1
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Vandenbark AA, Meza-Romero R, Wiedrick J, Gerstner G, Seifert H, Kent G, Piechycna M, Benedek G, Bucala R, Offner H. "Near Cure" treatment of severe acute EAE in MIF-1-deficient female and male mice with a bifunctional MHCII-derived molecular construct. Cell Immunol 2022; 378:104561. [PMID: 35738135 PMCID: PMC9714992 DOI: 10.1016/j.cellimm.2022.104561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022]
Abstract
Our previous studies demonstrated increased serum levels of macrophage migration inhibitory factor (MIF-1) and its homologue, MIF-2, in males during MS progression; and that genetically high-MIF-expressing male subjects with relapsing multiple sclerosis (MS) had a significantly greater risk of conversion to progressive MS than lower-MIF-expressing males and females. However, female MS subjects with severe disease expressed higher levels of CD74, the common MIF-1/MIF-2 receptor, on blood cells. In the murine model of MS, experimental autoimmune encephalomyelitis (EAE), both male and female mice lacking MIF-1 and/or MIF-2 were clinically improved during development of moderately severe disease, thus implicating both homologs as co-pathogenic contributors. The current study using MIF-deficient mice with severe acute EAE revealed a highly significant reduction of EAE scores in MIF-1-deficient females, in contrast to only minor and delayed reduction of clinical signs in MIF-1-deficient males. However, clinical EAE scores and factor expression were strongly suppressed in males and further reduced in females after treatment of WT and MIF-1-, MIF-2- and MIF-1/2-DUAL-deficient female and male mice with a MHCII DRα1-MOG-35-55 molecular construct that competitively inhibits MIF-1 & MIF-2 signaling through CD74 as well as T cell activation. These results suggest sex-dependent differences in which the absence of the MIF-1 and/or MIF-2 genotypes may permit stronger compensatory CD74-dependent EAE-inducing responses in males than in females. However, EAE severity in both sexes could still be reduced nearly to background (a "near cure") with DRα1-MOG-35-55 blockade of compensatory MIF and CD74-dependent factors known to attract peripheral inflammatory cells into the spinal cord tissue.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Roberto Meza-Romero
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Jack Wiedrick
- Biostatistics and Design Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Grant Gerstner
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, 200 Mullins Dr., Lebanon, OR, USA
| | - Hilary Seifert
- Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Gail Kent
- Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Marta Piechycna
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
3
|
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising Role of Oral Cavity Mesenchymal Stem Cell-Derived Extracellular Vesicles in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:6125-6140. [PMID: 35867205 DOI: 10.1007/s12035-022-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, Radford K. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021; 176:106708. [PMID: 34271300 DOI: 10.1016/j.eplepsyres.2021.106708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 07/03/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Autoantibodies to central nervous system (CNS) antigens are increasingly identified in patients with epilepsy. Alterations in cytokines and chemokines have also been demonstrated in epilepsy, but this has not been explored in subjects with autoantibodies. If antibody positive and antibody negative subjects show a difference in immune activation, as measured by cytokine levels, this could improve diagnostic and therapeutic approaches, and provide insights into the underlying pathophysiology. We aimed to evaluate serum and CSF cytokines and chemokines in patients with and without autoantibody positivity to identify any differences between the two groups. METHODS We studied participants who had undergone serum and CSF testing for CNS autoantibodies, as part of their clinical evaluation. Cases were classified as antibody positive or antibody negative for comparison. Stored CSF and sera were analysed for cytokine and chemokine concentrations. RESULTS 25 participants underwent testing. 8 were antibody positive, 17 were antibody negative. Significant elevations in the mean concentration of IL-13 and RANTES in CSF were found in the antibody positive cases and significant elevation of CSF VEGF was found in the antibody negative cases. Significant elevations in the mean concentrations of serum TNFβ, INFγ, bNGF, IL-8, and IL-12 were seen in the antibody negative group, and there was poor correlation between the majority of serum and CSF concentrations. SIGNIFICANCE Measurement of cytokines and chemokines such as IL-13 and RANTES could be useful in diagnosis of autoimmune associated epilepsy. Such markers might also guide targeted immunotherapy to improve seizure control and provide insights into the underlying pathophysiology of epilepsy associated with CNS autoantibodies.
Collapse
Affiliation(s)
- Lisa Gillinder
- Mater Advanced Epilepsy Unit, Mater Centre of Neurosciences, Brisbane, Australia; Mater Research Institute, The University of Queensland, Brisbane, Australia.
| | - Pamela McCombe
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Tamara Powell
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Gunter Hartel
- QIMR Berghofer Department of Statistics, Brisbane, Australia
| | | | - Ingrid Leal Rojas
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Kristen Radford
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Zaychik Y, Fainstein N, Touloumi O, Goldberg Y, Hamdi L, Segal S, Nabat H, Zoidou S, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-Intensity Exercise Training Protects the Brain Against Autoimmune Neuroinflammation: Regulation of Microglial Redox and Pro-inflammatory Functions. Front Cell Neurosci 2021; 15:640724. [PMID: 33708074 PMCID: PMC7940666 DOI: 10.3389/fncel.2021.640724] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Exercise training induces beneficial effects on neurodegenerative diseases, and specifically on multiple sclerosis (MS) and it’s model experimental autoimmune encephalomyelitis (EAE). However, it is unclear whether exercise training exerts direct protective effects on the central nervous system (CNS), nor are the mechanisms of neuroprotection fully understood. In this study, we investigated the direct neuroprotective effects of high-intensity continuous training (HICT) against the development of autoimmune neuroinflammation and the role of resident microglia. Methods: We used the transfer EAE model to examine the direct effects of training on the CNS. Healthy mice performed HICT by treadmill running, followed by injection of encephalitogenic proteolipid (PLP)-reactive T-cells to induce EAE. EAE severity was assessed clinically and pathologically. Brain microglia from sedentary (SED) and HICT healthy mice, as well as 5-days post EAE induction (before the onset of disease), were analyzed ex vivo for reactive oxygen species (ROS) and nitric oxide (NO) formation, mRNA expression of M1/M2 markers and neurotrophic factors, and secretion of cytokines and chemokines. Results: Transfer of encephalitogenic T-cells into HICT mice resulted in milder EAE, compared to sedentary mice, as indicated by reduced clinical severity, attenuated T-cell, and neurotoxic macrophage/microglial infiltration, and reduced loss of myelin and axons. In healthy mice, HICT reduced the number of resident microglia without affecting their profile. Isolated microglia from HICT mice after transfer of encephalitogenic T-cells exhibited reduced ROS formation and released less IL-6 and monocyte chemoattractant protein (MCP) in response to PLP-stimulation. Conclusions: These findings point to the critical role of training intensity in neuroprotection. HICT protects the CNS against autoimmune neuroinflammation by reducing microglial-derived ROS formation, neurotoxicity, and pro-inflammatory responses involved in the propagation of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Yifat Zaychik
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Sofia Zoidou
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
6
|
Sex differences in EAE reveal common and distinct cellular and molecular components. Cell Immunol 2021; 359:104242. [PMID: 33190849 PMCID: PMC7770093 DOI: 10.1016/j.cellimm.2020.104242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is commonly used as an animal model for evaluating clinical, histological and immunological processes potentially relevant to the human disease multiple sclerosis (MS), for which the mode of disease induction remains largely unknown. An important caveat for interpreting EAE processes in mice is the inflammatory effect of immunization with myelin peptides emulsified in Complete Freund's Adjuvant (CFA), often followed by additional injections of pertussis toxin (Ptx) in some strains to induce EAE. The current study evaluated clinical, histological, cellular (spleen), and chemokine-driven processes in spinal cords of male vs. female C57BL/6 mice that were immunized with mouse (m)MOG-35-55/CFA/Ptx to induce EAE; immunized with saline/CFA/Ptx only (CFA, no EAE); or were untreated (Naïve, no EAE). Analysis of response curves utilized a rigorous and sophisticated methodology to parse and characterize the effects of EAE and adjuvant alone vs. the Naive baseline responses. The results demonstrated stronger pro-inflammatory responses of immune cells and their associated cytokines, chemokines, and receptors in male vs. female CFA and EAE mice that appeared to be offset partially by increased percentages of male anti-inflammatory, regulatory and checkpoint T cell, B cell, and monocyte/macrophage subsets. These sex differences in peripheral immune responses may explain the reduced cellular infiltration and differing chemokine profiles in the Central Nervous System (CNS) of male vs. female CFA immunized mice and the reduced CNS infiltration and demyelination observed in male vs. female EAE groups of mice that ultimately resulted in the same clinical EAE disease severity in both sexes. Our findings suggest EAE disease severity is governed not only by the degree of CNS infiltration and demyelination, but also by the balance of pro-inflammatory vs. regulatory cell types and their secreted cytokines and chemokines.
Collapse
|
7
|
Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:316-326. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is a CD4+ T cell-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. Cytokines and chemokines shape Th1 and Th17 effector responses as well as regulate migration of leukocytes to the CNS during disease. The CNS cellular infiltrate consists of Ag-specific and nonspecific CD4+ and CD8+ T cells, neutrophils, B cells, monocytes, macrophages, and dendritic cells. The mechanism of immune-mediated inflammation in experimental autoimmune encephalomyelitis has been extensively studied in an effort to develop therapeutic modalities for multiple sclerosis and, indeed, has provided insight in modern drug discovery. The present Brief Review highlights critical pathogenic aspects of cytokines and chemokines involved in generation of effector T cell responses and migration of inflammatory cells to the CNS. Select cytokines and chemokines are certainly important in the regulatory response, which involves T regulatory, B regulatory, and myeloid-derived suppressor cells. However, that discussion is beyond the scope of this brief review.
Collapse
Affiliation(s)
- William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
8
|
Evonuk KS, Doyle RE, Moseley CE, Thornell IM, Adler K, Bingaman AM, Bevensee MO, Weaver CT, Min B, DeSilva TM. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. SCIENCE ADVANCES 2020; 6:eaax5936. [PMID: 31934627 PMCID: PMC6949032 DOI: 10.1126/sciadv.aax5936] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Glutamate dysregulation occurs in multiple sclerosis (MS), but whether excitotoxic mechanisms in mature oligodendrocytes contribute to demyelination and axonal injury is unexplored. Although current treatments modulate the immune system, long-term disability ensues, highlighting the need for neuroprotection. Glutamate is elevated before T2-visible white matter lesions appear in MS. We previously reported that myelin-reactive T cells provoke microglia to release glutamate from the system xc - transporter promoting myelin degradation in experimental autoimmune encephalomyelitis (EAE). Here, we explore the target for glutamate in mature oligodendrocytes. Most glutamate-stimulated calcium influx into oligodendrocyte somas is AMPA receptor (AMPAR)-mediated, and genetic deletion of AMPAR subunit GluA4 decreased intracellular calcium responses. Inducible deletion of GluA4 on mature oligodendrocytes attenuated EAE and loss of myelinated axons was selectively reduced compared to unmyelinated axons. These data link AMPAR signaling in mature oligodendrocytes to the pathophysiology of myelinated axons, demonstrating glutamate regulation as a potential neuroprotective strategy in MS.
Collapse
Affiliation(s)
- Kirsten S. Evonuk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ryan E. Doyle
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carson E. Moseley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- University of California, San Francisco, CA, USA
| | - Ian M. Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keith Adler
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Amanda M. Bingaman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mark O. Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M. DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
9
|
Chrysin suppress immune responses and protects from experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2019; 335:577007. [DOI: 10.1016/j.jneuroim.2019.577007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
|
10
|
Woelfer M, Kasties V, Kahlfuss S, Walter M. The Role of Depressive Subtypes within the Neuroinflammation Hypothesis of Major Depressive Disorder. Neuroscience 2019; 403:93-110. [DOI: 10.1016/j.neuroscience.2018.03.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
|
11
|
Sun L, Telles E, Karl M, Cheng F, Luetteke N, Sotomayor EM, Miller RH, Seto E. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci Alliance 2018; 1:e201800039. [PMID: 30456376 PMCID: PMC6238389 DOI: 10.26508/lsa.201800039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023] Open
Abstract
In an animal model for multiple sclerosis, the absence of HDAC11 reduces clinical severity, spinal cord demyelination, and immune cell infiltration, suggesting that HDAC11 is a promising target for MS treatment. Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). There is no known cure for MS, and currently available drugs for managing this disease are only effective early on and have many adverse side effects. Results from recent studies suggest that histone deacetylase (HDAC) inhibitors may be useful for the treatment of autoimmune and inflammatory diseases such as MS. However, the underlying mechanisms by which HDACs influence immune-mediated diseases such as MS are unclear. More importantly, the question of which specific HDAC(s) are suitable drug targets for the potential treatment of MS remains unanswered. Here, we investigate the functional role of HDAC11 in experimental autoimmune encephalomyelitis, a mouse model for MS. Our results indicate that the loss of HDAC11 in KO mice significantly reduces clinical severity and demyelination of the spinal cord in the post-acute phase of experimental autoimmune encephalomyelitis. The absence of HDAC11 leads to reduced immune cell infiltration into the CNS and decreased monocytes and myeloid DCs in the chronic progressive phase of the disease. Mechanistically, HDAC11 controls the expression of the pro-inflammatory chemokine C–C motif ligand 2 (CCL2) gene by enabling the binding of PU.1 transcription factor to the CCL2 promoter. Our results reveal a novel pathophysiological function for HDAC11 in CNS demyelinating diseases, and warrant further investigations into the potential use of HDAC11-specific inhibitors for the treatment of chronic progressive MS.
Collapse
Affiliation(s)
- Lei Sun
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elphine Telles
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Molly Karl
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Fengdong Cheng
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Noreen Luetteke
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Eduardo M Sotomayor
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Edward Seto
- George Washington University Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
12
|
Gu SM, Park MH, Yun HM, Han SB, Oh KW, Son DJ, Yun JS, Hong JT. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget 2017; 7:15382-93. [PMID: 26985768 PMCID: PMC4941248 DOI: 10.18632/oncotarget.8097] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jae Suk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
13
|
Rossato C, Brandão WN, Castro SB, de Almeida DC, Maranduba CM, Camara NO, Peron JP, Silva FS. Stem cells from human-exfoliated deciduous teeth reduce tissue-infiltrating inflammatory cells improving clinical signs in experimental autoimmune encephalomyelitis. Biologicals 2017; 49:62-68. [DOI: 10.1016/j.biologicals.2017.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/08/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
|
14
|
Tatlıdil Yaylacı E, Yüksel RN, Ünal K, Altunsoy N, Cingi M, Yalçın Şahiner Ş, Aydemir MÇ, Göka E. TNF-related weak inducer of apoptosis (TWEAK) levels in schizophrenia. Psychiatry Res 2015; 229:755-9. [PMID: 26275704 DOI: 10.1016/j.psychres.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/14/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023]
Abstract
Members of tumor necrosis factor (TNF) superfamily have roles in many biological events and pathogenesis of central nervous system (CNS) diseases. A relatively recently found member of this family, TNF-related weak inducer of apoptosis (TWEAK) have importance both in development of pathological CNS processes and as a target for the treatment of these diseases. The aim of this study was to investigate whether TWEAK's plasma levels are different in patients with schizophrenia. For this purpose plasma TWEAK levels of 44 patients diagnosed with schizophrenia and control group of 40 healthy individuals were compared. Although numerical difference was found between TWEAK levels of patients and controls it was not statistically significant. When we tested for female and male patients and controls seperately, TWEAK levels of male patients were significantly lower than male controls. As far as we know this is the first study that investigates levels of TWEAK in patients with schizophrenia. Although we did not find statistically significant results in our study, we believe that difference could be found in future studies with higher number of subjects. Researches with non-studied TNF superfamily members like TWEAK and TNF-related apoptosis-inducing ligand (TRAIL) could contribute to the understanding of immune-cytokine related hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Elif Tatlıdil Yaylacı
- Ankara Numune Education and Research Hospital Psychiatry Department, Ankara, Turkey.
| | - Rabia Nazik Yüksel
- Ankara Numune Education and Research Hospital Psychiatry Department, Ankara, Turkey
| | - Kübranur Ünal
- Ankara Numune Education and Research Hospital Biochemistry Department, Ankara, Turkey
| | - Neslihan Altunsoy
- Ankara Numune Education and Research Hospital Psychiatry Department, Ankara, Turkey
| | - Merve Cingi
- Ankara Numune Education and Research Hospital Psychiatry Department, Ankara, Turkey
| | - Şafak Yalçın Şahiner
- Ankara Numune Education and Research Hospital Psychiatry Department, Ankara, Turkey
| | | | - Erol Göka
- Ankara Numune Education and Research Hospital Psychiatry Department, Ankara, Turkey
| |
Collapse
|
15
|
Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Kosec D, Bufan B, Vujnović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sexual dimorphism in the aged rat CD4+ T lymphocyte-mediated immune response elicited by inoculation with spinal cord homogenate. Mech Ageing Dev 2015; 152:15-31. [PMID: 26408399 DOI: 10.1016/j.mad.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/13/2023]
Abstract
Considering the crucial pathogenic role of CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and the opposite direction of the sexual dimorphism in the severity of the disease in 22-24-and 3-month-old dark agouti rats, sex differences in CD4+ T-cell-mediated immune response in aged rats immunized for EAE were examined and compared with those in young animals. In the inductive phase of EAE, fewer activated CD4+ lymphocytes were retrieved from draining lymph nodes of male (developing less severe disease) compared with female rats, due, at least partly, to their lesser expansion. The former reflected a greater suppressive capacity of CD4+CD25+Foxp3+ cells. Consequently, CD4+ lymphocyte infiltration into the spinal cord of aged male rats was diminished. At the peak of EAE, the frequency of reactivated cells was lower, whereas that of the regulatory CD4+ cells was higher in male rat spinal cord. Consistently, microglial activation and the expression of proinflammatory/damaging cytokines in male rat spinal cord mononuclear cells were diminished. Additionally, the frequency of the highly pathogenic IL-17+IFN-γ+ T lymphocytes infiltrating their spinal cord was lower. Together, these results point to (i) an age-specificity in CD4+ cell-mediated immune response and (ii) mechanisms underlying the sex differences in this response in aged rats.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
16
|
Reppert S, Zinser E, Holzinger C, Sandrock L, Koch S, Finotto S. NFATc1 deficiency in T cells protects mice from experimental autoimmune encephalomyelitis. Eur J Immunol 2015; 45:1426-40. [PMID: 25689841 PMCID: PMC6681150 DOI: 10.1002/eji.201445150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
NFATc1 is a member of the nuclear factor of activated T cells (NFAT) family of transcription factors. NFAT is activated upon T-cell receptor activation followed by intracytoplasmatic calcium influx where calmodulin, a calcium sensor protein, activates the phosphatase calcineurin that dephosphorylates NFAT proteins and results in NFAT nuclear import. Here, we show the analysis of conditional NFATc1-deficient mice bearing a deletion of NFATc1 in CD4(+) and CD8(+) T cells. NFATc1-deficient CD4(+) T cells polarized under Th17 conditions express reduced levels of the Th17-associated transcription factor RORγT (where ROR is RAR-related orphan receptor) as well as the Th17-associated cytokines IL-17A, IL-17F, IL-21, and IL-10. In the murine model of experimental EAE, we found a strong reduction of the disease outcome in conditional NFATc1-deficient mice, as compared with control littermates. This was accompanied by a diminished inflammation in the brain and spinal cord and reduced IL-17A and IFN-γ expression by antigen-specific spleen, spinal cord, and brain cells. Altogether, these results reveal an important role of NFATc1 in inducing Th17-cell responses and IFN-γ, both being relevant for the EAE development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cytokines/metabolism
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-10/metabolism
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NFATC Transcription Factors/deficiency
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/metabolism
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Sarah Reppert
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Elisabeth Zinser
- Department of Immune ModulationFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Corinna Holzinger
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Lena Sandrock
- Department of Immune ModulationFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Sonja Koch
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| | - Susetta Finotto
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergUniversitätsklinikum ErlangenErlangenGermany
| |
Collapse
|
17
|
Vogel I, Kasran A, Cremer J, Kim YJ, Boon L, Van Gool SW, Ceuppens JL. CD28/CTLA-4/B7 costimulatory pathway blockade affects regulatory T-cell function in autoimmunity. Eur J Immunol 2015; 45:1832-41. [PMID: 25727069 DOI: 10.1002/eji.201445190] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/06/2015] [Accepted: 02/25/2015] [Indexed: 11/06/2022]
Abstract
Naïve T cells require B7/CD28 costimulation in order to be fully activated. Attempts to block this pathway have been effective in preventing unwanted immune reactions. As B7 blockade might also affect Treg cells and interfere with negative signaling through membrane CTLA-4 on effector T (Teff) cells, its immune-modulatory effects are potentially more complex. Here, we used the mouse model of multiple sclerosis (MS), EAE, to study the effect of B7 blockade. An effective therapy for MS patients has to interfere with ongoing inflammation, and therefore we injected CTLA-4Ig at day 7 and 9 after immunization, when myelin-reactive T cells have been primed and start migrating toward the CNS. Surprisingly, B7 blockade exacerbated disease signs and resulted in more severe CNS inflammation and demyelination, and was associated with an enhanced production of the inflammatory cytokines IL-17 and IFN-γ. Importantly, CTLA-4Ig treatment resulted in a transient reduction of Ki67 and CTLA-4 expression and function of peripheral Treg cells. Taken together, B7 blockade at a particular stage of the autoimmune response can result in the suppression of Treg cells, leading to a more severe disease.
Collapse
Affiliation(s)
- Isabel Vogel
- Laboratory of Clinical Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Ahmad Kasran
- Laboratory of Clinical Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jonathan Cremer
- Laboratory of Clinical Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Yoo-Jin Kim
- Department of Pathology, Saarland University Hospital, Homburg, Germany
| | | | - Stefaan W Van Gool
- Laboratory of Clinical Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium.,Childhood Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan L Ceuppens
- Laboratory of Clinical Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
18
|
Meister M, Papatriantafyllou M, Nordström V, Kumar V, Ludwig J, Lui KO, Boyd AS, Popovic ZV, Fleming TH, Moldenhauer G, Nawroth PP, Gröne HJ, Waldmann H, Oelert T, Arnold B. Dickkopf-3, a tissue-derived modulator of local T-cell responses. Front Immunol 2015; 6:78. [PMID: 25759692 PMCID: PMC4338807 DOI: 10.3389/fimmu.2015.00078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/10/2015] [Indexed: 12/27/2022] Open
Abstract
The adaptive immune system protects organisms from harmful environmental insults. In parallel, regulatory mechanisms control immune responses in order to assure preservation of organ integrity. Yet, molecules involved in the control of T-cell responses in peripheral tissues are poorly characterized. Here, we investigated the function of Dickkopf-3 in the modulation of local T-cell reactivity. Dkk3 is a secreted, mainly tissue-derived protein with highest expression in organs considered as immune-privileged such as the eye, embryo, placenta, and brain. While T-cell development and activation status in naïve Dkk3-deficient mice was comparable to littermate controls, we found that Dkk3 contributes to the immunosuppressive microenvironment that protects transplanted, class-I mismatched embryoid bodies from T-cell-mediated rejection. Moreover, genetic deletion or antibody-mediated neutralization of Dkk3 led to an exacerbated experimental autoimmune encephalomyelitis (EAE). This phenotype was accompanied by a change of T-cell polarization displayed by an increase of IFNγ-producing T cells within the central nervous system. In the wild-type situation, Dkk3 expression in the brain was up-regulated during the course of EAE in an IFNγ-dependent manner. In turn, Dkk3 decreased IFNγ activity and served as part of a negative feedback mechanism. Thus, our findings suggest that Dkk3 functions as a tissue-derived modulator of local CD4+ and CD8+ T-cell responses.
Collapse
Affiliation(s)
- Michael Meister
- Department of Molecular Immunology, German Cancer Research Center , Heidelberg , Germany
| | | | - Viola Nordström
- Department of Molecular Pathology, German Cancer Research Center , Heidelberg , Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Julia Ludwig
- Department of Molecular Immunology, German Cancer Research Center , Heidelberg , Germany
| | - Kathy O Lui
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Ashleigh S Boyd
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Zoran V Popovic
- Department of Molecular Pathology, German Cancer Research Center , Heidelberg , Germany ; Department of Pathology, University Medical Center Mannheim, University of Heidelberg , Mannheim , Germany
| | - Thomas Henry Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Gerhard Moldenhauer
- Department of Molecular Immunology, German Cancer Research Center , Heidelberg , Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Hermann-Josef Gröne
- Department of Molecular Pathology, German Cancer Research Center , Heidelberg , Germany
| | - Herman Waldmann
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Thilo Oelert
- Department of Molecular Immunology, German Cancer Research Center , Heidelberg , Germany
| | - Bernd Arnold
- Department of Molecular Immunology, German Cancer Research Center , Heidelberg , Germany
| |
Collapse
|
19
|
Different MOG35–55 concentrations induce distinguishable inflammation through early regulatory response by IL-10 and TGF-β in mice CNS despite unchanged clinical course. Cell Immunol 2015; 293:87-94. [DOI: 10.1016/j.cellimm.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 12/25/2022]
|
20
|
Tselios T, Aggelidakis M, Tapeinou A, Tseveleki V, Kanistras I, Gatos D, Matsoukas J. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice. Molecules 2014; 19:17968-84. [PMID: 25375337 PMCID: PMC6270842 DOI: 10.3390/molecules191117968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.
Collapse
Affiliation(s)
- Theodore Tselios
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | | | - Anthi Tapeinou
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Vivian Tseveleki
- Department of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece.
| | - Ioannis Kanistras
- Department of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece.
| | - Dimitrios Gatos
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - John Matsoukas
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
21
|
Ji Z, Fan Z, Zhang Y, Yu R, Yang H, Zhou C, Luo J, Ke ZJ. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2. THE JOURNAL OF IMMUNOLOGY 2014; 193:2157-67. [PMID: 25063874 DOI: 10.4049/jimmunol.1302702] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation.
Collapse
Affiliation(s)
- Zhe Ji
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Zhang
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Ronghuan Yu
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Haihua Yang
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Chenghua Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Zun-Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
22
|
Vainchtein ID, Vinet J, Brouwer N, Brendecke S, Biagini G, Biber K, Boddeke HWGM, Eggen BJL. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia 2014; 62:1724-35. [PMID: 24953459 DOI: 10.1002/glia.22711] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive.
Collapse
Affiliation(s)
- I D Vainchtein
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shrestha B, Ge S, Pachter JS. Resolution of central nervous system astrocytic and endothelial sources of CCL2 gene expression during evolving neuroinflammation. Fluids Barriers CNS 2014; 11:6. [PMID: 24589378 PMCID: PMC3944978 DOI: 10.1186/2045-8118-11-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chemokine CCL2 is a critical mediator of neuroinflammation in diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). CCL2 drives mononuclear cell infiltration into the central nervous system (CNS), alters expression and distribution of microvascular endothelial tight junction proteins, and disrupts the blood-brain and blood-spinal cord barriers. Immunohistochemistry has consistently revealed astrocytes to be a source of this chemokine during neuroinflammation, while providing less uniform evidence that CNS endothelial cells may also express CCL2. Moreover, the relative contributions of these cell types to the CNS pool of CCL2 during MS/EAE are unclear and the aim of this study was to investigate this further. METHODS CCL2 gene expression was determined by qRT-PCR in different populations of CNS cells at different times following EAE induced by immunization with MOG35-55 peptide and adjuvants, or after injection with adjuvants alone. CNS cells types were isolated by two different protocols: bulk isolation to yield crude microvascular and parenchymal fractions (containing astrocytes, other glia, and neurons), or laser capture microdissection (LCM) to acquire more precisely microvascular endothelial cells, astrocytes or other parenchymal cells. RESULTS Both CNS microvessel and parenchymal populations prepared by crude bulk isolation showed up-regulation of CCL2 mRNA following MOG immunization or injection of adjuvants alone. More exact dissection by LCM revealed microvascular endothelial cells and astrocytes to be the specific sources of CCL2 gene induction following MOG immunization, while only astrocytes showed elevated CCL2 mRNA in response to just adjuvants. Astrocytes displayed the greatest degree of stimulation of CCL2 gene expression following EAE induction. CONCLUSIONS High-precision LCM affirmed both microvascular endothelial cells and astrocytes as the major CNS sources of CCL2 gene expression during EAE. Given the high accessibility of the CNS microvascular endothelium, endothelial-derived CCL2 could prove a viable target for therapeutic intervention in neuroinflammatory disease.
Collapse
Affiliation(s)
- Bandana Shrestha
- Blood–brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Shujun Ge
- Blood–brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Joel S Pachter
- Blood–brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
24
|
Mony JT, Khorooshi R, Owens T. MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Mult Scler 2014; 20:1312-21. [PMID: 24552747 DOI: 10.1177/1352458514524086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-like domain of myelin oligodendrocyte glycoprotein (MOG(Igd), residues 1-125) might induce distinct CD4+ T-cell response and/or a stronger CD8+ T-cell response, compared to the 21 amino acid immunodominant MHC II-associating peptide (p35-55). OBJECTIVES Compare both EAE and T-cell responses in C57BL/6 mice immunized with MOG(Igd) and MOG p35-55. METHODS Cytokine production, and chemokine receptor expression by CD4+ and CD8+ T cells in the mouse central nervous system (CNS), were analyzed by flow cytometry. RESULTS MOG(Igd) triggered progression to more severe EAE than MOG p35-55, despite similar time of onset and overall incidence. EAE in MOG(Igd)-immunized mice was characterized by an increased percentage of CXCR3+ interferon-γ-producing CD4+ T cells in CNS. The CD8+ T-cell response to both immunogens was similar. CONCLUSIONS Increased incidence of severe disease following MOG(Igd) immunization, accompanied by an increased percentage of CD4+ T cells in the CNS expressing CXCR3 and producing interferon-γ, identifies a pathogenic role for interferon-γ that is not seen when disease is induced with a single Major Histocompatibility Complex (MHC) II-associating epitope.
Collapse
Affiliation(s)
- Jyothi T Mony
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Abstract
Systemic lupus erythematosus, Sjögren's syndrome, and dermatomyositis are systemic autoimmune diseases that develop after environmental triggering of genetically susceptible individuals. The precise cellular and molecular mechanisms leading to autoimmune disease, and what factors determine which organs are involved, remain poorly understood. Recent insights into genetic susceptibility now make obvious that environmental triggers often act via cellular pathways containing disease-associated polymorphisms. In the breaking of tolerance, the initiating tissue--including dendritic cells--provides a decisive microenvironment that affects immune-cell differentiation, leading to activation of adaptive immunity. Type 1 interferon produced by innate immune cells has a central role in systemic autoimmunity and activates B cells and T cells. In turn, B-cell-derived autoantibodies stimulate dendritic cells to produce type 1 interferon; thus, a positive feedforward loop is formed that includes both the innate and adaptive systems. New treatments could simultaneously and specifically target several such vital pathways in autoimmunity.
Collapse
|
26
|
Nagaraju GP, Zafar SF, El-Rayes BF. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr Rev 2013; 71:562-72. [PMID: 23865800 DOI: 10.1111/nure.12044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genistein is a soy-derived biologically active isoflavone that exhibits diverse health-promoting effects. An increasing body of evidence shows that genistein influences lipid homeostasis and insulin resistance, counteracts inflammatory cytokines, and possesses antidiabetic properties. Genistein also impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting angiogenesis and metastasis of neoplastic cells. This review summarizes the pleiotropic functions of genistein in common health disorders such as metabolic syndrome, chronic inflammatory diseases, and cancer. In the current era of uncontrolled health expenditure, a focus on the clinical development of nutritional agents with the capacity to prevent a variety of common health disorders is needed. As a micronutrient that exerts multifaceted effects ranging from antidiabetic to anticarcinogenic functions, genistein should be clinically developed further for use in the prevention and treatment of a variety of health disorders.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
27
|
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS) in the Western world. The disease is characterized histologically by the infiltration of encephalitogenic TH1/TH17-polarized CD4+ T cells, B cells, and a plethora of myeloid cells, resulting in severe demyelination ultimately leading to a degeneration of neuronal structures. These pathological processes are substantially modulated by microglia, the resident immune competent cells of the CNS. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia during CNS autoimmunity in either promoting tissue injury or tissue repair. Hence, understanding microglia involvement in MS offers new exciting paths for therapeutic intervention.
Collapse
|
28
|
Hu X, Qin X. Lentivirus-mediated estrogen receptor α overexpression in the central nervous system ameliorates experimental autoimmune encephalomyelitis in mice. Int J Mol Med 2013; 31:1209-21. [PMID: 23525227 DOI: 10.3892/ijmm.2013.1306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory cell infiltration of the central nervous system (CNS) and multifocal demyelination. Clinical data and clinical indicators demonstrate that estrogen improves the relapse-remittance of MS patients. This study aimed to investigate the anti-inflammatory effects and the underlying mechanism(s) of action of estrogen and estrogen receptor α (ERα) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. An ERα recombinant lentivirus was constructed. Mouse neurons were cultured in serum-free culture medium, and ERα recombinant lentivirus with a multiplicity of infection (MOI) of 5 was used to infect the neurons. Furthermore, neuronal ERα mRNA and protein expression were detected using real-time quantitative PCR and western blot analysis. We sterotaxically injected ERα recombinant lentivirus into the lateral ventricle of mouse brains, and successfully identified infected neurons using Flag immunofluorescence staining to determine the optimal dose. A total of 75 C57BL/6 mice were ovariectomized. After 2 weeks, EAE was induced with myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide. The EAE mice were divided into 5 groups: the estrogen group (treatment with estradiol), the ERα agonist group (treatment with raloxifene), the ERα recombinant lentivirus group (ERα group, treatment with ERα recombinant lentivirus), the empty virus group and the normal saline (NS) group; clinical symptoms and body weight were compared among the groups. We assessed EAE-related parameters, detected pathological changes with immunohistochemistry and quantified the expression of myelin basic protein (MBP), matrix metalloproteinase-9 (MMP-9), and a subset of EAE-related cytokines using enzyme-linked immunosorbent assay (ELISA). We successfully constructed an ERα recombinant lentivirus. C57BL/6 mouse neurons can survive in culture for at least 8 weeks. During that period, the recombinant lentivirus was able to infect the neurons, while sustaining green fluorescence protein (GFP) expression. ERα recombinant lentivirus also infected the neurons at a MOI of 5. The ERα mRNA and protein expression levels were higher in the infected neurons compared to the uninfected ones. We successfully infected the CNS of C57BL/6 mice by stereotaxically injecting ERα recombinant lentivirus into the lateral ventricle of the mouse brains and induced EAE. The lentivirus-mediated overexpression of ERα reduced the incidence of EAE, ameliorated the clinical symptoms, inhibited inflammatory cell CNS infiltration, and reduced nerve fiber demyelination. MMP-9, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-17 and IL-23 expression levels were decreased, while those of MBP and IL-4 were increased. These data demonstrate that it is possible to induce the overexpression of ERα using a recombinant lentivirus, and that this novel intervention ameliorates EAE in a mouse model. Mechanistically, estrogen and ERα inhibit inflammatory responses, and ERα alleviates damage to the myelin sheath. Collectively, our findings support the potential use of ERα as a therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | | |
Collapse
|
29
|
Weinger JG, Marro BS, Hosking MP, Lane TE. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology 2013; 435:110-7. [PMID: 23217621 PMCID: PMC3522860 DOI: 10.1016/j.virol.2012.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022]
Abstract
Inoculation with the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus preferentially replicates within glial cells while excluding neurons. Control of viral replication during acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroinflammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry, UC Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
30
|
Dello Russo C, Lisi L, Feinstein DL, Navarra P. mTOR kinase, a key player in the regulation of glial functions: relevance for the therapy of multiple sclerosis. Glia 2012; 61:301-11. [PMID: 23044764 DOI: 10.1002/glia.22433] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 12/26/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase with a central role in the regulation of cell growth and proliferation, and several intracellular processes, such as mRNA transcription and translation, autophagy and cytoskeletal organization. The relevance of this pathway in the regulation of the immune system is well characterized. mTOR is essential for the proper activation and proliferation of effector T cells, restricts the development of regulatory T cells, and downregulates innate immune responses. Recently, a direct role of mTOR in the modulation of glial functions has also been recognized. Data from our group and others support the notion that mTOR is involved in microglial proinflammatory activation. The kinase regulates several intracellular processes in astrocytes, among which the rate of mRNA degradation of the inducible form of NO synthase. Therefore, the inhibition of mTOR kinase activity in glial cells results in anti-inflammatory actions, suggesting possible beneficial effects of mTOR inhibitors (like rapamycin) in the treatment of inflammatory-based pathologies of the central nervous system. In contrast, mTOR plays an important role in the regulation of oligodendrocyte development and myelination process as well as several neuronal functions, which may limit this therapeutic approach. Nevertheless, as reviewed here, there is robust evidence that rapamycin ameliorates the clinical course of both the relapsing-remitting and the chronic experimental autoimmune encephalomyelitis (EAE), and significantly reduces the hyperalgesia observed before clinical development of EAE. These findings may have important clinical implications for the therapy of multiple sclerosis.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | | | | | | |
Collapse
|
31
|
Zhu J, Zhang J, Li Q, Du Y, Qiao B, Hu X. Transplanting of Mesenchymal Stem Cells May Affect Proliferation and Function of CD4+T Cells in Experimental Autoimmune Encephalomyelitis. EXP CLIN TRANSPLANT 2012; 10:492-500. [DOI: 10.6002/ect.2011.0197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Murugesan N, Paul D, Lemire Y, Shrestha B, Ge S, Pachter JS. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus. Fluids Barriers CNS 2012; 9:15. [PMID: 22870943 PMCID: PMC3493354 DOI: 10.1186/2045-8118-9-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED BACKGROUND There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood-brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. METHODS To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund's adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. RESULTS The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines, chemokines, statins, interleukins, T cell activation markers, costimulatory molecules, cyclooxygenase, pro-inflammatory transcription factors and pro-apoptotic markers. Moreover, CFA/PTX-treatment, alone, resulted in extensive, though less robust, alterations in both CP compartments. CONCLUSIONS MOG-CFA/PTX immunization significantly affects CP morphology and stimulates distinct expression patterns of immune-related genes in CP stromal capillary and epithelial tissues during evolving EAE. CFA/PTX treatment, alone, causes widespread gene alterations that could prime the CP to unlock the CNS to T cell infiltration during neuroinflammatory disease.
Collapse
Affiliation(s)
- Nivetha Murugesan
- Blood-brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | | | | | | | | | | |
Collapse
|
33
|
The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation 2012; 9:171. [PMID: 22788993 PMCID: PMC3488971 DOI: 10.1186/1742-2094-9-171] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Production of the chemokine CCL2 by cells of the neurovascular unit (NVU) drives critical aspects of neuroinflammation. Suppression of CCL2 therefore holds promise in treating neuroinflammatory disease. Accordingly, we sought to determine if the compound bindarit, which inhibits CCL2 synthesis, could repress the three NVU sources of CCL2 most commonly reported in neuroinflammation--astrocytes, microglia and brain microvascular endothelial cells (BMEC)--as well as modify the clinical course of neuroinflammatory disease. METHODS The effect of bindarit on CCL2 expression by cultured murine astrocytes, microglia and BMEC was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bindarit action on mouse brain and spinal cord in vivo was similarly investigated by qRT-PCR following LPS injection in mice. And to further gauge the potential remedial effects of bindarit on neuroinflammatory disease, its impact on the clinical course of experimental autoimmune encephalomyelitis (EAE) in mice was also explored. RESULTS Bindarit repressed CCL2 expression by all three cultured cells, and antagonized upregulated expression of CCL2 in both brain and spinal cord in vivo following LPS administration. Bindarit also significantly modified the course and severity of clinical EAE, diminished the incidence and onset of disease, and evidenced signs of disease reversal. CONCLUSION Bindarit was effective in suppressing CCL2 expression by cultured NVU cells as well as brain and spinal cord tissue in vivo. It further modulated the course of clinical EAE in both preventative and therapeutic ways. Collectively, these results suggest that bindarit might prove an effective treatment for neuroinflammatory disease.
Collapse
|
34
|
IL-33 blockade suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 2012; 247:25-31. [DOI: 10.1016/j.jneuroim.2012.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
|
35
|
Liu Y, Zhao H, Zhang J, Zhang P, Li M, Qi F, Wang Y, Kou S, Zheng Q, Wang L. The Regulatory Effect of Liuwei Dihuang Pills on Cytokines in Mice with Experimental Autoimmune Encephalomyelitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:295-308. [DOI: 10.1142/s0192415x12500231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The regulatory effect of Liuwei Dihuang Pills (LDP) was studied on cytokines in mice with experimental autoimmune encephalomyelitis (EAE), a model for human multiple sclerosis (MS), induced by immunization with MOG35-55 and complete Freund's adjuvant (CFA) supplemented with pertussis toxin (PTX). LDP was administrated orally for 40 days, and prednisone acetate (PA) was used as a control. The pathological changes in the spinal cords of mice were observed by light microscope with hematoxylin-eosin (HE) staining and transmission electron microscope (TEM). The protein and mRNA expression of tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) in the spinal cords were assessed by immunohistochemistry and RT-PCR assay, and the cyclic adenosine monophosphate (cAMP) in mice plasma was measured by radioimmunoassay (RIA) on days 12, 25 and 40 post-immunization (PI). The results showed that inflammatory cells, demyelination and axonal loss were reduced, and that the protein and mRNA expression of TNF-α and the ratio of TNF-α/TGF-β were obviously decreased, to different extents. However, the levels of cAMP were enhanced in LDP-treated groups. These findings suggested that LDP regulates the cytokine balance in favor of T helper 1 (Th1)/regulatory T (Treg) cells, which depend on enhancement of cAMP levels. LDP has a potential role in the treatment of MS and other demyelinating diseases of the central nervous system.
Collapse
Affiliation(s)
- Yan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jie Zhang
- School of Public Health and Family Medicine, Capital Medical University, Beijing 100069, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ming Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yizhou Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Shuang Kou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Zheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
36
|
Jun S, Ochoa-Repáraz J, Zlotkowska D, Hoyt T, Pascual DW. Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β. J Neuroimmunol 2012; 245:39-47. [PMID: 22418032 DOI: 10.1016/j.jneuroim.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 01/03/2023]
Abstract
To assess the potency of regulatory T (Treg) cells induced against an irrelevant Ag, mice were orally vaccinated with Salmonella expressing Escherichia coli colonization factor antigen I fimbriae. Isolated CD25⁺ and CD25⁻CD4⁺ T cells were adoptively transferred to naive mice, and Treg cells effectively protected against experimental autoimmune encephalomyelitis (EAE), unlike Treg cells from Salmonella vector-immunized mice. This protection was abrogated upon in vivo neutralization of TGF-β, resulting in elevated IL-17 and loss of IL-4 and IL-10 production. Thus, Treg cells induced to irrelevant Ags offer a novel approach to treat autoimmune diseases independent of auto-Ag.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Bystander Effect/immunology
- Disease Models, Animal
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Epitopes, T-Lymphocyte/immunology
- Female
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-17/physiology
- Interleukin-4/antagonists & inhibitors
- Interleukin-4/biosynthesis
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/immunology
- Primary Cell Culture
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Sangmu Jun
- Department of Immunology and Infectious Diseases, Montana State University, P.O. Box 173610, Bozeman, MT 59717-3610, USA
| | | | | | | | | |
Collapse
|
37
|
Demarest TG, Murugesan N, Shrestha B, Pachter JS. Rapid expression profiling of brain microvascular endothelial cells by immuno-laser capture microdissection coupled to TaqMan(®) low density array. J Neurosci Methods 2012; 206:200-4. [PMID: 22425714 DOI: 10.1016/j.jneumeth.2012.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 01/18/2023]
Abstract
Immuno-laser capture microdissection (immuno-LCM) enables highly selective retrieval of designated cell populations from their in situ locations in complex tissue like the brain. However, the amount of tissue acquired by immuno-LCM is extremely limited, and the RNA purification, amplification and labeling steps necessary for expression analysis by hybridization microarray are tedious and time consuming. This report therefore describes a protocol in which these RNA steps are eliminated altogether, yet allows for global gene profiling. Specifically, immuno-LCM tissue was solubilized and the extract directly subjected to reverse transcription to generate cDNA. Pre-amplification of cDNA was performed next, and then relative expression of 96 different immune-related genes simultaneously determined by quantitative real-time PCR using a microfluidic card TaqMan(®) Low Density Array (TLDA). This protocol was highly reproducible and extremely sensitive, demonstrating high correlation of raw Ct values among both technical and biological replicate samples when using only 1/32 of total pre-amplified cDNA obtained from as little as 500 LCM 'shots.' As this abridged protocol takes only approximately 7h from LCM tissue acquisition to analysis by TLDA, it can prove a very effective tool for both screening and validation purposes when investigating gene regulation in health and disease of the nervous system and other tissues.
Collapse
Affiliation(s)
- Tyler G Demarest
- Blood-Brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, United States
| | | | | | | |
Collapse
|
38
|
Rapamycin reduces clinical signs and neuropathic pain in a chronic model of experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 243:43-51. [DOI: 10.1016/j.jneuroim.2011.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 12/25/2022]
|
39
|
Castro SB, Junior CO, Alves CC, Dias AT, Alves LL, Mazzoccoli L, Mesquita FP, Figueiredo NS, Juliano MA, Castañon MCM, Gameiro J, Almeida MV, Teixeira HC, Ferreira AP. Immunomodulatory effects and improved prognosis of experimental autoimmune encephalomyelitis after O-tetradecanoyl-genistein treatment. Int Immunopharmacol 2012; 12:465-70. [DOI: 10.1016/j.intimp.2011.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
40
|
Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, Zhou F, Zhang G, Rostami A. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:274-82. [PMID: 21646293 PMCID: PMC4201114 DOI: 10.4049/jimmunol.1003603] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mast cells (MCs) have been thought to play a pathogenic role in the development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, an immunoregulatory function of these cells has recently been suggested. We investigated the role of MCs in EAE using the W(-sh) mouse strain, which is MC deficient. W(-sh) mice developed earlier and more severe clinical and pathological disease with extensive demyelination and inflammation in the CNS. The inflammatory cells were mainly composed of CD4(+) T cells, monocyte/macrophages, neutrophils, and dendritic cells. Compared with wild-type mice, MC-deficient mice exhibited an increased level of MCP-1/CCR2 and CD44 expression on CD4(+) T cells in addition to decreased production of regulatory T cells, IL-4, IL-5, IL-27, and IL-10. We also found that levels of IL-17, IFN-γ, and GM-CSF were significantly increased in peripheral lymphocytes from immunized W(-sh) mice compared with those in peripheral lymphocytes from wild-type mice. Reconstitution of W(-sh) mice downregulated susceptibility to EAE, which correlated with MC recruitment and regulatory T cell activation in the CNS. These findings indicate that responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS and that, in the absence of MCs, increased MCP-1, CCR2, IL-17, IFN-γ, CD44, and other inflammatory molecules may be responsible for increased severity of EAE.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Akirav EM, Xu Y, Ruddle NH. Resident B cells regulate thymic expression of myelin oligodendrocyte glycoprotein. J Neuroimmunol 2011; 235:33-9. [PMID: 21550671 PMCID: PMC3157307 DOI: 10.1016/j.jneuroim.2011.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/15/2011] [Accepted: 03/31/2011] [Indexed: 11/25/2022]
Abstract
Thymic B cells represent a numerically minor cell population located primarily at the cortico-medullary junction. Their biological role is unclear. B cell-deficient μMT mice exhibited reduced medullary thymic epithelial cell (mTEC) numbers and reduced MOG and insulin mRNA expression. Lymphotoxin produced by B cells was critical for normal tissue restricted antigen (TRA) expression, suggesting that B cells regulate self-antigens through their production of LT. These results reveal an unexpected role of B cells in mTEC maintenance and expression of TRAs through their production of LT.
Collapse
Affiliation(s)
- Eitan M. Akirav
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Yan Xu
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520
| | - Nancy H. Ruddle
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
42
|
Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 2011; 37:166-78. [PMID: 20819172 PMCID: PMC4150530 DOI: 10.1111/j.1365-2990.2010.01122.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS we explored whether cellular fusion and heterokaryon formation between human and rodent cells in the cerebellum of mice occurs after intravenous injection of human bone marrow-derived mesenchymal stem cells (MSCs). The influence of central nervous system inflammation on this process was also assessed. In addition, we examined whether tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, factors associated with inflammation, increase cellular fusion between human MSCs and rodent cerebellar neurons in vitro. METHODS AND RESULTS human MSCs were intravenously injected into mice with experimental autoimmune encephalomyelitis (EAE) and control mice. After 22 days, mouse Purkinje cells expressing human Golgi Zone were found within the Purkinje cell layer of the cerebellum, indicating that fusion and heterokaryon formation had occurred. The numbers of heterokaryons in the cerebellum were markedly increased in mice with EAE compared with control mice. Rodent cerebellar neuronal cells labelled with enhanced green fluorescent proteinin vitro were co-cultured with human bone marrow-derived MSCs in the presence of TNF-alpha and/or IFN-gamma to determine their influence on fusion events. We found that fusion between MSCs and cerebellar neurons did occur in vitro and that the frequency of cellular fusion increased in the presence of TNF-alpha and/or IFN-gamma. CONCLUSIONS we believe that this is the first paper to define fusion and heterokaryon formation between human MSCs and rodent cerebellar neurons in vivo. We have also demonstrated that fusion between these cell populations occurs in vitro. These findings indicate that MSCs may be potential therapeutic agents for cerebellar diseases, and other neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- K Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Toft-Hansen H, Füchtbauer L, Owens T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia 2011; 59:166-76. [PMID: 21046558 DOI: 10.1002/glia.21088] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive astrocytosis, involving activation, hypertrophy, and proliferation of astrocytes, is a characteristic response to inflammation or injury of the central nervous system. We have investigated whether inhibition of reactive astrocytosis influences established experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We made use of transgenic mice, which express herpes simplex virus-derived thymidine kinase under control of a glial fibrillary acidic protein promotor (GFAP HSV-TK mice). Treatment of these mice with ganciclovir leads to inhibition of reactive astrocytosis. When GFAP HSV-TK mice were treated for seven days following onset of EAE with ganciclovir, disease severity increased. Although aquaporin-4 staining on astrocyte endfeet at the glia limitans remained equally detectable, GFAP immunoreactivity and mRNA expression in CNS were reduced by this treatment. Ganciclovir-treated GFAP HSV-TK mice with EAE had a 78% increase in the total number of infiltrating myeloid cells (mainly macrophages), whereas we did not find an increase in infiltrating T cells, using quantitative flow cytometry. Per cell expression of mRNA for the macrophage-associated molecules TNFα, MMP-12 and TIMP-1 was elevated in spinal cord of GFAP HSV-TK mice treated with ganciclovir. Relative expression of CD3ε was downregulated, and expression levels of IFNγ, IL-4, IL-10, IL-17, and Foxp3 were not significantly changed. mRNA expression of CCL2 was upregulated, and CXL10 was downregulated. Thus, inhibition of reactive astrocytosis after initiation of EAE leads to increased macrophage, but not T cell, infiltration, and enhanced severity of EAE. This emphasizes the role of astrocytes in controlling leukocyte infiltration in neuroinflammation.
Collapse
Affiliation(s)
- Henrik Toft-Hansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | | | | |
Collapse
|
44
|
Rodrigues DH, Lacerda-Queiroz N, de Miranda AS, Fagundes CT, Campos RDDL, Arantes RE, Vilela MDC, Rachid MA, Teixeira MM, Teixeira AL. Absence of PAF receptor alters cellular infiltrate but not rolling and adhesion of leukocytes in experimental autoimmune encephalomyelitis. Brain Res 2011; 1385:298-306. [PMID: 21338585 DOI: 10.1016/j.brainres.2011.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/06/2011] [Accepted: 02/14/2011] [Indexed: 11/24/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a condition induced in some susceptible species to the study of multiple sclerosis (MS). The platelet activating factor (PAF) is an important mediator of immune responses and seems to be involved in MS. However, the participation of PAF in EAE and MS remains controversial. Thus, in this study, we aimed to evaluate the role of PAF receptor in the pathogenesis of EAE. EAE was induced using an emulsion containing MOG(35-55). EAE-induced PAF receptor knock out (PAFR(-/-)) mice presented milder disease when compared to C57BL/6 wild type (WT) animals. PAFR(-/-) animals had lower inflammatory infiltrates in central nervous system (CNS) tissue when compared to WT mice. However, intravital microscopy in cerebral microvasculature revealed similar levels of rolling and adhering leukocytes in both WT and PAFR(-/-) mice. Interleukine (IL)-17 and chemokines C-C motif legends (CCL)2 and CCL5 were significantly lower in PAFR(-/-) mice when compared to WT mice. Brain infiltrating cluster of differentiation (CD)4(+) leukocytes and IL-17(+) leukocytes was diminished in PAFR(-/-) when compared to WT mice. Taken together, our results suggest that PAF receptor is important in the induction and development of EAE, although it has no influence in rolling and adhesion steps of cell recruitment. The absence of PAF receptor results in milder disease by altering the type of inflammatory mediators and cells that are present in CNS tissue.
Collapse
|
45
|
Wu Z, Nagano I, Asano K, Takahashi Y. Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. Parasitol Res 2010; 107:1173-88. [PMID: 20661746 DOI: 10.1007/s00436-010-1985-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
Epidemiological and experimental studies have indicated that helminth infections can ameliorate autoimmune diseases. The present study investigated the amelioration effect of the Trichinella pseudospiralis infection on experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of central nervous system (CNS), and expression kinetics of Th17 and Th1 cytokine which play a crucial role in the pathogenesis of EAE. The results indicated that the infection of helminth T. pseudospiralis obviously ameliorated clinical severity and greatly delayed the onset of EAE induced by myelin oligodendrocyte glycoprotein (MOG) immunization. Infection caused much lesser inflammatory infiltration and demyilination in the CNS of infected EAE mice than uninfected EAE mice. The reduced infiltration was also suggested by the expressions of the inflammation cytokines, IL-17, IL-6, IL-1β, IFN-γ, and TNF-α, which were high in the spinal cords of the uninfected EAE mice, but was nearly normal or low in the infected EAE mice. The increased production of MOG-induced IL-17 and IFN-γ and the expression of IL-6, IL-1β, TGF-β in splenocytes after restimulation with MOG was inhibited in the infected EAE mice. On the other hand, the greatly induced Th2 response was observed in the splenocytes of the infected EAE mice. The present study showed that T. pseudospiralis infection can suppresses EAE by reducing the inflammatory infiltration in CNS, likely associated with the suppression of Th17 and Th1 responses by the infection.
Collapse
Affiliation(s)
- Zhiliang Wu
- Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
46
|
Koronyo-Hamaoui M, Ko MK, Koronyo Y, Azoulay D, Seksenyan A, Kunis G, Pham M, Bakhsheshian J, Rogeri P, Black KL, Farkas DL, Schwartz M. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J Neurochem 2009; 111:1409-24. [DOI: 10.1111/j.1471-4159.2009.06402.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Akirav EM, Bergman CM, Hill M, Ruddle NH. Depletion of CD4(+)CD25(+) T cells exacerbates experimental autoimmune encephalomyelitis induced by mouse, but not rat, antigens. J Neurosci Res 2009; 87:3511-9. [PMID: 19125411 PMCID: PMC4429897 DOI: 10.1002/jnr.21981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A key question in the field of autoimmunity concerns the fact that experimental disease is generally induced more easily with closely related, but not completely identical, tissue-restricted antigens. Here, the possibility that naturally occurring regulatory T cells (Tregs) for self-antigens are more potent than those for related antigens was investigated. The self-antigen specificity of naturally occurring Tregs was tested in experimental autoimmune encephalomyelitis (EAE) induced with mouse (self) or closely related (rat) myelin oligodendrocyte glycoproteins (MOGs). Surprisingly, Treg depletion increased EAE severity in mice immunized with mouse, but not rat, MOG. This increase was associated with increased T-cell activation and infiltration of the central nervous system, as well as increased interleukin (IL)-17 production and a higher ratio of interferon-gamma- to IL-10-producing cells. These data suggest that Tregs are specific for self-antigen and do not "cross-protect" against autoimmunity even when disease is induced with closely related foreign antigens.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/pharmacology
- Autoantigens/immunology
- Autoantigens/pharmacology
- Autoimmunity/immunology
- Biomarkers/metabolism
- CD4 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/physiopathology
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Interleukin-17/metabolism
- Interleukin-2 Receptor alpha Subunit/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Rats
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Eitan M. Akirav
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Cheryl M. Bergman
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520
| | - Myriam Hill
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520
| | - Nancy H. Ruddle
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
48
|
Wohler JE, Smith SS, Zinn KR, Bullard DC, Barnum SR. Gammadelta T cells in EAE: early trafficking events and cytokine requirements. Eur J Immunol 2009; 39:1516-26. [PMID: 19384874 PMCID: PMC2837942 DOI: 10.1002/eji.200839176] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously shown that gammadelta T cells traffic to the CNS during EAE with concurrently increased expression of beta(2)-integrins and production of IFN-gamma and TNF-alpha. To extend these studies, we transferred bioluminescent gammadelta T cells to WT mice and followed their movement through the acute stages of disease. We found that gammadelta T cells rapidly migrated to the site of myelin oligodendrocyte glycoprotein peptide injection and underwent massive expansion. Within 6 days after EAE induction, bioluminescent gammadelta T cells were found in the spinal cord and brain, peaking in number between days 10 and 12 and then rapidly declining by day 15. Reconstitution of gammadelta T cell(-/-) mice with gammadelta T cells derived from beta(2)-integrin-deficient mice (CD11a, -b or -c) demonstrated that gammadelta T-cell trafficking to the CNS during EAE is independent of this family of adhesion molecules. We also examined the role of gammadelta T-cell-produced IFN-gamma and TNF-alpha in EAE and found that production of both cytokines by gammadelta T cells was required for full development of EAE. These results indicate that gammadelta T cells are critical for the development of EAE and suggest a therapeutic target in demyelinating disease.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Brain/immunology
- Brain/pathology
- CD11 Antigens/genetics
- CD18 Antigens/metabolism
- Cell Movement/genetics
- Cell Movement/immunology
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Function-Associated Antigen-1/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Jillian E Wohler
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
49
|
Pastor S, Minguela A, Mi W, Ward ES. Autoantigen immunization at different sites reveals a role for anti-inflammatory effects of IFN-gamma in regulating susceptibility to experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5268-75. [PMID: 19380773 PMCID: PMC2766852 DOI: 10.4049/jimmunol.0800681] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune encephalomyelitis is induced in B10.PL (H-2(u)) mice by immunization with the immunodominant N-terminal epitope of myelin basic protein, Ac1-9. In the present study, we show that the site of immunization impacts disease incidence and severity. This effect is more marked in female mice than in males. Although immunization in the flanks is effective in eliciting disease, delivery of Ag in the footpad and tailbase results in poor induction. Analyses of the immune responses in female mice following different immunization regimens indicates that resistance to disease is accompanied by higher levels of IFN-gamma and CD11b(+)Gr-1(int) myeloid cells. Such myeloid cells are known to have a suppressive function, and consistent with this knowledge, blockade of IFN-gamma results in increased disease activity and decreased levels of splenic CD11b(+)Gr-1(int) cells. Conversely, injection of adjuvants (CFA or Pam(3)CSK(4)) in the footpad decreases experimental autoimmune encephalomyelitis incidence and severity. Our study indicates that the site of immunization can impact the magnitude of the ensuing inflammatory response, and that at a certain threshold a protective, regulatory circuit can be elicited.
Collapse
MESH Headings
- Animals
- Autoantigens/administration & dosage
- Autoantigens/immunology
- CD11b Antigen/biosynthesis
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/epidemiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Immunity, Innate
- Incidence
- Inflammation Mediators/physiology
- Interferon-gamma/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/immunology
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Chemokine/biosynthesis
- Severity of Illness Index
- Vaccination/methods
Collapse
Affiliation(s)
| | | | - Wentao Mi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - E. Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
50
|
Ochoa-Repáraz J, Rynda A, Ascón MA, Yang X, Kochetkova I, Riccardi C, Callis G, Trunkle T, Pascual DW. IL-13 production by regulatory T cells protects against experimental autoimmune encephalomyelitis independently of autoantigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:954-68. [PMID: 18606647 PMCID: PMC2599928 DOI: 10.4049/jimmunol.181.2.954] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Treatment with an anti-inflammatory Salmonella vaccine expressing enterotoxigenic Escherichia coli colonization factor Ag 1 (CFA/I) proved effective in stimulating protective, potent CD25(+)CD4(+) regulatory T (T(reg)) cells in susceptible mice challenged with experimental autoimmune encephalomyelitis (EAE). Because the Salmonella vector was considerably less protective, we questioned whether altering fimbrial subunit expression to resemble conventional Salmonella expression may impact T(reg) cell potency. The Salmonella-CFA/I vaccine was modified to limit fimbrial subunit expression to the intracellular compartment (Salmonella-CFA/I(IC)). SJL mice were challenged with proteolipid protein peptide 139-151 to induce EAE and orally treated with one of three Salmonella vaccines 6 days postchallenge. Treatment with Salmonella-CFA/I(IC) greatly reduced clinical disease, similarly as Salmonella-CFA/I, by subduing IL-17 and IL-21; however, mechanisms of protection differed as evident by increased IL-13 and IFN-gamma but diminished TGF-beta production by T(reg) cells from Salmonella-CFA/I(IC)-treated mice. Adoptive transfer of T(reg) cells from both CFA/I-expressing constructs was equivalent in protecting against EAE, showing minimal disease. Although not as potent in its protection, CD25(-)CD4(+) T cells from Salmonella-CFA/I(IC) showed minimal Th2 cells, but vaccination did prime these Th2 cells rendering partial protection against EAE challenge. In vivo IL-13 but not IFN-gamma neutralization compromised protection conferred by adoptive transfer with Salmonella-CFA/I(IC)-induced T(reg) cells. Thus, the Salmonella-CFA/I(IC) vaccine elicits T(reg) cells with attributes from both the Salmonella vector and Salmonella-CFA/I vaccines. Importantly, these T(reg) cells can be induced to high potency by simply vaccinating against irrelevant Ags, offering a novel approach to treat autoimmune diseases independently of the autoantigen.
Collapse
Affiliation(s)
| | - Agnieszka Rynda
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| | - Miguel A. Ascón
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Xinghong Yang
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| | - Irina Kochetkova
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| | - Carol Riccardi
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| | - Gayle Callis
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| | - Theresa Trunkle
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| | - David W. Pascual
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|