M, Xie Z, Guo Y, Dong Y, Zhao Q, Guo Z, Wang D, He X, Ju W, Chen M. Ischemia-free liver transplantation improves the prognosis of recipients using functionally marginal liver grafts. Clin Mol Hepatol 2024; 30:421-435. [PMID: 38600871 PMCID: PMC11261232 DOI: 10.3350/cmh.2024.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND/AIMS The shortage of donor liver hinders the development of liver transplantation. This study aimed to clarify the poor outcomes of functionally marginal liver grafts (FMLs) and provide evidence for the improvement of ischemia-free liver transplantation (IFLT) after FML transplantation. METHODS Propensity score matching was used to control for confounding factors. The outcomes of the control group and FML group were compared to demonstrate the negative impact of FMLs on liver transplantation patients. We compared the clinical improvements of the different surgical types. To elucidate the underlying mechanism, we conducted bioinformatic analysis based on transcriptome and single-cell profiles. RESULTS FMLs had a significantly greater hazard ratio (HR: 1.969, P=0.018) than did other marginal livers. A worse 90-day survival (Mortality: 12.3% vs. 5.0%, P=0.007) was observed in patients who underwent FML transplantation. Patients who received FMLs had a significant improvement in overall survival after IFLT (Mortality: 10.4% vs 31.3%, P=0.006). Pyroptosis and inflammation were inhibited in patients who underwent IFLT. The infiltration of natural killer cells was lower in liver grafts from these patients. Bulk transcriptome profiles revealed a positive relationship between IL-32 and Caspase 1 (R=0.73, P=0.01) and between IL-32 and Gasdermin D (R=0.84, P=0.0012). CONCLUSION FML is a more important negative prognostic parameter than other marginal liver parameters. IFLT might ameliorate liver injury in FMLs by inhibiting the infiltration of NK cells, consequently leading to the abortion of IL-32, which drives pyroptosis in monocytes and macrophages.
Collapse
Affiliation(s)
- Shuai Wang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Xiaohong Lin
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yunhua Tang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Yichen Liang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Min Zhang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Zhonghao Xie
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Yuqi Dong
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Qiang Zhao
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Zhiyong Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Dongping Wang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Meng D, Dong H, Wang C, Zang R, Wang J. Role of interleukin‑32 in cancer progression (Review). Oncol Lett 2024; 27:54. [PMID: 38192653 PMCID: PMC10773214 DOI: 10.3892/ol.2023.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
Interleukin (IL)-32 is induced by pro-inflammatory cytokines and promotes the release of inflammatory cytokines. Therefore, it can promote inflammatory responses. The present review article summarized the role of the receptors required for IL-32 action, the biological function of IL-32 and its mechanism of action in tumors. Moreover, it assessed the significance of aberrant IL-32 expression in associated diseases and analyzed the effects of IL-32 on four key types of cancer: Colorectal, gastric, breast and lung. However, the mechanism of action of IL-32 needs to be further demonstrated by assessing the role of this cytokine in cancer to elucidate novel and reliable targets for future cancer treatments.
Collapse
Affiliation(s)
- Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hang Dong
- Department of Hematology, Shenzhen Yantian District People's Hospital, Shenzhen, Guangdong 518081, P.R. China
| | - Chennan Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Rongjia Zang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jianjie Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
4
|
Luo Y, Guo J, Wen J, Zhao W, Huang K, Liu Y, Wang G, Luo R, Niu T, Feng Y, Xu H, Kim P, Zhou X. StemDriver: a knowledgebase of gene functions for hematopoietic stem cell fate determination. Nucleic Acids Res 2024; 52:D1042-D1052. [PMID: 37953308 PMCID: PMC10767831 DOI: 10.1093/nar/gkad1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
StemDriver is a comprehensive knowledgebase dedicated to the functional annotation of genes participating in the determination of hematopoietic stem cell fate, available at http://biomedbdc.wchscu.cn/StemDriver/. By utilizing single-cell RNA sequencing data, StemDriver has successfully assembled a comprehensive lineage map of hematopoiesis, capturing the entire continuum from the initial formation of hematopoietic stem cells to the fully developed mature cells. Extensive exploration and characterization were conducted on gene expression features corresponding to each lineage commitment. At the current version, StemDriver integrates data from 42 studies, encompassing a diverse range of 14 tissue types spanning from the embryonic phase to adulthood. In order to ensure uniformity and reliability, all data undergo a standardized pipeline, which includes quality data pre-processing, cell type annotation, differential gene expression analysis, identification of gene categories correlated with differentiation, analysis of highly variable genes along pseudo-time, and exploration of gene expression regulatory networks. In total, StemDriver assessed the function of 23 839 genes for human samples and 29 533 genes for mouse samples. Simultaneously, StemDriver also provided users with reference datasets and models for cell annotation. We believe that StemDriver will offer valuable assistance to research focused on cellular development and hematopoiesis.
Collapse
Affiliation(s)
- Yangyang Luo
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingjing Guo
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kexin Huang
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Liu
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Grant Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruihan Luo
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ting Niu
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuzhou Feng
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haixia Xu
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pora Kim
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Wallimann A, Schenk M. IL-32 as a potential biomarker and therapeutic target in skin inflammation. Front Immunol 2023; 14:1264236. [PMID: 37727785 PMCID: PMC10505650 DOI: 10.3389/fimmu.2023.1264236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
IL-32 is a recently described cytokine that performs a variety of functions under inflammatory conditions. Serum IL-32 has been shown to be elevated in several diseases, including type 2 diabetes, cancer, systemic lupus erythematosus, HIV infection, and atopic diseases including atopic dermatitis. There are nine different isoforms of IL-32, with IL-32γ being the most biologically active one. The following review summarizes the different roles of the various IL-32 isoforms in the context of skin inflammation, with a focus on atopic dermatitis.
Collapse
Affiliation(s)
- Alexandra Wallimann
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mirjam Schenk
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Institute of Tissue Medicine and Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Zhi L, Wang X, Gao Q, He W, Shang C, Guo C, Niu Z, Zhu W, Zhang X. Intrinsic and extrinsic factors determining natural killer cell fate: Phenotype and function. Biomed Pharmacother 2023; 165:115136. [PMID: 37453199 DOI: 10.1016/j.biopha.2023.115136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Natural killer (NK) cells are derived from hematopoietic stem cells. They belong to the innate lymphoid cell family, which is an important part of innate immunity. This family plays a role in the body mainly through the release of perforin, granzyme, and various cytokines and is involved in cytotoxicity and cytokine-mediated immune regulation. NK cells involved in normal immune regulation and the tumor microenvironment (TME) can exhibit completely different states. Here, we discuss the growth, development, and function of NK cells in regard to intrinsic and extrinsic factors. Intrinsic factors are those that influence NK cells to promote cell maturation and exert their effector functions under the control of internal metabolism and self-related genes. Extrinsic factors include the metabolism of the TME and the influence of related proteins on the "fate" of NK cells. This review targets the potential of NK cell metabolism, cellular molecules, regulatory genes, and other mechanisms involved in immune regulation. We further discuss immune-mediated tumor therapy, which is the trend of current research.
Collapse
Affiliation(s)
- Lingtong Zhi
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xing Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Qing Gao
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenhui He
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chongye Shang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhiyuan Niu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wuling Zhu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
7
|
Sang X, Xue X, Mi Z, Wang Z, Yu X, Sun L, Ma S, Wang Z, Liu H, Zhang F. Induction of IL-32 in the immune response of keratinocytes to Mycobacterium marinum infection. Exp Dermatol 2023; 32:1451-1458. [PMID: 37309674 DOI: 10.1111/exd.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Keratinocytes are the predominant cell type in the skin epidermis, and they not only protect the skin from the influence of external physical factors but also function as an immune barrier against microbial invasion. However, little is known regarding the immune defence mechanisms of keratinocytes against mycobacteria. Here, we performed single-cell RNA sequencing (scRNA-seq) on skin biopsy samples from patients with Mycobacterium marinum infection and bulk RNA sequencing (bRNA-seq) on M. marinum-infected keratinocytes in vitro. The combined analysis of scRNA-seq and bRNA-seq data revealed that several genes were upregulated in M. marinum-infected keratinocytes. Further in vitro validation of these genes by quantitative polymerase chain reaction and western blotting assay confirmed the induction of IL-32 in the immune response of keratinocytes to M. marinum infection. Immunohistochemistry also showed the high expression of IL-32 in patients' lesions. These findings suggest that IL-32 induction is a possible mechanism through which keratinocytes defend against M. marinum infection; this could provide new targets for the immunotherapy of chronic cutaneous mycobacterial infections.
Collapse
Affiliation(s)
- Xu Sang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xueping Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Boreika R, Sitkauskiene B. Interleukin-32 in Pathogenesis of Atopic Diseases: Proinflammatory or Anti-Inflammatory Role? J Interferon Cytokine Res 2021; 41:235-243. [PMID: 34280028 DOI: 10.1089/jir.2020.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Atopic diseases, such as atopic dermatitis (AD), allergic asthma (AA), and allergic rhinitis (AR), are increasingly becoming a worldwide issue. This atopic triad originates at an early age and on a multifactorial basis, causing significant discomfort to susceptible individuals. The global case number is now reaching new highs, so exploring immune system regulation and its components is becoming critical. One cytokine, interleukin-32 (IL-32), is involved in inflammation and regulation of the immune system. It has nine isoforms that show varying degrees of expression, both intracellularly and extracellularly. IL-32 is secreted by immune cells, such as monocytes, macrophages, natural killer cells, and T cells, and by nonimmune cells, including fibroblasts, keratinocytes, and endothelial cells. Its production is regulated and augmented by microorganisms, mitogens, and other cytokines. Early studies demonstrated that IL-32 was an immune regulator that functioned to protect against inflammatory diseases, including AD, AA, and AR, and proposed a proinflammatory role for IL-32 in immune regulation and symptom exacerbation. However, several later reports suggested that IL-32 is downregulated in inflammatory diseases and exerts an anti-inflammatory effect. This review article focuses on recent findings regarding the detrimental and protective roles of IL-32 in development and management of inflammatory diseases. The exact role of IL-32 in AD, AA, and AR still remains to be elucidated. Future research should explore new avenues of IL-32 functionality in human inflammatory diseases.
Collapse
Affiliation(s)
- Rytis Boreika
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
9
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Guimarães de Matos G, Barroso de Figueiredo AM, Diniz Gonçalves PH, Luiz de Lima Silva L, Bastista AC, Borges CL, Maria de Almeida Soares C, Joosten LAB, Ribeiro-Dias F. Paracoccidioidesbrasiliensis induces IL-32 and is controlled by IL-15/IL-32/vitamin D pathway in vitro. Microb Pathog 2021; 154:104864. [PMID: 33771629 DOI: 10.1016/j.micpath.2021.104864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic fungal disease caused by Paracoccidioides spp., whose clinical outcome depends on immune response. Interleukin 32 (IL-32) is a cytokine present in inflammatory and infectious diseases, including bacterial, virus and protozoan infections. Its role in fungal disease remains unclear. The axis IL-15, IL-32 and vitamin D leads to microbicidal capacity against intracellular pathogens. Thus, the aims of this study were to investigate the production of IL-32 during Paracoccidioides spp. infection and whether this cytokine and IL-15 can increase P. brasiliensis control in a vitamin D dependent manner. IL-32 was highly detected in oral lesions from patients with PCM. In addition, high production of this cytokine was intracellularly detected in peripheral blood mononuclear cells (PBMCs) from healthy donors after exposure to particulated P. brasiliensis antigens (PbAg). The IL-32γ isoform was predominantly expressed, but there was mRNA alternative splicing for IL-32α isoform. The induction of IL-32 was dependent on Dectin-1 receptor. Infection of PBMCs with P. brasiliensis yeasts did not significantly induce IL-32 production even after activation with exogenous IFN-γ or IL-15 treatments. Although IL-15 was a potent inducer of IL-32 production, treatment with this cytokine did not increase the fungal control unless vitamin D was present in high levels. In this case, both IL-15 and IL-32 increased fungicidal activity of PBMCs. Together, data showed that IL-32 is present in lesions of PCM, PbAg induces IL-32, and the axis of IL-15/IL-32/vitamin D can contribute to control fungal infection. The data suggest that exposure to molecules from P. brasiliensis, as β-glucans, is needed to induce IL-32 production since only heat-killed and sonicated P. brasiliensis yeasts were able to increase IL-32, which was blocked by anti-Dectin-1 antibodies. This is the first description about IL-15/IL-32/vitamin D pathway role in P. brasiliensis infection.
Collapse
Affiliation(s)
- Grazzielle Guimarães de Matos
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Marina Barroso de Figueiredo
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Hugo Diniz Gonçalves
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucas Luiz de Lima Silva
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
11
|
Gaggero S, Witt K, Carlsten M, Mitra S. Cytokines Orchestrating the Natural Killer-Myeloid Cell Crosstalk in the Tumor Microenvironment: Implications for Natural Killer Cell-Based Cancer Immunotherapy. Front Immunol 2021; 11:621225. [PMID: 33584718 PMCID: PMC7878550 DOI: 10.3389/fimmu.2020.621225] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are endowed with germline-encoded receptors that enable them to detect and kill malignant cells without prior priming. Over the years, overwhelming evidence has identified an essential role for NK cells in tumor immune surveillance. More recently, clinical trials have also highlighted their potential in therapeutic settings. Yet, data show that NK cells can be dysregulated within the tumor microenvironment (TME), rendering them ineffective in eradicating the cancer cells. This has been attributed to immune suppressive factors, including the tumor cells per se, stromal cells, regulatory T cells, and soluble factors such as reactive oxygen species and cytokines. However, the TME also hosts myeloid cells such as dendritic cells, macrophages, neutrophils, and myeloid-derived suppressor cells that influence NK cell function. Although the NK-myeloid cell crosstalk can promote anti-tumor responses, myeloid cells in the TME often dysregulate NK cells via direct cell-to-cell interactions down-regulating key NK cell receptors, depletion of nutrients and growth factors required for NK cell growth, and secretion of metabolites, chemokines and cytokines that ultimately alter NK cell trafficking, survival, and cytotoxicity. Here, we review the complex functions of myeloid-derived cytokines in both supporting and suppressing NK cells in the TME and how NK cell-derived cytokines can influence myeloid subsets. We discuss challenges related to these interactions in unleashing the full potential of endogenous and adoptively infused NK cells. Finally, we present strategies aiming at improving NK cell-based cancer immunotherapies via pathways that are involved in the NK-myeloid cell crosstalk in the TME.
Collapse
Affiliation(s)
- Silvia Gaggero
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Kristina Witt
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Suman Mitra
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
12
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
13
|
Genetic variation in Interleukin-32 influence the immune response against New World Leishmania species and susceptibility to American Tegumentary Leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008029. [PMID: 32023240 PMCID: PMC7028298 DOI: 10.1371/journal.pntd.0008029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Interleukin-32 is a novel inflammatory mediator that has been described to be important in the immunopathogenesis and control of infections caused by Leishmania parasites. By performing experiments with primary human cells in vitro, we demonstrate that the expression of IL-32 isoforms is dependent on the time exposed to L. amazonensis and L. braziliensis antigens. Moreover, for the first time we show the functional consequences of three different genetic variations in the IL32 (rs4786370, rs4349147, rs1555001) modulating IL-32γ expression, influencing innate and adaptive cytokine production after Leishmania exposure. Using a Brazilian cohort of 107 American Tegumentary Leishmaniasis patients and a control cohort of 245 healthy individuals, the IL32 rs4786370 genetic variant was associated with protection against ATL, whereas the IL32 rs4349147 was associated with susceptibility to the development of localized cutaneous and mucosal leishmaniasis. These novel insights may help improve therapeutic strategies and lead to benefits for patients suffering from Leishmania infections. In this study, we described how IL-32 isoforms are crucial to host defense against new world Leishmania species infections. Furthermore, by accessing the genotype frequency of genetic variations in IL32 in a cohort of Brazilian patients with American Tegumentary Leishmaniasis (ATL) and controls, we have obtained indications that IL-32 is associated with disease susceptibility and the development of different clinical manifestations. Thus, this study provides us an extra evidence that the isoforms of IL-32 shape the immune response favoring the development of different cytokines produced by peripheral blood mononuclear cells that might contribute to skin/mucosal inflammation and host defense.
Collapse
|
14
|
Abstract
Under many circumstances, prophylactic immunizations are considered as the only possible strategy to control infectious diseases. Considerable efforts are typically invested in immunogen selection but, erroneously, the route of administration is not usually a major concern despite the fact that it can strongly influence efficacy. The skin is now considered a key component of the lymphatic system with tremendous potential as a target for vaccination. The purpose of this review is to present the immunological basis of the skin-associated lymphoid tissue, so as to provide understanding of the skin vaccination strategies. Several strategies are currently being developed for the transcutaneous delivery of antigens. The classical, mechanical or chemical disruptions versus the newest approaches based on microneedles for antigen delivery through the skin are discussed herein.
Collapse
|
15
|
Meng Y, Wu T, Billings R, Kopycka-Kedzierawski DT, Xiao J. Human genes influence the interaction between Streptococcus mutans and host caries susceptibility: a genome-wide association study in children with primary dentition. Int J Oral Sci 2019; 11:19. [PMID: 31148553 PMCID: PMC6544625 DOI: 10.1038/s41368-019-0051-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 01/16/2023] Open
Abstract
Streptococcus mutans is a well-known cause of dental caries, due to its acidogenicity, aciduricity, and ability to synthesize exopolysaccharides in dental plaques. Intriguingly, not all children who carry S. mutans manifest caries, even with similar characteristics in oral hygiene, diet, and other environmental factors. This phenomenon suggests that host susceptibility potentially plays a role in the development of dental caries; however, the association between host genetics, S. mutans, and dental caries remains unclear. Therefore, this study examined the influence of host gene-by-S. mutans interaction on dental caries. Genome-wide association analyses were conducted in 709 US children (<13 years old), using the dbGap database acquired from the center for oral health research in appalachia (COHRA) and the Iowa Head Start programmes (GEIRS). A generalized estimating equation was used to examine the gene-by-S. mutans interaction effects on the outcomes (decayed and missing/filled primary teeth due to caries). Sequentially, the COHRA and GEIRS data were used to identify potential interactions and replicate the findings. Three loci at the genes interleukin 32 (IL32), galactokinase 2 (GALK2), and CUGBP, Elav-like family member 4 (CELF4) were linked to S. mutans carriage, and there was a severity of caries at a suggestive significance level among COHRA children (P < 9 × 10-5), and at a nominal significance level among GEIRS children (P = 0.047-0.001). The genetic risk score that combined the three loci also significantly interacted with S. mutans (P < 0.000 1). Functional analyses indicated that the identified genes are involved in the host immune response, galactose carbohydrate metabolism, and food-rewarding system, which could potentially be used to identify children at high risk for caries and to develop personalized caries prevention strategies.
Collapse
Affiliation(s)
- Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Ronald Billings
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Degos C, Heinemann M, Barrou J, Boucherit N, Lambaudie E, Savina A, Gorvel L, Olive D. Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Front Immunol 2019; 10:877. [PMID: 31105699 PMCID: PMC6498896 DOI: 10.3389/fimmu.2019.00877] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Endometrial Cancer is the most common cancer in the female genital tract in developed countries, and with its increasing incidence due to risk factors such as aging and obesity tends to become a public health issue. However, its immune environment has been less characterized than in other tumors such as breast cancers. NK cells are cytotoxic innate lymphoid cells that are considered as a major anti-tumoral effector cell type which function is drastically altered in tumors which participates to tumor progression. Here we characterize tumor NK cells both phenotypically and functionally in the tumor microenvironment of endometrial cancer. For that, we gathered endometrial tumors, tumor adjacent healthy tissue, blood from matching patients and healthy donor blood to perform comparative analysis of NK cells. First we found that NK cells were impoverished in the tumor infiltrate. We then compared the phenotype of NK cells in the tumor and found that tumor resident CD103+ NK cells exhibited more co-inhibitory molecules such as Tigit, and TIM-3 compared to recruited CD103− NK cells and that the expression of these molecules increased with the severity of the disease. We showed that both chemokines (CXCL12, IP-10, and CCL27) and cytokines profiles (IL-1β and IL-6) were altered in the tumor microenvironment and might reduce NK cell function and recruitment to the tumor site. This led to hypothesize that the tumor microenvironment reduces resident NK cells cytotoxicity which we confirmed by measuring cytotoxic effector production and degranulation. Taken together, our results show that the tumor microenvironment reshapes NK cell phenotype and function to promote tumor progression.
Collapse
Affiliation(s)
- Clara Degos
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Mellie Heinemann
- Department of Surgical Oncology 2, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix-Marseille University, Marseille, France
| | - Julien Barrou
- Department of Surgical Oncology 2, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix-Marseille University, Marseille, France
| | - Nicolas Boucherit
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology 2, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix-Marseille University, Marseille, France
| | | | - Laurent Gorvel
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Daniel Olive
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseillle, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Paz H, Tsoi J, Kalbasi A, Grasso CS, McBride WH, Schaue D, Butterfield LH, Maurer DM, Ribas A, Graeber TG, Economou JS. Interleukin 32 expression in human melanoma. J Transl Med 2019; 17:113. [PMID: 30953519 PMCID: PMC6449995 DOI: 10.1186/s12967-019-1862-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Various proinflammatory cytokines can be detected within the melanoma tumor microenvironment. Interleukin 32 (IL32) is produced by T cells, NK cells and monocytes/macrophages, but also by a subset of melanoma cells. We sought to better understand the biology of IL32 in human melanoma. Methods We analyzed RNA sequencing data from 53 in-house established human melanoma cell lines and 479 melanoma tumors from The Cancer Genome Atlas dataset. We evaluated global gene expression patterns associated with IL32 expression. We also evaluated the impact of proinflammatory molecules TNFα and IFNγ on IL32 expression and dedifferentiation in melanoma cell lines in vitro. In order to study the transcriptional regulation of IL32 in these cell lines, we cloned up to 10.5 kb of the 5′ upstream region of the human IL32 gene into a luciferase reporter vector. Results A significant proportion of established human melanoma cell lines express IL32, with its expression being highly correlated with a dedifferentiation genetic signature (high AXL/low MITF). Non IL32-expressing differentiated melanoma cell lines exposed to TNFα or IFNγ can be induced to express the three predominant isoforms (α, β, γ) of IL32. Cis-acting elements within this 5′ upstream region of the human IL32 gene appear to govern both induced and constitutive gene expression. In the tumor microenvironment, IL32 expression is highly correlated with genes related to T cell infiltration, and also positively correlates with high AXL/low MITF dedifferentiated gene signature. Conclusions Expression of IL32 in human melanoma can be induced by TNFα or IFNγ and correlates with a treatment-resistant dedifferentiated genetic signature. Constitutive and induced expression are regulated, in part, by cis-acting sequences within the 5′ upstream region. Electronic supplementary material The online version of this article (10.1186/s12967-019-1862-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helicia Paz
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anusha Kalbasi
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Catherine S Grasso
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Lisa H Butterfield
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.,Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Deena M Maurer
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Antoni Ribas
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - James S Economou
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
The Biology and Role of Interleukin-32 in Tuberculosis. J Immunol Res 2018; 2018:1535194. [PMID: 30426023 PMCID: PMC6217754 DOI: 10.1155/2018/1535194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.
Collapse
|
19
|
Shao X, Wang B, Mu K, Li L, Li Q, He W, Yao Q, Jia X, Zhang JA. Key gene co-expression modules and functional pathways involved in the pathogenesis of Graves' disease. Mol Cell Endocrinol 2018; 474:252-259. [PMID: 29614339 DOI: 10.1016/j.mce.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Graves' disease (GD) is a common autoimmune thyroid disease characterized by positive thyroid stimulating hormone receptor antibody. To better understand its molecular pathogenesis, we adopted the weighted gene co-expression network analysis to reveal co-expression modules of key genes involved in the pathogenesis of GD, protein-protein interaction network analysis to identify the hub genes related to GD development and functional analyses to explore their possible functions. Our results showed that 1) a total of 2667 differentially expressed genes in our microarray study and 16 different gene co-expression modules were associated with GD, and 2) the most significant module was associated with the percentage of macrophages, T follicular helper cells and CD4+ memory T cells and mainly enriched in immune regulation and immune response. Overall, our study reveals several key gene co-expression modules and functional pathways involved in GD, which provides some novel insights into the pathogenesis of GD.
Collapse
Affiliation(s)
- Xiaoqing Shao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Kaida Mu
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Ling Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Weiwei He
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
20
|
Gonnet J, Perrin H, Hutton AJ, Boccara D, Bonduelle O, Mimoun M, Atlan M, Soria A, Combadière B. Interleukin-32 promotes detachment and activation of human Langerhans cells in a human skin explant model. Br J Dermatol 2018; 179:145-153. [PMID: 29806155 DOI: 10.1111/bjd.16721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cross-talk between skin keratinocytes (KCs) and Langerhans cells (LCs) plays a fundamental role in the body's first line of immunological defences. However, the mechanism behind the interaction between these two major epidermal cells is unknown. Interleukin (IL)-32 is produced in inflammatory skin disorders. We questioned the role of IL-32 in the epidermis. OBJECTIVES We aimed to determine the role of IL-32 produced by KCs on surrounding LCs. METHODS We used an ex vivo human explant model from healthy donors and investigated the role of IL-32 on LC activation using imaging, flow cytometry, reverse transcriptase quantitative polymerase chain reaction and small interfering (si)RNA treatment. RESULTS Modified vaccinia virus ankara (MVA) infection induced KC death alongside the early production of the proinflammatory cytokine IL-32. We demonstrated that IL-32 produced by MVA-infected KCs induced modest but significant morphological changes in LCs and downregulation of adhesion molecules, such as epithelial cell adhesion molecule and very late antigen-4, and CXCL10 production. The treatment of KCs with IL-32-specific siRNA, and anti-IL-32 blocking antibody significantly inhibited LC activation, demonstrating the role of IL-32 in LC activation. We also found that some Toll-like receptor ligands induced a very high level of IL-32 production by KCs, which initiated LC activation. CONCLUSIONS We propose, for the first time, that IL-32 is a molecular link between KCs and LCs in healthy skin, provoking LC migration from the epidermis to the dermis prior to their migration to the draining lymph nodes.
Collapse
Affiliation(s)
- J Gonnet
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - H Perrin
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - A J Hutton
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - D Boccara
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France.,Service de Chirurgie Plastique Reconstructrice, Esthétique, Centre des Brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010, Paris, France
| | - O Bonduelle
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - M Mimoun
- Service de Chirurgie Plastique Reconstructrice, Esthétique, Centre des Brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010, Paris, France
| | - M Atlan
- Service de Chirurgie Plastique Reconstructrice et Esthétique, Hôpital Tenon, Assistance Publique Hôpitaux de Paris (APHP), 4 Rue de la Chine, 75020, Paris, France
| | - A Soria
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France.,Service de Dermatologie et d'Allergologie, Hôpital Tenon, Hôpitaux Universitaire Est Parisien (HUEP), Assistance Publique Hôpitaux de Paris (APHP), 4 rue de la Chine, 75020, Paris, France
| | - B Combadière
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|