1
|
Sosnowska M, Kutwin M, Jaworski S, Strojny B, Wierzbicki M, Szczepaniak J, Łojkowski M, Święszkowski W, Bałaban J, Chwalibog A, Sawosz E. Mechano-signalling, induced by fullerene C 60 nanofilms, arrests the cell cycle in the G2/M phase and decreases proliferation of liver cancer cells. Int J Nanomedicine 2019; 14:6197-6215. [PMID: 31496681 PMCID: PMC6689765 DOI: 10.2147/ijn.s206934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Degradation of the extracellular matrix (ECM) changes the physicochemical properties and dysregulates ECM-cell interactions, leading to several pathological conditions, such as invasive cancer. Carbon nanofilm, as a biocompatible and easy to functionalize material, could be used to mimic ECM structures, changing cancer cell behavior to perform like normal cells. METHODS Experiments were performed in vitro with HS-5 cells (as a control) and HepG2 and C3A cancer cells. An aqueous solution of fullerene C60 was used to form a nanofilm. The morphological properties of cells cultivated on C60 nanofilms were evaluated with light, confocal, electron and atomic force microscopy. The cell viability and proliferation were measured by XTT and BrdU assays. Immunoblotting and flow cytometry were used to evaluate the expression level of proliferating cell nuclear antigen and determine the number of cells in the G2/M phase. RESULTS All cell lines were spread on C60 nanofilms, showing a high affinity to the nanofilm surface. We found that C60 nanofilm mimicked the niche/ECM of cells, was biocompatible and non-toxic, but the mechanical signal from C60 nanofilm created an environment that affected the cell cycle and reduced cell proliferation. CONCLUSION The results indicate that C60 nanofilms might be a suitable, substitute component for the niche of cancer cells. The incorporation of fullerene C60 in the ECM/niche may be an alternative treatment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Jarosław Szczepaniak
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Maciej Łojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw00-661, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw00-661, Poland
| | - Jaśmina Bałaban
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg1870, Denmark
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| |
Collapse
|
2
|
Shemesh A, Kundu K, Peleg R, Yossef R, Kaplanov I, Ghosh S, Khrapunsky Y, Gershoni-Yahalom O, Rabinski T, Cerwenka A, Atlas R, Porgador A. NKp44-Derived Peptide Binds Proliferating Cell Nuclear Antigen and Mediates Tumor Cell Death. Front Immunol 2018; 9:1114. [PMID: 29875773 PMCID: PMC5974751 DOI: 10.3389/fimmu.2018.01114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is considered as a hub protein and is a key regulator of DNA replication, repair, cell cycle control, and apoptosis. PCNA is overexpressed in many cancer types, and PCNA overexpression is correlated with cancer virulence. Membrane-associated PCNA is a ligand for the NKp44 (NCR2) innate immune receptor. The purpose of this study was to characterize the PCNA-binding site within NKp44. We have identified NKp44-derived linear peptide (pep8), which can specifically interact with PCNA and partly block the NKp44–PCNA interaction. We then tested whether NKp44-derived pep8 (NKp44-pep8) fused to cell-penetrating peptides (CPPs) can be employed for targeting the intracellular PCNA for the purpose of anticancer therapy. Treatment of tumor cells with NKp44-pep8, fused to R11-NLS cell-penetrating peptide (R11-NLS-pep8), reduced cell viability and promoted cell death, in various murine and human cancer cell lines. Administration of R11-NLS-pep8 to tumor-bearing mice suppressed tumor growth in the 4T1 breast cancer and the B16 melanoma in vivo models. We therefore identified the NKp44 binding site to PCNA and further developed an NKp44-peptide-based agent that can inhibit tumor growth through interfering with the function of intracellular PCNA in the tumor cell.
Collapse
Affiliation(s)
- Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Refael Peleg
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rami Yossef
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Susmita Ghosh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yana Khrapunsky
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tatiana Rabinski
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center and Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Roee Atlas
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Curtis MA, Faull RLM, Dragunow M. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J Neuroinflammation 2013; 10:85. [PMID: 23866312 PMCID: PMC3729740 DOI: 10.1186/1742-2094-10-85] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit.
Collapse
Affiliation(s)
- Amy M Smith
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zang W, Lin M, Kalache S, Zhang N, Krüger B, Waaga-Gasser AM, Grimm M, Hancock W, Heeger P, Schröppel B, Murphy B. Inhibition of the alloimmune response through the generation of regulatory T cells by a MHC class II-derived peptide. THE JOURNAL OF IMMUNOLOGY 2008; 181:7499-506. [PMID: 19017939 DOI: 10.4049/jimmunol.181.11.7499] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that HLA-DQA1, a peptide derived from a highly conserved region of MHC class II, prevents alloreactive T cell priming and effector function in vivo, although underlying mechanisms are obscure. In this study, we demonstrate that 28% of mice treated with HLA-DQA1 combined with low-dose rapamycin achieved permanent engraftment of fully MHC-disparate islet allografts and significantly prolonged survival in the remaining animals (log rank, p < 0.001). Immunohistologic examination of the grafts from HLA-DQA1/rapamycin-treated animals revealed up-regulated expression of TGF-ss and FoxP3. In vivo administration of blocking anti-TGF-ss or depleting anti-CD25 mAb augmented T cell alloimmunity and prevented the long-term engraft induced by HLA-DQA1. In vitro experiments further showed that HLA-DQA1 induced differentiation of CD4(+) T cells into CD4(+)CD25(+)FoxP3(+) regulatory T cells. Together, these data provide the first demonstration that HLA-DQA1, a MHC class II-derived peptide, can prolong allograft survival via a TGF-beta and regulatory T cell-dependent mechanisms.
Collapse
Affiliation(s)
- Weiping Zang
- Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dubaniewicz A, Dubaniewicz A, Dubaniewicz A, Moszkowska G. DQA1*03011 allele: protective or an adverse effect on the development of sarcoidosis; preliminary study. Respir Med 2007; 101:2213-6. [PMID: 17662590 DOI: 10.1016/j.rmed.2007.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/29/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Sarcoidosis (SA) is a multisystem granulomatous disorder of unknown etiology. It seems likely that in genetically different predisposed hosts, the same antigen(s) may cause the development of sarcoid Th1 response. The interaction of the T-cell receptor with the human leukocyte antigen-DQA1*03011 peptide-complex can affect T lymphocytes activation in a dose-response manner. OBJECTIVES/METHODS To test occurrence of DQA1*03011 allele in SA, we compared the distribution of DQA1 alleles in 32 SA patients, 37 TB patients and in 58 healthy volunteers, using a PCR-SSP "high-resolution" method. RESULTS Our results revealed that after Bonferroni correction DQA1*03011 were less common in SA patients than in the controls (OR 0.16, 95%CI 0.03-0.75). In TB, DQA1*0303 were significantly more frequent and DQA1*0505 less present as compared to the controls (OR 11.03, 95% CI 1.20-95.80, OR 0.29, 95% CI 0.01-0.88). Comparing DQA1 alleles in both patient groups, DQA1*0501, DQA1*0505 alleles were more common and DQA1*03011, DQA1*0302, DQA1*0303 were less common after Bonferroni correction in SA than in TB. CONCLUSION We revealed that DQA1*03011 allele was less common in SA than in the controls and TB. It seems possible that a low frequency of DQA1*03011 occurrence may be also involved in the etiopathogenesis of SA.
Collapse
Affiliation(s)
- Anna Dubaniewicz
- Department of Pathophysiology, Medical University of Gdansk, 80-952 Gdansk, Debinki 7 Street, Poland.
| | | | | | | |
Collapse
|
6
|
Abstract
There is now a substantial body of data demonstrating the abilities of synthetic peptides and peptide analogues to inhibit the auto- and alloimmune response in vitro and in vivo. We have studied the immunomodulatory role of synthetic peptides derived from highly conserved regions of the class II MHC alpha chain. These MHC-derived peptides inhibit the rat, human, and mouse mixed lymphocyte response (MLR), proliferation to autoantigen, cytokine production, and cytolytic T lymphocyte (CTL) generation. Our studies demonstrated that the inhibitory effect of the MHC class II nonpolymorphic peptides is mediated through the induction of apoptosis in APCs via a nonclassic caspase-independent pathway. In addition, T lymphocytes initially stimulated in the presence of HLA-DQA1 are rendered hyporesponsive to subsequent stimuli. Immunomodulation by HLA-DQA1 was effective in vivo because it prevented both the priming and the effector function of primed allogeneic T cells in a murine DTH model. Our data demonstrate that peptides derived from highly conserved regions of the class II MHC alpha chain can alter T-lymphocyte immune responses both in vitro and in vivo. These results have important implications for the development of a novel therapy for immune mediated diseases.
Collapse
Affiliation(s)
- Weiping Zang
- Renal Division, Mount Sinai School of Medicine, NY 10029, USA
| | | |
Collapse
|
7
|
Dong C, Lyu SC, Krensky AM, Clayberger C. DQ 65–79, A Peptide Derived from HLA Class II, Mimics p21 to Block T Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2003; 171:5064-70. [PMID: 14607903 DOI: 10.4049/jimmunol.171.10.5064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DQ 65-79, a peptide derived from residues 65-79 of the alpha-chain HLA class II molecule DQA03011, blocks T cell proliferation and induces T cell apoptosis. Using a yeast two-hybrid assay, we previously identified proliferating cell nuclear Ag (PCNA) as an intracellular ligand for DQ 65-79. In this study, we show that three regions of PCNA, residues 81-100, 121-140, and 241-261, interact with DQ 65-79. Residues 241-261 of PCNA also interact with the C terminus (residues 139-160) of the cell cycle regulator, p21, suggesting that DQ 65-79 and p21 might function similarly. We show here that DQ 65-79 competitively inhibits binding of p21 to PCNA and that both DQ 65-79 and p21 139-160 induce T cell apoptosis, suggesting that DQ 65-79 and p21 act similarly to inhibit cell growth.
Collapse
Affiliation(s)
- Chen Dong
- Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
8
|
Abstract
DNA polymerase sliding clamps are a family of ring-shaped proteins that play essential roles in DNA metabolism. The proteins from the three domains of life, Bacteria, Archaea and Eukarya, as well as those from bacteriophages and viruses, were shown to interact with a large number of cellular factors and to influence their activity. In the last several years a large number of such proteins have been identified and studied. Here the various proteins that have been shown to interact with the sliding clamps of Bacteria, Archaea and Eukarya are summarized.
Collapse
Affiliation(s)
- Jonathan B Vivona
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
9
|
Jiang Y, Chen D, Lyu SC, Ling X, Krensky AM, Clayberger C. DQ 65-79, a peptide derived from HLA class II, induces I kappa B expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3323-8. [PMID: 11907089 DOI: 10.4049/jimmunol.168.7.3323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A synthetic peptide corresponding to residues 65-79 of the alpha helix of the alpha-chain of the class II HLA molecule DQA03011 (DQ 65-79) inhibits the proliferation of human T lymphocytes in an allele nonrestricted manner. By using microarray technology, we found that expression of 29 genes was increased or decreased in a human CTL cell line after treatment with DQ 65-79. This study focuses on one of these genes, IkappaB-alpha, whose expression is increased by DQ 65-79. IkappaB proteins, including IkappaB-alpha and IkappaB-beta, are increased in T cells treated with DQ 65-79. Nuclear translocation of the NF-kappaB subunits p65 and p50 is decreased in T cells after treatment with DQ 65-79, while elevated levels of p65 and p50 are present in cytosol. DQ 65-79 inhibits the degradation of IkappaB-alpha mRNA and inhibits the activity of IkappaB kinase. These findings indicate that the DQ 65-79 peptide increases the level of IkappaB proteins, thereby preventing nuclear translocation of the transcription factor, NF-kappaB, and inhibiting T cell proliferation.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305-5164, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Identification and characterization of the proteins that regulate the transition from the resting stage (G0) through G1 to S phase of the cell cycle are of central importance to understand the control of cell proliferation and chromosome replication. Unlike in lower organisms, where relatively small numbers of key factors are involved in this process, the factors involved in the same control mechanisms in mammalian systems are much more complex. Furthermore, accumulating lines of evidence now suggest that the nuclear matrix and chromatin organization also play an essential role for the cell cycle control in mammalian cells. To gain a better understanding of the overall dynamics and changes of the protein factors in the context of matrix/chromatin organization, we examined the protein profiles of the Chinese hamster ovary (CHO) cells in different cell cycle compartments. The methods used in this study included subcellular fractionations (cytosol, nuclear extraction, chromatin, and nuclear matrix), two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), silver staining, and immunoblotting. As expected, significant changes of protein profiles were observed when cells entered into proliferating stages from G0. Among approximately 1200 protein spots analyzed by 2-D PAGE, at least 12 showed marked increase or decrease at this transitional period. Further cell-cycle progression from G1 to S phase showed less dramatic changes of overall protein protile. However, the profile of certain proteins showed rather dramatic changes of their subcellular localization during this transitional period. In particular, the levels of proliferating cell nuclear antigen (PCNA) in the nuclear matrix and chromatin dramatically increased in mid-G1 and in the beginning of S phase, respectively, while the overall PCNA level was relatively constant throughout the cell cycle.
Collapse
Affiliation(s)
- S N Naryzhny
- Northeastern Ontario Regional Cancer Centre, Sudbury, Canada
| | | |
Collapse
|