1
|
Nakano T, Yoshida E, Sasaki Y, Kazama S, Katami F, Aoki K, Fujie T, Du K, Hara T, Yamamoto C, Takahashi T, Fujiwara Y, Eto K, Iwakura Y, Shinoda Y, Kaji T. Mechanisms Underlying Sensory Nerve-Predominant Damage by Methylmercury in the Peripheral Nervous System. Int J Mol Sci 2024; 25:11672. [PMID: 39519224 PMCID: PMC11545846 DOI: 10.3390/ijms252111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Sensory disturbances and central nervous system symptoms are important in patients with Minamata disease. In the peripheral nervous system of these patients, motor nerves are not strongly injured, whereas sensory nerves are predominantly affected. In this study, we investigated the mechanisms underlying the sensory-predominant impairment of the peripheral nervous system caused by methylmercury. We found that the types of cell death in rat dorsal root ganglion (DRG) neurons caused by methylmercury included apoptosis, necrosis, and necroptosis. Methylmercury induced apoptosis in cultured rat DRG neurons but not in anterior horn neurons or Schwann cells. Additionally, methylmercury activated both caspase 8 and caspase 3 in DRG neurons. It increased the expression of tumor necrosis factor (TNF) receptor-1 and the phosphorylation of receptor-interacting protein kinase 3 (RIP3) and mixed-lineage kinase domain-like pseudokinase (MLKL). The expression of TNF-α was increased in macrophage-like RAW264.7 cells by methylmercury. The increase was suggested to be mediated by the NF-κB pathway. Moreover, methylmercury induced neurological symptoms, evaluated by a hindlimb extension response, were significantly less severe in TNF-α knockout mice. Based on these results and our previous studies, we propose the following hypothesis regarding the pathogenesis of sensory nerve-predominant damage by methylmercury: First, methylmercury accumulates within sensory nerve neurons and initiates cell death mechanisms, such as apoptosis, on a small scale. Second, cell death triggers the infiltration of macrophages into the sensory fibers. Third, the macrophages are stimulated by methylmercury and secrete TNF-α through the NF-κB pathway. Fourth, TNF-α induces cell death mechanisms, including necrosis, apoptosis through the caspase 8/3 pathway, and necroptosis through the TNFR1-RIP1-RIP3-MLKL pathway, activated by methylmercury in sensory neurons. Consequently, methylmercury exhibits potent cytotoxicity specific to the DRG/sensory nerve cells in the peripheral nervous system. This chain of events caused by methylmercury may contribute to sensory disturbances in patients with Minamata disease.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Eiko Yoshida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko 270-1194, Chiba, Japan
| | - Yu Sasaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Shigekatsu Kazama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Fumika Katami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Kazuhiro Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Tomoya Fujie
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Ke Du
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
| | - Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Tsutomu Takahashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Yasuyuki Fujiwara
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai, 272 Ikurakitakata, Tamana 865-0041, Kumamoto, Japan;
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan;
| | - Yo Shinoda
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| |
Collapse
|
2
|
Santarsiero A, Todisco S, Convertini P, De Leonibus C, Infantino V. Transcriptional Regulation and Function of Malic Enzyme 1 in Human Macrophage Activation. Biomedicines 2024; 12:2089. [PMID: 39335602 PMCID: PMC11428690 DOI: 10.3390/biomedicines12092089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Macrophages represent primary players of the innate immune system. Macrophage activation triggers several signaling pathways and is tightly associated with metabolic changes, which drive different immune subsets. Recent studies unveil the role of various metabolic enzymes in macrophage activation. Here, we show that malic enzyme 1 (ME1) is overexpressed in LPS-induced macrophages. Through chromatin immunoprecipitation, we demonstrate that ME1 transcriptional regulation is under control of NF-κB. Furthermore, ME1 activity is also increased in activated human PBMC-derived macrophages. Notably, ME1 gene silencing decreases nitric oxide as well as reactive oxygen species and prostaglandin E2 inflammatory mediators. Therefore, modulating ME1 provides a potential approach for immunometabolic regulation and in turn macrophage function.
Collapse
Affiliation(s)
- Anna Santarsiero
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.S.); (S.T.); (P.C.)
| | - Simona Todisco
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.S.); (S.T.); (P.C.)
| | - Paolo Convertini
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.S.); (S.T.); (P.C.)
| | - Chiara De Leonibus
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy;
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Vittoria Infantino
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
3
|
Wang Y, Jiao B, Hu Z, Wang Y. Critical Role of histone deacetylase 3 in the regulation of kidney inflammation and fibrosis. Kidney Int 2024; 105:775-790. [PMID: 38286179 DOI: 10.1016/j.kint.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Chronic kidney disease (CKD) is characterized by kidney inflammation and fibrosis. However, the precise mechanisms leading to kidney inflammation and fibrosis are poorly understood. Since histone deacetylase is involved in inflammation and fibrosis in other tissues, we examined the role of histone deacetylase 3 (HDAC3) in the regulation of inflammation and kidney fibrosis. HDAC3 is induced in the kidneys of animal models of CKD but mice with conditional HDAC3 deletion exhibit significantly reduced fibrosis in the kidneys compared with control mice. The expression of proinflammatory and profibrotic genes was significantly increased in the fibrotic kidneys of control mice, which was impaired in mice with HDAC3 deletion. Genetic deletion or pharmacological inhibition of HDAC3 reduced the expression of proinflammatory genes in cultured monocytes/macrophages. Mechanistically, HDAC3 deacetylates Lys122 of NF-κB p65 subunit turning on transcription. RGFP966, a selective HDAC3 inhibitor, reduced fibrosis in cells and in animal models by blocking NF-κB p65 binding to κB-containing DNA sequences. Thus, our study identified HDAC3 as a critical regulator of inflammation and fibrosis of the kidney through deacetylation of NF-κB unlocking its transcriptional activity. Hence, targeting HDAC3 could serve as a novel therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Yuguo Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA; Renal Section, VA Connecticut Healthcare System, West Haven, Connecticut, USA.
| |
Collapse
|
4
|
McKiel LA, Ballantyne LL, Negri GL, Woodhouse KA, Fitzpatrick LE. MyD88-dependent Toll-like receptor 2 signaling modulates macrophage activation on lysate-adsorbed Teflon™ AF surfaces in an in vitro biomaterial host response model. Front Immunol 2023; 14:1232586. [PMID: 37691934 PMCID: PMC10491479 DOI: 10.3389/fimmu.2023.1232586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
The adsorbed protein layer on an implanted biomaterial surface is known to mediate downstream cell-material interactions that drive the host response. While the adsorption of plasma-derived proteins has been studied extensively, the adsorption of damage-associated molecular patterns (DAMPs) derived from damaged cells and matrix surrounding the implant remains poorly understood. Previously, our group developed a DAMP-adsorption model in which 3T3 fibroblast lysates were used as a complex source of cell-derived DAMPs and we demonstrated that biomaterials with adsorbed lysate potently activated RAW-Blue macrophages via Toll-like receptor 2 (TLR2). In the present study, we characterized the response of mouse bone marrow derived macrophages (BMDM) from wildtype (WT), TLR2-/- and MyD88-/- mice on Teflon™ AF surfaces pre-adsorbed with 10% plasma or lysate-spiked plasma (10% w/w total protein from 3T3 fibroblast lysate) for 24 hours. WT BMDM cultured on adsorbates derived from 10% lysate in plasma had significantly higher gene and protein expression of IL-1β, IL-6, TNF-α, IL-10, RANTES/CCL5 and CXCL1/KC, compared to 10% plasma-adsorbed surfaces. Furthermore, the upregulation of pro-inflammatory cytokine and chemokine expression in the 10% lysate in plasma condition was attenuated in TLR2-/- and MyD88-/- BMDM. Proteomic analysis of the adsorbed protein layers showed that even this relatively small addition of lysate-derived proteins within plasma (10% w/w) caused a significant change to the adsorbed protein profile. The 10% plasma condition had fibrinogen, albumin, apolipoproteins, complement, and fibronectin among the top 25 most abundant proteins. While proteins layers generated from 10% lysate in plasma retained fibrinogen and fibronectin among the top 25 proteins, there was a disproportionate increase in intracellular proteins, including histones, tubulins, actins, and vimentin. Furthermore, we identified 7 DAMPs or DAMP-related proteins enriched in the 10% plasma condition (fibrinogen, apolipoproteins), compared to 39 DAMPs enriched in the 10% lysate in plasma condition, including high mobility group box 1 and histones. Together, these findings indicate that DAMPs and other intracellular proteins readily adsorb to biomaterial surfaces in competition with plasma proteins, and that adsorbed DAMPs induce an inflammatory response in adherent macrophages that is mediated by the MyD88-dependent TLR2 signaling pathway.
Collapse
Affiliation(s)
- Laura A. McKiel
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Laurel L. Ballantyne
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
| | | | - Kimberly A. Woodhouse
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Lindsay E. Fitzpatrick
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
5
|
A 35-bp Conserved Region Is Crucial for Insl3 Promoter Activity in Mouse MA-10 Leydig Cells. Int J Mol Sci 2022; 23:ijms232315060. [PMID: 36499388 PMCID: PMC9738330 DOI: 10.3390/ijms232315060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The peptide hormone insulin-like 3 (INSL3) is produced almost exclusively by Leydig cells of the male gonad. INSL3 has several functions such as fetal testis descent and bone metabolism in adults. Insl3 gene expression in Leydig cells is not hormonally regulated but rather is constitutively expressed. The regulatory region of the Insl3 gene has been described in various species; moreover, functional studies have revealed that the Insl3 promoter is regulated by various transcription factors that include the nuclear receptors AR, NUR77, COUP-TFII, LRH1, and SF1, as well as the Krüppel-like factor KLF6. However, these transcription factors are also found in several tissues that do not express Insl3, indicating that other, yet unidentified factors, must be involved to drive Insl3 expression specifically in Leydig cells. Through a fine functional promoter analysis, we have identified a 35-bp region that is responsible for conferring 70% of the activity of the mouse Insl3 promoter in Leydig cells. All tri- and dinucleotide mutations introduced dramatically reduced Insl3 promoter activity, indicating that the entire 35-bp sequence is required. Nuclear proteins from MA-10 Leydig cells bound specifically to the 35-bp region. The 35-bp sequence contains GC- and GA-rich motifs as well as potential binding elements for members of the CREB, C/EBP, AP1, AP2, and NF-κB families. The Insl3 promoter was indeed activated 2-fold by NF-κB p50 but not by other transcription factors tested. These results help to further define the regulation of Insl3 gene transcription in Leydig cells.
Collapse
|
6
|
Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. BMC Med 2022; 20:429. [PMID: 36348343 PMCID: PMC9644617 DOI: 10.1186/s12916-022-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) can lead to pulmonary dysfunction that is associated with pulmonary inflammation. Moreover, little is known regarding the therapeutic role of exercise training on pulmonary pathophysiology in NAFLD. The present study aimed to investigate the effect of exercise training on high-fat high-carbohydrate (HFHC)-induced pulmonary dysfunction in C57BL/6 mice. METHODS Male C57BL/6 mice (N = 40) were fed a standard Chow (n = 20) or an HFHC (n = 20) diet for 15 weeks. After 8 weeks of dietary treatment, they were further assigned to 4 subgroups for the remaining 7 weeks: Chow (n = 10), Chow plus exercise (Chow+EX, n = 10), HFHC (n = 10), or HFHC plus exercise (HFHC+EX, n = 10). Both Chow+EX and HFHC+EX mice were subjected to treadmill running. RESULTS Chronic exposure to the HFHC diet resulted in obesity with hepatic steatosis, impaired glucose tolerance, and elevated liver enzymes. The HFHC significantly increased fibrotic area (p < 0.001), increased the mRNA expression of TNF-α (4.1-fold, p < 0.001), IL-1β (5.0-fold, p < 0.001), col1a1 (8.1-fold, p < 0.001), and Timp1 (6.0-fold, p < 0.001) in the lung tissue. In addition, the HFHC significantly altered mitochondrial function (p < 0.05) along with decreased Mfn1 protein levels (1.8-fold, p < 0.01) and increased Fis1 protein levels (1.9-fold, p < 0.001). However, aerobic exercise training significantly attenuated these pathophysiologies in the lungs in terms of ameliorating inflammatory and fibrogenic effects by enhancing mitochondrial function in lung tissue (p < 0.001). CONCLUSIONS The current findings suggest that exercise training has a beneficial effect against pulmonary abnormalities in HFHC-induced NAFLD through improved mitochondrial function.
Collapse
Affiliation(s)
- Jinkyung Cho
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.,Department of Sport Science, Korea Institute of Sport Science, Seoul, Republic of Korea
| | - Bruce D Johnson
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kymberly D Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Niven
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dongwook Yeo
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Chul-Ho Kim
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Najih M, Nguyen HT, Martin LJ. Involvement of calmodulin-dependent protein kinase I in the regulation of the expression of connexin 43 in MA-10 tumor Leydig cells. Mol Cell Biochem 2022; 478:791-805. [PMID: 36094721 DOI: 10.1007/s11010-022-04553-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Connexin 43 (Cx43, also known as Gja1) is the most abundant testicular gap junction protein. It has a crucial role in the support of spermatogenesis by Sertoli cells in the seminiferous tubules as well as in androgen synthesis by Leydig cells. The multifunctional family of Ca2+/calmodulin-dependent protein kinases (CaMK) is composed of CaMK I, II, and IV and each can serve as a mediator of nuclear Ca2+ signals. These kinases can control gene expression by phosphorylation of key regulatory sites on transcription factors. Among these, AP-1 members cFos and cJun are interesting candidates that seem to cooperate with CaMKs to regulate Cx43 expression in Leydig cells. In this study, the Cx43 promoter region important for CaMK-dependent activation is characterized using co-transfection of plasmid reporter-constructs with different plasmids coding for CaMKs and/or AP-1 members in MA-10 Leydig cells. Here we report that the activation of Cx43 expression by cFos and cJun is increased by CaMKI. Furthermore, results from chromatin immunoprecipitation suggest that the recruitment of AP-1 family members to the proximal region of the Cx43 promoter may involve another uncharacterized AP-1 DNA regulatory element and/or protein-protein interactions with other partners. Thus, our data provide new insights into the molecular regulatory mechanisms that control mouse Cx43 transcription in testicular Leydig cells.
Collapse
Affiliation(s)
- Mustapha Najih
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Ha Tuyen Nguyen
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
8
|
Naot D, Pool B, Chhana A, Gao R, Munro JT, Cornish J, Dalbeth N. Factors secreted by monosodium urate crystal-stimulated macrophages promote a proinflammatory state in osteoblasts: a potential indirect mechanism of bone erosion in gout. Arthritis Res Ther 2022; 24:212. [PMID: 36064735 PMCID: PMC9442999 DOI: 10.1186/s13075-022-02900-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tophi are lesions commonly present at sites of bone erosion in gout-affected joints. The tophus comprises a core of monosodium urate (MSU) crystals surrounded by soft tissue that contains macrophages and other immune cells. Previous studies found that MSU crystals directly reduce osteoblast viability and function. The aim of the current study was to determine the indirect, macrophage-mediated effects of MSU crystals on osteoblasts. METHODS Conditioned medium from the RAW264.7 mouse macrophage cell line cultured with MSU crystals was added to the MC3T3-E1 mouse osteoblastic cell line. Conditioned medium from the THP-1 human monocytic cell line cultured with MSU crystals was added to primary human osteoblasts (HOBs). Matrix mineralization was assessed by von Kossa staining. Gene expression was determined by real-time PCR, and concentrations of secreted factors were determined by enzyme-linked immunosorbent assay. RESULTS In MC3T3-E1 cells cultured for 13 days in an osteogenic medium, the expression of the osteoblast marker genes Col1a1, Runx2, Sp7, Bglap, Ibsp, and Dmp1 was inhibited by a conditioned medium from MSU crystal-stimulated RAW264.7 macrophages. Mineral staining of MC3T3-E1 cultures on day 21 confirmed the inhibition of osteoblast differentiation. In HOB cultures, the effect of 20 h incubation with a conditioned medium from MSU crystal-stimulated THP-1 monocytes on osteoblast gene expression was less consistent. Expression of the genes encoding cyclooxygenase-2 and IL-6 and secretion of the proinflammatory mediators PGE2 and IL-6 were induced in MC3T3-E1 and HOBs incubated with conditioned medium from MSU crystal-stimulated macrophages/monocytes. However, inhibition of cyclooxygenase-2 activity and PGE2 secretion from HOBs indicated that this pathway does not play a major role in mediating the indirect effects of MSU crystals in HOBs. CONCLUSIONS Factors secreted from macrophages stimulated by MSU crystals attenuate osteoblast differentiation and induce the expression and secretion of proinflammatory mediators from osteoblasts. We suggest that bone erosion in joints affected by gout results from a combination of direct and indirect effects of MSU crystals.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Bregina Pool
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Ashika Chhana
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Ryan Gao
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand.
| |
Collapse
|
9
|
Astaxanthin Inhibits Matrix Metalloproteinase Expression by Suppressing PI3K/AKT/mTOR Activation in Helicobacter pylori-Infected Gastric Epithelial Cells. Nutrients 2022; 14:nu14163427. [PMID: 36014933 PMCID: PMC9412703 DOI: 10.3390/nu14163427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) increases production of reactive oxygen species (ROS) and activates signaling pathways associated with gastric cell invasion, which are mediated by matrix metalloproteinases (MMPs). We previously demonstrated that H. pylori activated mitogen-activated protein kinase (MAPK) and increased expression of MMP-10 in gastric epithelial cells. MMPs degrade the extracellular matrix, enhancing tumor invasion and cancer progression. The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is associated with MMP expression. ROS activates PIK3/AKT/mTOR signaling in cancer. Astaxanthin, a xanthophyll carotenoid, shows antioxidant activity by reducing ROS levels in gastric epithelial cells infected with H. pylori. This study aimed to determine whether astaxanthin inhibits MMP expression, cell invasion, and migration by reducing the PI3K/AKT/mTOR signaling in H. pylori-infected gastric epithelial AGS cells. H. pylori induced PIK3/AKT/mTOR and NF-κB activation, decreased IκBα, and induced MMP (MMP-7 and -10) expression, the invasive phenotype, and migration in AGS cells. Astaxanthin suppressed these H. pylori-induced alterations in AGS cells. Specific inhibitors of PI3K, AKT, and mTOR reversed the H. pylori-stimulated NF-κB activation and decreased IκBα levels in the cells. In conclusion, astaxanthin suppressed MMP expression, cell invasion, and migration via inhibition of PI3K/AKT/mTOR/NF-κB signaling in H. pylori-stimulated gastric epithelial AGS cells.
Collapse
|
10
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Díez-Tercero L, Delgado LM, Perez RA. Modulation of Macrophage Response by Copper and Magnesium Ions in Combination with Low Concentrations of Dexamethasone. Biomedicines 2022; 10:biomedicines10040764. [PMID: 35453514 PMCID: PMC9030383 DOI: 10.3390/biomedicines10040764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Macrophages have been deemed crucial for correct tissue regeneration, which is a complex process with multiple overlapping phases, including inflammation. Previous studies have suggested that divalent ions are promising cues that can induce an anti-inflammatory response, since they are stable cues that can be released from biomaterials. However, their immunomodulatory potential is limited in a pro-inflammatory environment. Therefore, we investigated whether copper and magnesium ions combined with low concentrations of the anti-inflammatory drug, dexamethasone (dex), could have a synergistic effect in macrophage, with or without pro-inflammatory stimulus, in terms of morphology, metabolic activity and gene expression. Our results showed that the combination of copper and dex strongly decreased the expression of pro-inflammatory markers, while the combination with magnesium upregulated the expression of IL-10. Moreover, in the presence of a pro-inflammatory stimulus, the combination of copper and dex induced a strong TNF-α response, suggesting an impairment of the anti-inflammatory actions of dex. The combination of magnesium and dex in the presence of a pro-inflammatory stimulus did not promote any improvement in comparison to dex alone. The results obtained in this study could be relevant for tissue engineering applications and in the design of platforms with a dual release of divalent ions and small molecules.
Collapse
Affiliation(s)
- Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain;
- Basic Science Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain;
- Basic Science Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (L.M.D.); (R.A.P.); Tel.: +34-935042000 (L.M.D. & R.A.P.)
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain;
- Basic Science Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (L.M.D.); (R.A.P.); Tel.: +34-935042000 (L.M.D. & R.A.P.)
| |
Collapse
|
12
|
Stoll G, Naldi A, Noël V, Viara E, Barillot E, Kroemer G, Thieffry D, Calzone L. UPMaBoSS: A Novel Framework for Dynamic Cell Population Modeling. Front Mol Biosci 2022; 9:800152. [PMID: 35309516 PMCID: PMC8924294 DOI: 10.3389/fmolb.2022.800152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mathematical modeling aims at understanding the effects of biological perturbations, suggesting ways to intervene and to reestablish proper cell functioning in diseases such as cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of details needed to describe the intra-cellular processes involved, the numerous interactions between cells and cell types, and the complex dynamical properties of such populations where cells die, divide and interact constantly, to cite a few. Another important difficulty comes from the spatial distribution of these cells, their diffusion and motility. All of these aspects cannot be easily resolved in a unique mathematical model or with a unique formalism. To cope with some of these issues, we introduce here a novel framework, UPMaBoSS (for Update Population MaBoSS), dedicated to modeling dynamic populations of interacting cells. We rely on the preexisting tool MaBoSS, which enables probabilistic simulations of cellular networks. A novel software layer is added to account for cell interactions and population dynamics, but without considering the spatial dimension. This modeling approach can be seen as an intermediate step towards more complex spatial descriptions. We illustrate our methodology by means of a case study dealing with TNF-induced cell death. Interestingly, the simulation of cell population dynamics with UPMaBoSS reveals a mechanism of resistance triggered by TNF treatment. Relatively easy to encode, UPMaBoSS simulations require only moderate computational power and execution time. To ease the reproduction of simulations, we provide several Jupyter notebooks that can be accessed within the CoLoMoTo Docker image, which contains all software and models used for this study.
Collapse
Affiliation(s)
- Gautier Stoll
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Aurélien Naldi
- Institut de Biologie de L’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Lifeware Group, Inria Saclay-Ile de France, Palaiseau, France
| | - Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM U900, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
| | | | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM U900, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Denis Thieffry
- Institut de Biologie de L’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Lifeware Group, Inria Saclay-Ile de France, Palaiseau, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM U900, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
- *Correspondence: Laurence Calzone,
| |
Collapse
|
13
|
Mokdad R, Seguin C, Fournel S, Frisch B, Heurtault B, Hadjsadok A. Anti-inflammatory effects of free and liposome-encapsulated Algerian thermal waters in RAW 264.7 macrophages. Int J Pharm 2022; 614:121452. [PMID: 35007687 DOI: 10.1016/j.ijpharm.2022.121452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
The main objectives of this work were to formulate liposomes encapsulating highly mineralized thermal waters (TWs) and to study anti-inflammatory effect of free and encapsulated thermal waters on RAW 264.7 macrophage cells stimulated with lipopolysaccharide (LPS). TWs-loaded conventional and deformable liposomes (TWs-Lip and TWs-DLip) were prepared by sonication and extrusion, respectively. They were considered for their vesicle size, zeta potential, entrapment efficiency, physical stability and in vitro anti-inflammatory effect. Formulated liposome suspensions have a low polydispersity and nanometric size range with zeta potential values close to zero. The vesicle size was stable for 30 days. Entrapment efficiency of TWs was above 90% in conventional liposomes and 70% in deformable liposomes. Pretreatment of LPS-stimulated murine macrophages, with free and liposome-encapsulated TWs, resulted in a significant reduction in nitric oxide (NO) production and modulated tumor necrosis factor-α (TNF-α) production suggesting an anti-inflammatory effect which was even more striking with TWs-Lip and TWs-DLip. Liposome formulations may offer a suitable approach for transdermal delivery of TWs, indicated in inflammatory skin diseases.
Collapse
Affiliation(s)
- Romaissaa Mokdad
- Laboratoire de l'analyse fonctionnelle des procédés chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida 1, 270 route de Soumaa, 09000 Blida, Algeria; 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Cendrine Seguin
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Sylvie Fournel
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Benoît Frisch
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Béatrice Heurtault
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Abdelkader Hadjsadok
- Laboratoire de l'analyse fonctionnelle des procédés chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida 1, 270 route de Soumaa, 09000 Blida, Algeria
| |
Collapse
|
14
|
The Preeclamptic Environment Promotes the Activation of Transcription Factor Kappa B by P53/RSK1 Complex in a HTR8/SVneo Trophoblastic Cell Line. Int J Mol Sci 2021; 22:ijms221910200. [PMID: 34638542 PMCID: PMC8508006 DOI: 10.3390/ijms221910200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia is a pregnancy disorder associated with shallow placentation, forcing placental cells to live in hypoxic conditions. This activates the transcription factor kappa B (NFκB) in maternal and placental cells. Although the role of NFκB in preeclampsia is well documented, its mechanism of activation in trophoblastic cells has been never studied. This study investigates the mechanism of NFκB activation in a first trimester trophoblastic cell line (HTR8/SVneo) stimulated by a medium containing serum from preeclamptic (PE) or normotensive (C) women in hypoxic (2% O2) or normoxic (8% O2) conditions. The results indicate that in HTR8/SVneo cells, the most widely studied NFκB pathways, i.e., canonical, non-canonical and atypical, are downregulated in environment PE 2% O2 in comparison to C 8% O2. Therefore, other pathways may be responsible for NFκB activation. One such pathway depends on the activation of NFκB by the p53/RSK1 complex through its phosphorylation at Serine 536 (pNFκB Ser536). The data generated by our study show that inhibition of the p53/RSK1 pathway by p53-targeted siRNA results in a depletion of pNFκB Ser536 in the nucleus, but only in cells incubated with PE serum at 2% O2. Thus, the p53/RSK1 complex might play a critical role in the activation of NFκB in trophoblastic cells and preeclamptic placentas.
Collapse
|
15
|
Cytokines and apoptosis in atopic dermatitis. Postepy Dermatol Alergol 2021; 38:1-13. [PMID: 34408560 PMCID: PMC8362769 DOI: 10.5114/ada.2019.88394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. AD affects 10-20% of children worldwide and persists into adulthood in a minority of cases, affecting approximately 2-3% of the adult population, with an increased prevalence over the past decades in developed countries. Atopy is a genetic tendency to overproduce IgE class antibodies in response to common antigens found in the environment. Concurrence of different atopy such as allergic rhinitis or asthma in children with AD is estimated at 80%. AD is characterized by a vicious cycle of an allergic immune response. The emerging picture of the AD is a complex disorder with barrier dysfunction, immunological, genetic and environmental factors all playing key roles. Patients with severe or persistent disease and their families experience significant impairment in their quality of life, and in addition, AD places a heavy economic burden on society as a whole. Pathogenesis, the role of the epidermal barrier, mechanisms of cells apoptosis, the role of T cells and cytokines in AD are discussed in this article.
Collapse
|
16
|
Cai Q, Li Y, Lyu F, Zhou M, Lu K, Tang X, Ren D, Bao Q, Wang D, Li Y. Effects of All-Trans Retinoic Acid on the Optimization of Synovial Explant Induced by Tumor Necrosis Factor Alpha. J Nutr Sci Vitaminol (Tokyo) 2021; 66:300-310. [PMID: 32863302 DOI: 10.3177/jnsv.66.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current studies focused on the effects of all-trans-retinoic acid (ATRA) on synovial explants from rats with rheumatoid arthritis (RA) induced by lipopolysaccharides (LPS). In our study, synovial membranes were extracted aseptically from the quadriceps femoris of the knee joint of rats, and then incubated in medium containing 10% neonate bovine serum for 24 h adaptive culture. We first measured variations of correlation factors in synovium at 24, 48, 72, 96 and 120 h in control medium or in medium containing 20 ng/mL tumor necrosis factor alpha (TNF-α) (TNF-α-experiment). Then, we investigated the synovium exposed to three ATRA concentrations after 48 h incubation (ATRA-experiment). The effects of ATRA on synovitis were evaluated by observing the expression of inflammatory cytokines, angiogenic factors and the production of proteases in nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and apoptosis and autophagy. In TNF-α-experiment, the secretion of nitric oxide (NO), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and matrix metalloproteinase-9 (MMP-9) increased significantly after TNF-α stimulation without pathological damage to the synovium. Hence, we successfully obtained the synovial explants model, which had longer inflammatory response time. In the ATRA-experiment, ATRA suppressed the secretion of IL-6 and NO, downregulated the NF-κB P65 and Bcl-2, increased levels of autophagy marker protein LC3, but different doses of ATRA showed inconsistent regulatory effects on VEGF and MMP-9. In short, ATRA inhibited TNF-α induced synovitis by the regulation of inflammatory cytokines and inhibiting NF-κB signal transduction and potentially promoting autophagy, apoptosis and angiogenesis, displaying its role in alleviating synovial inflammation in patients with RA.
Collapse
Affiliation(s)
- Qiuying Cai
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Yulin Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Fan Lyu
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Mingming Zhou
- Department of Clinical Nutrition, West China Second Hospital, Sichuan University
| | - Kuiqing Lu
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Xiaoyue Tang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Dongxia Ren
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Qilin Bao
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Dan Wang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Yun Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University.,West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University
| |
Collapse
|
17
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical syndromes that cause significant mortality in clinical settings and morbidity among survivors accompanied by huge healthcare costs. Lung-resident cell dysfunction/death and neutrophil alveolitis accompanied by proteinous edema are the main pathological features of ALI/ARDS. While understanding of the mechanisms underlying ALI/ARDS pathogenesis is progressing and potential treatments such as statin therapy, nutritional strategies, and mesenchymal cell therapy are emerging, poor clinical outcomes in ALI/ARDS patients persist. Thus, a better understanding of lung-resident cell death and neutrophil alveolitis and their mitigation and clearance mechanisms may provide new therapeutic strategies to accelerate lung repair and improve outcomes in critically ill patients. Macrophages are required for normal tissue development and homeostasis as well as regulating tissue injury and repair through modulation of inflammation and other cellular processes. While macrophages mediate various functions, here we review recent dead cell clearance (efferocytosis) mechanisms mediated by these immune cells for maintaining tissue homeostasis after infectious and non-infectious lung injury.
Collapse
Affiliation(s)
- Patrick M Noone
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
18
|
Chen J, Mishra R, Yu Y, McDonald JG, Eckert KM, Gao L, Mendelson CR. Decreased 11β-hydroxysteroid dehydrogenase 1 in lungs of steroid receptor coactivator (Src)-1/-2 double-deficient fetal mice is caused by impaired glucocorticoid and cytokine signaling. FASEB J 2020; 34:16243-16261. [PMID: 33070362 DOI: 10.1096/fj.202001809r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Our previous research revealed that steroid receptor coactivators (Src)-1 and -2 serve a critical cooperative role in production of parturition signals, surfactant protein A and platelet-activating factor, by the developing mouse fetal lung (MFL). To identify the global landscape of genes in MFL affected by Src-1/-2 double-deficiency, we conducted RNA-seq analysis of lungs from 18.5 days post-coitum (dpc) Src-1-/- /-2-/- (dKO) vs. WT fetuses. One of the genes most highly downregulated (~4.8 fold) in Src-1/-2 dKO fetal lungs encodes 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes conversion of inactive 11-dehydrocorticosterone to the glucocorticoid receptor (GR) ligand, corticosterone. Glucocorticoids were reported to upregulate 11β-HSD1 expression in various cell types via induction of C/EBP transcription factors. We observed that C/ebpα and C/ebpβ mRNA and protein were markedly reduced in Src-1/-2 double-deficient (Src-1/-2d/d ) fetal lungs, compared to WT. Moreover, glucocorticoid induction of 11β-hsd1, C/ebpα and C/ebpβ in cultured MFL epithelial cells was prevented by the SRC family inhibitor, SI-2. Cytokines also contribute to the induction of 11β-HSD1. Expression of IL-1β and TNFα, which dramatically increased toward term in lungs of WT fetuses, was markedly reduced in Src-1/-2d/d fetal lungs. Our collective findings suggest that impaired lung development and surfactant synthesis in Src-1/-2d/d fetuses are likely caused, in part, by decreased GR and cytokine induction of C/EBP and NF-κB transcription factors. This results in reduced 11β-HSD1 expression and glucocorticoid signaling within the fetal lung, causing a break in the glucocorticoid-induced positive feedforward loop.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ritu Mishra
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaqin Yu
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China.,School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Lee HH, Jang E, Kang SY, Shin JS, Han HS, Kim TW, Lee DH, Lee JH, Jang DS, Lee KT. Anti-inflammatory potential of Patrineolignan B isolated from Patrinia scabra in LPS-stimulated macrophages via inhibition of NF-κB, AP-1, and JAK/STAT pathways. Int Immunopharmacol 2020; 86:106726. [DOI: 10.1016/j.intimp.2020.106726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/31/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022]
|
20
|
Wang W, Wu J, Mukherjee A, He T, Wang XY, Ma Y, Fang X. Lysophosphatidic acid induces tumor necrosis factor-alpha to regulate a pro-inflammatory cytokine network in ovarian cancer. FASEB J 2020; 34:13935-13948. [PMID: 32851734 DOI: 10.1096/fj.202001136r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian carcinoma tissues express high levels of tumor necrosis factor-alpha (TNF-α) and other inflammatory cytokines. The underlying mechanism leading to the abnormal TNF-α expression in ovarian cancer remains poorly understood. In the current study, we demonstrated that lysophosphatidic acid (LPA), a lipid mediator present in ascites of ovarian cancer patients, induced expression of TNF-α mRNA and release of TNF-α protein in ovarian cancer cells. LPA also induced expression of interleukin-1β (IL-1β) mRNA but no significant increase in IL-1β protein was detected. LPA enhanced TNF-α mRNA through NF-κB-mediated transcriptional activation. Inactivation of ADAM17, a disintegrin and metalloproteinase, with a specific inhibitor TMI-1 or by shRNA knockdown prevented ovarian cancer cells from releasing TNF-α protein in response to LPA, indicating that LPA-mediated TNF-α production relies on both transcriptional upregulations of the TNF-α gene and the activity of ADAM17, the membrane-associated TNF-α-converting enzyme. Like many other biological responses to LPA, induction of TNF-α by LPA also depended on the transactivation of the epidermal growth factor receptor (EGFR). Interestingly, our results revealed that ADAM17 was also the shedding protease responsible for the transactivation of EGFR by LPA in ovarian cancer cells. To explore the biological outcomes of LPA-induced TNF-α, we examined the effects of a TNF-α neutralizing antibody and recombinant TNF-α soluble receptor on LPA-stimulated expression of pro-tumorigenic cytokines and chemokines overexpressed in ovarian cancer. Blockade of TNF-α signaling significantly reduced the production of IL-8, IL-6, and CXCL1, suggesting a hierarchy of mechanisms contributing to the robust expression of the inflammatory mediators in response to LPA in ovarian cancer cells. In contrast, TNF-α inhibition did not affect LPA-dependent cell proliferation. Taken together, our results establish that the bioactive lipid LPA drives the expression of TNF-α to regulate an inflammatory network in ovarian cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinhua Wu
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Abir Mukherjee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Tianhai He
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Yibao Ma
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Nasser MI, Zhu S, Huang H, Zhao M, Wang B, Ping H, Geng Q, Zhu P. Macrophages: First guards in the prevention of cardiovascular diseases. Life Sci 2020; 250:117559. [PMID: 32198051 DOI: 10.1016/j.lfs.2020.117559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide, especially in developing countries. It is widely known that severe inflammation can lead to atherosclerosis, which can cause various downstream pathologies, including myocardial injury and viral myocarditis. To date, several strategies have been proposed to prevent and cure CVD. The use of targeting macrophages has emerged as one of the most effective therapeutic approaches. Macrophages play a crucial role in eliminating senescent and dead cells while maintaining myocardial electrical activity and repairing myocardial injury. They also contribute to tissue repair and remodeling and plaque stabilization. Targeting macrophage pathways can, therefore, be advantageous in CVD care since it can lead to decreased aggregation of mononuclear cells at the injured site in the heart. Furthermore, it inhibits the development of pro-inflammatory factors, facilitates cholesterol outflow, and reduces the lipid concentration. More in-depth studies are still needed to formulate a comprehensive classification of phenotypes for different macrophages and determine their roles in the pathogenesis of CVD. In this review, we summarize the recent advances in the understanding of the role of macrophages in the prevention and cure of CVD.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Huang Ping
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Qingshan Geng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
22
|
Activator Protein-1 Decoy Oligodeoxynucleotide Transfection Is Beneficial in Reducing Organ Injury and Mortality in Septic Mice. Crit Care Med 2019; 46:e435-e442. [PMID: 29406423 DOI: 10.1097/ccm.0000000000003009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Inflammation and apoptosis are decisive mechanisms for the development of end-organ injury in sepsis. Activator protein-1 may play a key role in regulating expression of harmful genes responsible for the pathophysiology of septic end-organ injury along with the major transcription factor nuclear factor-κB. We investigated whether in vivo introduction of circular dumbbell activator protein-1 decoy oligodeoxynucleotides can provide benefits for reducing septic end-organ injury. DESIGN Laboratory and animal/cell research. SETTINGS University research laboratory. SUBJECTS Male BALB/c mice (8-10 wk old). INTERVENTIONS Activator protein-1 decoy oligodeoxynucleotides were effectively delivered into tissues of septic mice in vivo by preparing into a complex with atelocollagen given 1 hour after surgery. MATERIALS AND MAIN RESULTS Polymicrobial sepsis was induced by cecal ligation and puncture in mice. Activator protein-1 decoy oligodeoxynucleotide transfection inhibited abnormal production of proinflammatory and chemotactic cytokines after cecal ligation and puncture. Histopathologic changes in lung, liver, and kidney tissues after cecal ligation and puncture were improved by activator protein-1 decoy oligodeoxynucleotide administration. When activator protein-1 decoy oligodeoxynucleotides were given, apoptosis induction was strikingly suppressed in lungs, livers, kidneys, and spleens of cecal ligation and puncture mice. These beneficial effects of activator protein-1 decoy oligodeoxynucleotides led to a significant survival advantage in mice after cecal ligation and puncture. Apoptotic gene profiling indicated that activator protein-1 activation was involved in the up-regulation of many of proapoptotic and antiapoptotic genes in cecal ligation and puncture-induced sepsis. CONCLUSIONS Our results indicate a detrimental role of activator protein-1 in the sepsis pathophysiology and the potential usefulness of activator protein-1 decoy oligodeoxynucleotides for the prevention and treatment of septic end-organ failure.
Collapse
|
23
|
Kim HY, Yoo TH, Cho JY, Kim HC, Lee WW. Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages. FASEB J 2019; 33:10844-10858. [PMID: 31284759 DOI: 10.1096/fj.201900730r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoxyl sulfate (IS) is a uremic toxin associated with increased prevalence of cardiovascular diseases (CVDs) in patients with chronic kidney disease. Despite the crucial role of uremia-related immune dysfunction, a majority of studies attempting to elucidate its pathogenic role in CVD have focused on IS-mediated endothelial dysfunction. Thus, we investigated the underlying molecular mechanisms involved in IS-induced production of TNF-α, a major cardiotoxic cytokine, by human macrophages. We found that crosstalk between the aryl hydrocarbon receptor (AhR), NF-κB, and the suppressor of cytokine signaling (SOCS)2 is important for TNF-α production in IS-stimulated human macrophages. IS-activated AhR rapidly associates with the p65 NF-κB subunit, resulting in mutual inhibition of AhR and NF-κB and inhibition of TNF-α production at an early time point. Later, this repression of TNF-α production is alleviated when SOCS2, a negative modulator of NF-κB, is directly induced by IS-activated AhR. In addition, once free of inhibition, activated AhR induces TNF-α expression by interacting with AhR binding sites in the TNF-α gene. Lastly, we confirmed decreased AhR and increased SOCS2 expression in monocytes of patients with end-stage renal disease, indicating the activation of AhR. Taken together, our results suggest that IS-induced TNF-α production in macrophages is regulated through a complicated mechanism involving interaction of AhR, NF-κB, and SOCS2.-Kim, H. Y., Yoo, T.-H., Cho, J.-Y., Kim, H. C., Lee, W.-W. Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Microbiology and Immunology.,Cancer Research Institute
| | | | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine-Hospital, Seoul, South Korea
| | - Hyeon Chang Kim
- Cardiovascular and Metabolic Diseases Etiology Research Center.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology.,Cancer Research Institute.,Department of Biomedical Sciences.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
24
|
Komegae EN, Fonseca MT, da Silveira Cruz-Machado S, Turato WM, Filgueiras LR, Markus RP, Steiner AA. Site-Specific Reprogramming of Macrophage Responsiveness to Bacterial Lipopolysaccharide in Obesity. Front Immunol 2019; 10:1496. [PMID: 31316525 PMCID: PMC6611339 DOI: 10.3389/fimmu.2019.01496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which obesity may alter immune responses to pathogens are poorly understood. The present study assessed whether the intrinsic responsiveness of resident macrophages to bacterial lipopolysaccharide (LPS) is reprogrammed in high-fat diet (HFD)-induced obesity. Macrophages from adipose tissue, lung alveoli, and the peritoneal cavity were extracted from obese rats on a HFD or from their lean counterparts, and subsequently studied in culture under identical conditions. CD45+/CD68+ cells (macrophages) were abundant in all cultures, and became the main producers of TNF-α upon LPS stimulation. But although all macrophage subpopulations responded to LPS with an M1-like profile of cytokine secretion, the TNF-α/IL-10 ratio was the lowest in adipose tissue macrophages, the highest in alveolar macrophages, and intermediary in peritoneal macrophages. What is more, diet exerted qualitatively distinct effects on the cytokine responses to LPS, with obesity switching adipose tissue macrophages to a more pro-inflammatory program and peritoneal macrophages to a less pro-inflammatory program, while not affecting alveolar macrophages. Such reprogramming was not associated with changes in the inflammasome-dependent secretion of IL-1β. The study further shows that the effects of diet on TNF-α/IL-10 ratios were linked to distinct patterns of NF-κB accumulation in the nucleus: while RelA was the NF-κB subunit most impacted by obesity in adipose tissue macrophages, cRel was the subunit affected in peritoneal macrophages. It is concluded that obesity causes dissimilar, site-specific changes in the responsiveness of resident macrophages to bacterial LPS. Such plasticity opens new avenues of investigation into the mechanisms linking obesity to pathogen-induced immune responses.
Collapse
Affiliation(s)
- Evilin N Komegae
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T Fonseca
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Walter M Turato
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano R Filgueiras
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre A Steiner
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Berguetti T, Quintaes LSP, Hancio T, Robaina MC, Cruz ALS, Maia RC, de Souza PS. TNF-α Modulates P-Glycoprotein Expression and Contributes to Cellular Proliferation via Extracellular Vesicles. Cells 2019; 8:cells8050500. [PMID: 31137684 PMCID: PMC6562596 DOI: 10.3390/cells8050500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
P-glycoprotein (Pgp/ABCB1) overexpression is associated with multidrug resistance (MDR) phenotype and, consequently, failure in cancer chemotherapy. However, molecules involved in cell death deregulation may also support MDR. Tumor necrosis factor-alpha (TNF-α) is an important cytokine that may trigger either death or tumor growth. Here, we examined the role of cancer cells in self-maintenance and promotion of cellular malignancy through the transport of Pgp and TNF-α molecules by extracellular vesicles (membrane microparticles (MP)). By using a classical MDR model in vitro, we identified a positive correlation between endogenous TNF-α and Pgp, which possibly favored a non-cytotoxic effect of recombinant TNF-α (rTNF-α). We also found a positive feedback involving rTNF-α incubation and TNF-α regulation. On the other hand, rTNF-α induced a reduction in Pgp expression levels and contributed to a reduced Pgp efflux function. Our results also showed that parental and MDR cells spontaneously released MP containing endogenous TNF-α and Pgp. However, these MP were unable to transfer their content to non-cancer recipient cells. Nevertheless, MP released from parental and MDR cells elevated the proliferation index of non-tumor cells. Collectively, our results suggest that Pgp and endogenous TNF-α positively regulate cancer cell malignancy and contribute to changes in normal cell behavior through MP.
Collapse
Affiliation(s)
- Tandressa Berguetti
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Lucas S P Quintaes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Thais Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Marcela C Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - André L S Cruz
- Laboratório de Fisiopatologia, Polo Novo Cavaleiros, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| |
Collapse
|
26
|
Apaza T L, Tena Pérez V, Serban AM, Alonso Navarro MJ, Rumbero A. Alkamides from Tropaeolum tuberosum inhibit inflammatory response induced by TNF-α and NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:199-205. [PMID: 30753883 DOI: 10.1016/j.jep.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Tropaeolum tuberosum, commonly known as "Mashua", is one of the plants most frequently used by Andean (Peruvian-Bolivian) people as food and medicine. It is used as a remedy against a wide range of diseases, especially those related with inflammation. OBJECTIVES This study aims to identify compounds active against inflammatory related conditions. MATERIALS AND METHODS A bioassay-guided isolation of anti-inflammatory compounds from black and purple tubers of T. tuberosum was performed measuring TNF-α and NF-κB production in THP-1 monocytic cells. RESULTS The bioassay-guided isolation led to one active compound from purple T. tuberosum, N-oleoyldopamine (1), and another active compound from black T. tuberosum, N-(2-Hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (2). Both compounds displayed anti-TNF-α activity with IC50 values of 3.12 ± 0.19 μM and 1.56 ± 0.15 μM, respectively. Also, both compounds suppressed NF-κB with IC50 of 3.54 ± 0.02 μM and 1.77 ± 0.07 μM, respectively. CONCLUSIONS We identified bioactive compounds from purple and black Tropaeolum tuberosum responsible for their anti-inflammatory activity: N-oleoyldopamine (1) and N-(2-Hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (2). This is the first report which isolates these compounds from T. tuberosum and describes their anti-inflammatory activities.
Collapse
Affiliation(s)
- Luis Apaza T
- Department of Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Victor Tena Pérez
- Department of Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Andreea Madalina Serban
- Marie Schlodowska Curie University Hospital for Children, Constantin Brancoveanu Boulevard, 077120 Bucharest, Romania
| | - Matías J Alonso Navarro
- Department of Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Angel Rumbero
- Department of Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Nahm FS, Nahm SS, Han WK, Gil HY, Choi E, Lee PB. Increased cerebral nuclear factor kappa B in a complex regional pain syndrome rat model: possible relationship between peripheral injury and the brain. J Pain Res 2019; 12:909-914. [PMID: 30881100 PMCID: PMC6408925 DOI: 10.2147/jpr.s166270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Complex regional pain syndrome (CRPS) is a rare but refractory pain disorder. Recent advanced information retrieval studies using text-mining and network analysis have suggested nuclear factor kappa B (NFκB) as a possible central mediator of CRPS. The brain is also known to play important roles in CRPS. The aim of this study was to evaluate changes in cerebral NFκB in rats with CRPS. Materials and methods The chronic post-ischemia perfusion (CPIP) model was used as the CRPS animal model. O-rings were applied to the left hind paws of the rats. The rats were categorized into three groups according to the results of behavioral tests: the CPIP-positive (A) group, the CPIP-negative (B) group, and the control (C) group. Three weeks after the CPIP procedure, the right cerebrums of the animals were harvested to measure NFκB levels using an ELISA. Results Animals in group A had significantly decreased mechanical pain thresholds (P<0.01) and significantly increased cerebral NFκB when compared to those in groups B and C (P=0.024). Conclusion This finding indicates that peripheral injury increases cerebral NFκB levels and implies that minor peripheral injury can lead to the activation of pain-related cerebral processes in CRPS.
Collapse
Affiliation(s)
- Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| | - Sang-Soep Nahm
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Woong Ki Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Ho Young Gil
- Department of Anesthesiology and Pain Medicine, Ajou University Hospital, Suwon, South Korea
| | - Eunjoo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Pyung Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| |
Collapse
|
28
|
Hoyle C, Rivers-Auty J, Lemarchand E, Vranic S, Wang E, Buggio M, Rothwell NJ, Allan SM, Kostarelos K, Brough D. Small, Thin Graphene Oxide Is Anti-inflammatory Activating Nuclear Factor Erythroid 2-Related Factor 2 via Metabolic Reprogramming. ACS NANO 2018; 12:11949-11962. [PMID: 30444603 DOI: 10.1021/acsnano.8b03642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO), an oxidized form of graphene, has potential applications in biomedical research. However, how GO interacts with biological systems, including the innate immune system, is poorly understood. Here, we elucidate the effects of GO sheets on macrophages, identifying distinctive effects of GO on the inflammatory phenotype. Small, thin (s)-GO dose-dependently inhibited release of interleukin (IL)-1β and IL-6 but not tumor necrosis factor α. NLRP3 inflammasome and caspase-1 activation was not affected. The effect of s-GO was pretranslational, as s-GO blocked Toll-like receptor 4-dependent expression of Il1b and Il6 but not Nlrp3 or Tnf mRNA transcripts. s-GO was internalized by immortalized bone-marrow-derived macrophages, suggesting a potential intracellular action. Uptake of polystyrene beads with similar lateral dimensions and surface charge did not phenocopy the effects of s-GO, suggesting that s-GO-mediated inhibition of interleukin expression was not simply due to particle phagocytosis. RNA-Seq analysis established that s-GO had profound effects on the immunometabolism of the cells, leading to activation of the transcription factor nuclear factor erythroid 2-related factor 2, which inhibited expression of cytokines such as IL-1β and IL-6. Thus, we have identified immunometabolic effects of GO that reveal another dimension to its effects on cells. These findings suggest that s-GO may be used as a valuable tool to generate further insights into inflammatory mechanisms and indicate its potential applications in biomedicine.
Collapse
Affiliation(s)
- Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| | - Jack Rivers-Auty
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| | - Eloïse Lemarchand
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
- National Graphene Institute , University of Manchester , Booth Street East , Manchester M13 9PL , United Kingdom
| | - Emily Wang
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| | - Maurizio Buggio
- Nanomedicine Lab, Faculty of Biology, Medicine and Health , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
- National Graphene Institute , University of Manchester , Booth Street East , Manchester M13 9PL , United Kingdom
| | - Nancy J Rothwell
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
- National Graphene Institute , University of Manchester , Booth Street East , Manchester M13 9PL , United Kingdom
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre , University of Manchester , AV Hill Building, Oxford Road , Manchester M13 9PT , United Kingdom
| |
Collapse
|
29
|
Ferro A, Qu W, Lukowicz A, Svedberg D, Johnson A, Cvetanovic M. Inhibition of NF-κB signaling in IKKβF/F;LysM Cre mice causes motor deficits but does not alter pathogenesis of Spinocerebellar ataxia type 1. PLoS One 2018; 13:e0200013. [PMID: 29975753 PMCID: PMC6033432 DOI: 10.1371/journal.pone.0200013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Spinocerebellar Ataxia type 1 (SCA1) is a fatal neurodegenerative genetic disease that is characterized by pronounced neuronal loss and gliosis in the cerebellum. We have previously demonstrated microglial activation, measured as an increase in microglial density in cerebellar cortex and an increase in the production of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), in the cerebellum of the ATXN1[82Q] transgenic mouse model of SCA1. To examine the role of activated state of microglia in SCA1, we used a Cre-Lox approach with IKKβF/F;LysM Cre mice intended to reduce inflammatory NF-κB signaling, selectively in microglia. ATXN1[82Q];IKKβF/F;LysM Cre mice showed reduced cerebellar microglial density and production of TNFα compared to ATXN1[82Q] mice, yet reducing NF-κB did not ameliorate motor impairments and cerebellar cellular pathologies. Unexpectedly, at 12 weeks of age, control IKKβF/F;LysM Cre mice showed motor deficits equal to ATXN1[82Q] mice that were dissociated from any obvious neurodegenerative changes in the cerebellum, but were rather associated with a developmental impairment that presented as a retention of climbing fiber synaptic terminals on the soma of Purkinje neurons. These results indicate that NF-κB signaling is required for increase in microglial numbers and TNF-α production in the cerebella of ATXN1[82Q] mouse model of SCA1. Furthermore, these results elucidate a novel role of canonical NF-κB signaling in pruning of surplus synapses on Purkinje neurons in the cerebellum during development.
Collapse
Affiliation(s)
- Austin Ferro
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wenhui Qu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Abigail Lukowicz
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel Svedberg
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrea Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
30
|
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article. BJOG 2018; 125:1379-1387. [PMID: 29460466 DOI: 10.1111/1471-0528.15172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor kappa B (NFκB) controls the expression of over 400 genes, some of which are associated with reproductive events. During implantation, immune cells accumulate in the maternal-fetal interface; they secrete inflammatory mediators under the control of NFĸB, the level of which also rises. NFĸB is then downregulated to maintain gestation, but its level rises again before birth to manage prostaglandin, cytokine, and chemokine synthesis, and to stimulate uterine contraction. This review summarises the current state of knowledge about NFκB and its role in the molecular regulation of processes related to pregnancy development. TWEETABLE ABSTRACT This review examines the current state of knowledge about role of NFκB in the development of pregnancy.
Collapse
Affiliation(s)
- A Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
31
|
Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64. [PMID: 29341877 DOI: 10.1016/j.virusres.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated Vaccinia virus (VACV) that is a popular vaccine vector candidate against many different pathogens. Its replication-restricted nature makes it a safe vaccine. However, higher doses or multiple boosts of MVA are necessary to elicit an immune response similar to wild-type VACV. Multiple strategies have been used to create modified MVA viruses that remain safe, but have increased immunogenicity. For example, one common strategy is to delete MVA immunomodulatory proteins in hopes of increasing the host immune response. Here, we take the opposite approach and examine, for the first time, how re-introduction of a 5.2 kb region of VACV DNA (that codes for multiple immunomodulatory proteins) into MVA alters viral immunogenicity. Since antigen presenting cells (APCs) are critical connectors between the innate and adaptive immune system, we examined the effect of MVA/5.2 kb infection in these cells in vitro. MVA/5.2 kb infection decreased virus-induced apoptosis and virus-induced NF-κB activation. MVA.5.2 kb infection decreased TNF production. However, MVA/5.2 kb infection did not alter APC maturation or IL-6 and IL-8 production in vitro. We further explored MVA/5.2 kb immunogenicity in vivo. VACV-specific CD8+ T cells were decreased after in vivo infection with MVA/5.2 kb versus MVA, suggesting that the MVA/5.2 kb construct is less immunogenic than MVA. These results demonstrate the limitations of in vitro studies for predicting the effects of genetic manipulation of MVA on immunogenicity. Although MVA/5.2 kb did not enhance MVA's immunogenicity, this study examined an unexplored strategy for optimizing MVA, and the insight gained from these results can help direct how to modify MVA in the future.
Collapse
Affiliation(s)
- Melissa R Ryerson
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Ness T, Abdallah M, Adams J, Alvarado C, Gunn E, House B, Lamb J, Macguire J, Norris E, Robinson R, Sapp M, Sharma J, Garner R. Candida albicans-derived mannoproteins activate NF-κB in reporter cells expressing TLR4, MD2 and CD14. PLoS One 2017; 12:e0189939. [PMID: 29281684 PMCID: PMC5744952 DOI: 10.1371/journal.pone.0189939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/05/2017] [Indexed: 01/10/2023] Open
Abstract
The ability of soluble C. albicans 20A (serotype A) mannoprotein (CMP) to serve as a ligand for toll-like receptor 4 (TLR4) and its co-receptors was examined using commercially available and stably-transfected HEK293 cells that express human TLR4, MD2 and CD14, but not MR. These TLR4 reporter cells also express an NF-κB-dependent, secreted embryonic alkaline phosphatase (SEAP) reporter gene. TLR4-reporter cells exhibited a dose-dependent SEAP response to both LPS and CMP, wherein peak activation was achieved after stimulation with 40–50 μg/mL of CMP. Incubation on polymyxin B resin had no effect on CMP’s ligand activity, but neutralized LPS-spiked controls. HEK293 Null cells lacking TLR4 and possessing the same SEAP reporter failed to respond to LPS or CMP, but produced SEAP when activated with TNFα. Reporter cell NF-κB responses were accompanied by transcription of IL-8, TNFα, and COX-2 genes. Celecoxib inhibited LPS-, CMP-, and TNFα-dependent NF-κB responses; whereas, indomethacin had limited effect on LPS and CMP responses. SEAP production in response to C. albicans A9 mnn4Δ mutant CMP, lacking phosphomannosylations on N-linked glycans, was significantly greater (p ≤ 0.005) than SEAP responses to CMP derived from parental A9 (both serotype B). These data confirm that engineered human cells expressing TLR4, MD2 and CD14 can respond to CMP with NF-κB activation and the response can be influenced by variations in CMP-mannosylation. Future characterizations of CMPs from other sources and their application in this model may provide further insight into variations observed with TLR4 dependent innate immune responses targeting different C. albicans strains.
Collapse
Affiliation(s)
- Traci Ness
- Department of Biology, Armstrong State University, Savannah, Georgia, United States of America
| | - Mahmud Abdallah
- Department of Biology, Armstrong State University, Savannah, Georgia, United States of America
| | - Jaime Adams
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Claudia Alvarado
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Edwin Gunn
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Brittany House
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - John Lamb
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Jack Macguire
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Emily Norris
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Rebekah Robinson
- Department of Biology, Armstrong State University, Savannah, Georgia, United States of America
| | - Morgan Sapp
- Department of Biology, Armstrong State University, Savannah, Georgia, United States of America
| | - Jill Sharma
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Ronald Garner
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Zhou X, Xiao X, Huang T, Du C, Wang S, Mo Y, Ma N, Murata M, Li B, Wen W, Huang G, Zeng X, Zhang Z. Epigenetic inactivation of follistatin-like 1 mediates tumor immune evasion in nasopharyngeal carcinoma. Oncotarget 2017; 7:16433-44. [PMID: 26918942 PMCID: PMC4941326 DOI: 10.18632/oncotarget.7654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/06/2016] [Indexed: 01/25/2023] Open
Abstract
Follistatin like-1 (FSTL1) is a secreted glycoprotein involved in a series of physiological and pathological processes. However, its contribution to the development of cancer, especially the pathogenesis of nasopharyngeal carcinoma (NPC), remains to be elucidated. We aimed to investigate the dysregulation of FSTL1 and its possible function in NPC. FSTL1 was frequently downregulated in NPC cell lines and primary tumor biopsies by promoter hypermethylation. Ectopic expression of FSTL1 significantly suppressed the colony formation, proliferation, migration and invasion ability of NPC cells and induced cell apoptosis. Overexpression of FSTL1 decreased the tumorigenicity of NPC cells in vivo. In addition, the proliferation of NPC cells in vitro was inhibited by treatment with soluble recombinant FSTL1 protein. The protein level of FSTL1 was decreased in primary NPC tumors and was associated with downregulated interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α). Furthermore, recombinant human FSTL1 protein induced secretion of IL-1β and TNF-α in macrophage cultures, therefore FSTL1 might activate macrophages and attenuate the immune evasion of NPC cells. In conclusion, the epigenetic downregulation of FSTL1 may suppress the proliferation and migration of NPC cells, leading to dysfunctional innate responses in surrounding macrophages.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Medical Research Center, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tingting Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunping Du
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shumin Wang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Ning Ma
- Faculty of Nursing Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Bo Li
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wensheng Wen
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianjie Zeng
- Department of Head and Neck Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
34
|
Das A, Arifuzzaman S, Yoon T, Kim SH, Chai JC, Lee YS, Jung KH, Chai YG. RNA sequencing reveals resistance of TLR4 ligand-activated microglial cells to inflammation mediated by the selective jumonji H3K27 demethylase inhibitor. Sci Rep 2017; 7:6554. [PMID: 28747667 PMCID: PMC5529413 DOI: 10.1038/s41598-017-06914-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Persistent microglial activation is associated with the production and secretion of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify neurodegenerative diseases. A novel synthetic histone 3 lysine 27 (H3K27) demethylase JMJD3 inhibitor, GSK-J4, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for GSK-J4 molecular targets has not been undertaken in microglia. To study the immuno-modulatory effects of GSK-J4 at the transcriptomic level, triplicate RNA sequencing and quantitative real-time PCR analyses were performed with resting, GSK-J4-, LPS- and LPS + GSK-J4-challenged primary microglial (PM) and BV-2 microglial cells. Among the annotated genes, the transcriptional sequencing of microglia that were treated with GSK-J4 revealed a selective effect on LPS-induced gene expression, in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent transcription factors TFs, as well as previously unidentified genes that are important in inflammation was suppressed. Furthermore, we showed that GSK-J4 controls are important inflammatory gene targets by modulating STAT1, IRF7, and H3K27me3 levels at their promoter sites. These unprecedented results demonstrate that the histone demethylase inhibitor GSK-J4 could have therapeutic applications for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Taeho Yoon
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea. .,Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
35
|
Roumaud P, Rwigemera A, Martin LJ. Transcription factors SF1 and cJUN cooperate to activate the Fdx1 promoter in MA-10 Leydig cells. J Steroid Biochem Mol Biol 2017; 171:121-132. [PMID: 28274746 DOI: 10.1016/j.jsbmb.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
Abstract
The Ferredoxin 1 (FDX1) protein supports steroid biosynthesis in steroidogenic cells through electron transfer to the rate-limiting steroidogenic enzyme, CYP11A1. The latter catalyzes the conversion of cholesterol to pregnenolone through side chain cleavage inside the mitochondria. Thus far, only several transcription factors have been implicated in the regulation of mouse Fdx1 promoter activity in Leydig cells. These include the nuclear receptor SF1 and SP1. Since two conserved regulatory elements for AP1 transcription factors have been located at -764 and -617bp of the Fdx1 promoter, we hypothesized that cJUN may cooperate with other partners to regulate Fdx1 in Leydig cells. Indeed, we report that SF1 and cJUN interact and cooperate to activate the Fdx1 promoter in MA-10 and TM3 Leydig cells. Furthermore, we found that such activation requires different regulatory elements located between -124 and -306bp of the Fdx1 promoter and involves recruitment of SF1 to this region. Using RNA interference, the importance of SF1 in transcriptional regulation of Fdx1 was confirmed, whereas cJUN was dispensable even though it cooperated with SF1 to upregulate Fdx1 expression in MA-10 cells. Thus, our data provides new insights in the molecular mechanisms that control mouse Fdx1 transcription, possibly leading to regulation of CYP11A1 enzyme activation, in Leydig cells.
Collapse
Affiliation(s)
- Pauline Roumaud
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Arlette Rwigemera
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada,.
| |
Collapse
|
36
|
Zeng XY, Yuan W, Zhou L, Wang SX, Xie Y, Fu YJ. Forsythoside A exerts an anti-endotoxin effect by blocking the LPS/TLR4 signaling pathway and inhibiting Tregs in vitro. Int J Mol Med 2017; 40:243-250. [DOI: 10.3892/ijmm.2017.2990] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
|
37
|
Sakai J, Cammarota E, Wright JA, Cicuta P, Gottschalk RA, Li N, Fraser IDC, Bryant CE. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci Rep 2017; 7:1428. [PMID: 28469251 PMCID: PMC5431130 DOI: 10.1038/s41598-017-01600-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023] Open
Abstract
TLR4 signalling through the MyD88 and TRIF-dependent pathways initiates translocation of the transcription factor NF-κB into the nucleus. In cell population studies using mathematical modeling and functional analyses, Cheng et al. suggested that LPS-driven activation of MyD88, in the absence of TRIF, impairs NF-κB translocation. We tested the model proposed by Cheng et al. using real-time single cell analysis in macrophages expressing EGFP-tagged p65 and a TNFα promoter-driven mCherry. Following LPS stimulation, cells lacking TRIF show a pattern of NF-κB dynamics that is unaltered from wild-type cells, but activation of the TNFα promoter is impaired. In macrophages lacking MyD88, there is minimal NF-κB translocation to the nucleus in response to LPS stimulation, and there is no activation of the TNFα promoter. These findings confirm that signalling through MyD88 is the primary driver for LPS-dependent NF-κB translocation to the nucleus. The pattern of NF-κB dynamics in TRIF-deficient cells does not, however, directly reflect the kinetics of TNFα promoter activation, supporting the concept that TRIF-dependent signalling plays an important role in the transcription of this cytokine.
Collapse
Affiliation(s)
- Jiro Sakai
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Eugenia Cammarota
- Sector of Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - John A Wright
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Pietro Cicuta
- Sector of Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Rachel A Gottschalk
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institute of Heath, Bethesda, MD, 20892, USA
| | - Ning Li
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institute of Heath, Bethesda, MD, 20892, USA
| | - Iain D C Fraser
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institute of Heath, Bethesda, MD, 20892, USA
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
38
|
Derakhshan A, Chen Z, Van Waes C. Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clin Cancer Res 2017; 23:1379-1387. [PMID: 28039268 PMCID: PMC5354945 DOI: 10.1158/1078-0432.ccr-16-2172] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
The Cancer Genome Atlas (TCGA) has unveiled genomic deregulation of various components of the extrinsic and intrinsic apoptotic pathways in different types of cancers. Such alterations are particularly common in head and neck squamous cell carcinomas (HNSCC), which frequently display amplification and overexpression of the Fas-associated via death domain (FADD) and inhibitor of apoptosis proteins (IAP) that complex with members of the TNF receptor family. Second mitochondria-derived activator of caspases (SMAC) mimetics, modeled after the endogenous IAP antagonist SMAC, and IAP inhibitors represent important classes of novel small molecules currently in phase I/II clinical trials. Here we review the physiologic roles of IAPs, FADD, and other components involved in cell death, cell survival, and NF-κB signaling pathways in cancers, including HNSCC. We summarize the results of targeting IAPs in preclinical models of HNSCC using SMAC mimetics. Synergistic activity of SMAC mimetics together with death agonists TNFα or TRAIL occurred in vitro, whereas their antitumor effects were augmented when combined with radiation and chemotherapeutic agents that induce TNFα in vivo In addition, clinical trials testing SMAC mimetics as single agents or together with chemo- or radiation therapies in patients with HNSCC and solid tumors are summarized. As we achieve a deeper understanding of the genomic alterations and molecular mechanisms underlying deregulated death and survival pathways in different cancers, the role of SMAC mimetics and IAP inhibitors in cancer treatment will be elucidated. Such developments could enhance precision therapeutics and improve outcomes for cancer patients. Clin Cancer Res; 23(6); 1379-87. ©2016 AACR.
Collapse
Affiliation(s)
- Adeeb Derakhshan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
39
|
Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one. Int Immunopharmacol 2017; 43:116-128. [DOI: 10.1016/j.intimp.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 11/21/2022]
|
40
|
Mubashir K, Ganai BA, Ghazanfar K, Akbar S, Rah B, Tantry M, Masood A. Anti-inflammatory and immuno-modulatory studies on LC-MS characterised methanol extract of Gentiana kurroo Royle. Altern Ther Health Med 2017; 17:78. [PMID: 28129760 PMCID: PMC5273812 DOI: 10.1186/s12906-017-1593-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND In ayurvedic traditional medicine Gentiana kurroo Royle (family; Gentianaceae) is used to treat several metabolic diseases. This plant is rich in various compounds belonging to flavonoids and glycosides. Till now little work has been carried out on immunomodulatory and anti-inflammatory potential of this plant. This study confirms the presence of bioactive compounds and evaluates the anti-inflammatory and immunomodulatory effect of this plant. METHODS To carry out this work, the methanol extract was investigated in different doses using in vivo and in vitro models. In vivo study involved haemagglutination titre and DTH methods, and in vitro study was done using splenocyte proliferation assay and LPS stimulated macrophage culture. TNF-α, IL-6 and NO were assayed using ELISA kit methods, while NF-κB was evaluated by western blotting. LC-ESI-MS/MS was used for the characterization of the methanol extract. RESULTS The results showed suppression of both humoral and cell mediated immunity in vivo. This effect was also observed by inhibition of B and T cell proliferation in splenocyte proliferation assay. TNF-α, IL-6 and NO concentrations were also less in extract treated macrophage cultures. The NF-κB expression was also lowered in treated macrophages as compared to untreated macrophages. All these observations were found to be dose dependent. LC-MS characterization of this extract showed the presence of known compounds which are glycosides, alkaloids and flavonoids in nature. CONCLUSION The methanol extract of this plant was found to be rich in glycoside, alkaloid and flavonoid compounds. These compounds are probably responsible for the suppression of immune response and anti-inflammatory activity. The extract as such and identified bioactive compounds can be useful for the treatment of inflammatory disorders.
Collapse
|
41
|
Someya A, Ikegami T, Sakamoto K, Nagaoka I. Glucosamine Downregulates the IL-1β-Induced Expression of Proinflammatory Cytokine Genes in Human Synovial MH7A Cells by O-GlcNAc Modification-Dependent and -Independent Mechanisms. PLoS One 2016; 11:e0165158. [PMID: 27776166 PMCID: PMC5077170 DOI: 10.1371/journal.pone.0165158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/08/2016] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the major joint diseases, and the synovial inflammation is involved in the pathogenesis and progression of OA. Glucosamine (GlcN) is widely used as a dietary supplement for OA, and is expected to exert the antiinflammatory action in OA. However, the detailed mechanism for the antiinflammatory action of GlcN remains poorly understood. In this study, to elucidate the molecular mechanism involved in the GlcN-medicated regulation of synovial cell activation, we comprehensively analyzed the effect of GlcN on the gene expression using a human synovial cell line MH7A by DNA microarray. The results indicated that GlcN significantly downregulates the expression of 187 genes (≤1/1.5-fold) and upregulates the expression of 194 genes (≥1.5-fold) in IL-1β-stimulated MH7A cells. Interestingly, pathway analysis indicated that among the 10 pathways into which the GlcN-regulated genes are categorized, the 4 pathways are immune-related. Furthermore, GlcN suppressed the expression of proinflammatory cytokine genes (such as IL-6, IL-8, IL-24 and TNF-α genes). In addition, GlcN-mediated O-GlcNAc modification was involved in the downregulation of TNF-α and IL-8 genes but not IL-6 and IL-24 genes, based on the effects of alloxan, an O-GlcNAc transferase inhibitor. Thus, GlcN likely exerts an antiinflammatroy action in OA by suppressing the expression of proinflammatory cytokine genes in synovial MH7A cells by O-GlcNAc modification-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Bunkyo-Ku, Tokyo 113–8421, Japan
- * E-mail:
| | - Takako Ikegami
- Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University, Graduate School of Medicine, Bunkyo-Ku, Tokyo 113–8421, Japan
| | - Koji Sakamoto
- Koyo Chemical Co., Ltd., Taito-ku, Tokyo110-0005, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Bunkyo-Ku, Tokyo 113–8421, Japan
| |
Collapse
|
42
|
Smith TD, Tse MJ, Read EL, Liu WF. Regulation of macrophage polarization and plasticity by complex activation signals. Integr Biol (Camb) 2016; 8:946-55. [PMID: 27492191 PMCID: PMC5148158 DOI: 10.1039/c6ib00105j] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Macrophages are versatile cells of the immune system that play an important role in both advancing and resolving inflammation. Macrophage activation has been described as a continuum, and different stimuli lead to M1, M2, or mixed phenotypes. In addition, macrophages expressing markers associated with both M1 and M2 function are observed in vivo. Using flow cytometry, we examine how macrophage populations respond to combined M1 and M2 activation signals, presented either simultaneously or sequentially. We demonstrate that macrophages exposed to a combination of LPS, IFN-γ, IL-4, and IL-13 acquire a mixed activation state, with individual cells expressing both M1 marker CD86 and M2 marker CD206 instead of polarizing to discrete phenotypes. Over time, co-stimulated macrophages lose expression of CD86 and display increased expression of CD206. In addition, we find that exposure to LPS/IFN-γ potentiates the subsequent response to IL-4/IL-13, whereas pre-polarization with IL-4/IL-13 inhibits the response to LPS/IFN-γ. Mathematical modeling of candidate regulatory networks indicates that a complex inter-dependence of M1- and M2-associated pathways underlies macrophage activation. Specifically, a mutual inhibition motif was not by itself sufficient to reproduce the temporal marker expression data; incoherent feed-forward of M1 activation as well as both inhibition and activation of M2 by M1 were required. Together these results corroborate a continuum model of macrophage activation and demonstrate that phenotypic markers evolve with time and with exposure to complex signals.
Collapse
Affiliation(s)
- Tim D Smith
- Department of Biomedical Engineering, University of California, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
43
|
Ferlito M, Romanenko OG, Guyton K, Ashton S, Squadrito F, Halushka PV, Cook JA. Implication of G i proteins and Src tyrosine kinases in endotoxin-induced signal transduction events and mediator production. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080061101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies have suggested that heterotrimeric G proteins and tyrosine kinases may be involved in lipopolysaccharide (LPS) signaling events. Signal transduction pathways activated by LPS were examined in human promonocytic THP-1 cells. We hypothesized that Gi proteins and Src tyrosine kinase differentially affect mitogen-activated protein (MAP) kinases (MAPK) and nuclear factor kappa (NF- B) activation. Post-receptor coupling to G i proteins were examined using pertussis toxin (PTx), which inhibits G i receptor-coupling. The involvement of the Src family of tyrosine kinases was examined using the selective Src tyrosine kinase inhibitor pyrazolopyrimidine-2 (PP2). Pretreatment of THP-1 cells with PTx attenuated LPS-induced activation of c-Jun-N-terminal kinase (JNK) and p38 kinase, and production of tumor necrosis factor-alpha (TNF-) and thromboxane B2 (TxB2). Pretreatment with PP2 inhibited TNF- and TxB2 production, but had no effect on p38 kinase or JNK signaling. Therefore, the G i-coupled signaling pathways and Src tyrosine kinase-coupled signaling pathways are necessary for LPS-induced TNF- and TxB2 production, but differ in their effects on MAPK activation. Neither PTx nor PP2 inhibited LPS-induced activation of interleukin receptor activated kinase (IRAK) or inhibitedtranslocation of NF- B. However, PP2 inhibitedLPS-inducedNF-B transactivation of a luciferase reporter gene construct in a concentration-dependent manner. Thus, LPS induction of Src tyrosine kinases may be essential in downstream NF- B transactivation of genes following DNA binding. PTx had no effect on NF- B activation of the reporter construct. These data suggest upstream divergence in signaling through G i pathways leading to MAPK activation and other signaling events leading to I B degradation and NF- B DNA binding.
Collapse
Affiliation(s)
- Marcella Ferlito
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA, Institute of Pharmacology, Medical University of Messina, Messina, Italy
| | - Olga G. Romanenko
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelly Guyton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sarah Ashton
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James A. Cook
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
44
|
Affiliation(s)
- L. Ziegler-Heitbrock
- Department Microbiology and Immunology, University of Leicester, Leicester, UK GSF-Institute for Inhalationbiology, Gauting, Germany,
| |
Collapse
|
45
|
Lee S, Zhang QZ, Karabucak B, Le AD. DPSCs from Inflamed Pulp Modulate Macrophage Function via the TNF-α/IDO Axis. J Dent Res 2016; 95:1274-81. [PMID: 27384335 DOI: 10.1177/0022034516657817] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human dental pulp stem cells (DPSCs) can be isolated from inflamed pulp derived from carious teeth with symptomatic irreversible pulpitis (I-DPSCs), which possess stemness and multidifferentiation potentials similar to DPSCs from healthy pulp. Since macrophages-essential cell players of the pulpal innate immunity-can regulate pulpal inflammation and repair, the authors investigated the immunomodulatory effects of DPSCs/I-DPSCs on macrophage functions and their underlying mechanisms. Similar to DPSCs, I-DPSCs were capable of colony-forming efficiency and adipogenic and osteo/dentinogenic differentiation under in vitro induction conditions. I-DPSCs also expressed a similar phenotypic profile of mesenchymal stem cell markers, except a relatively higher level of CD146 as compared with DPSCs. Coculture of DPSCs or I-DPSCs with differentiated THP-1 cells, the human monocyte cell line, markedly suppressed tumor necrosis factor α (TNF-α) secretion in response to stimulation with lipopolysaccharides (LPS) and/or nigericin. However, unlike TNF-α, the secreted level of interleukin 1β was not affected by coculture with DPSCs or I-DPSCs. Furthermore, DPSC/I-DPSC-mediated inhibition of TNF-α secretion by macrophages was abolished by pretreatment with 1-methyl-D-tryptophan, a specific inhibitor of indoleamine-pyrrole 2,3-dioxygenase (IDO), but not by NSC-398, a specific inhibitor of COX-2, suggesting IDO as a mediator. Interestingly, IDO expression was significantly augmented in macrophages and mesenchymal stromal cells in inflamed human pulp tissues. Collectively, these findings show that I-DPSCs, similar to DPSCs, possess stem cell properties and suppress macrophage functions via the TNF-α/IDO axis, thereby providing a physiologically relevant context for their innate immunomodulatory activity in the dental pulp and their capability for pulp repair.
Collapse
Affiliation(s)
- S Lee
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Z Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Karabucak
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Wang H, Zhu Y, Xu X, Wang X, Hou Q, Xu Q, Sun Z, Mi Y, Hu C. Ctenopharyngodon idella NF-κB subunit p65 modulates the transcription of IκBα in CIK cells. FISH & SHELLFISH IMMUNOLOGY 2016; 54:564-572. [PMID: 27142933 DOI: 10.1016/j.fsi.2016.04.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
NF-κB is an important transcription factor for regulating the multiple inflammatory and immune related gene transcription. It can bind with the nuclear factor κB site within the promoter of target genes to regulate their transcriptions. p65, the all-important subunit of NF-κB, is ubiquitously expressed in cells. In the present study, we cloned and identified the p65 subunit from grass carp (Ctenopharyngodon idella) (named Cip65) by homologous cloning and RACE technique. The full length of Cip65 cDNA is 2481 bp along with 9 bp 5' UTR, 639 bp 3' UTR and the largest open reading frame (1833 bp) encoding a polypeptide of 610 amino acids with a well conserved Rel-homology domain (RHD) in N-terminal and a putative transcription activation domain (TAD) in C-terminal. Cip65 gathers with other teleost p65 proteins to form a fish-specific clade clearly distinct from those of mammalian and amphibian counterparts on the phylogenetic tree. In CIK (C. idellus kidney) cells, the expression of Cip65 was significantly up-regulated under the stimulation with Poly I:C. As one member of the NF-κB inhibitor protein (IκB) family, IκBα can dominate the activity of NF-κB by interacting with it. To study the molecular mechanisms of negative feedback loop of NF-κB signaling in fish, we cloned grass carp IκBα (CiIκBα) promoter sequence. CiIκBα promoter is 414 bp in length containing two RelA binding sites and a putative atypical TATA-box. Meanwhile, Cip65 and its mutant proteins including C-terminus deletion mutant of Cip65 (Cip65-ΔC) and N-terminus deletion mutant of Cip65 (Cip65-ΔN) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. In vitro, Cip65 rather than Cip65-ΔC and Cip65-ΔN showed high affinity with CiIκBα promoter sequence by gel mobility shift assays. In vivo, the cotransfection of pcDNA3.1-Cip65 (or pcDNA3.1-Cip65-ΔC, pcDNA3.1-Cip65-ΔN respectively) with pGL3-CiIκBα and pRL-TK renilla luciferase plasmid into CIK cells showed that pcDNA3.1-Cip65 rather than pcDNA3.1-Cip65-ΔC and pcDNA3.1-Cip65-ΔN, can increase the luciferase activity. Taken together, these results suggested that Cip65 can regulate the expression of CiIκBα and works as a negative feedback loop in NF-κB pathway.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Youlin Zhu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiangqin Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qun Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
47
|
Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression. Int J Mol Sci 2016; 17:ijms17060859. [PMID: 27258267 PMCID: PMC4926393 DOI: 10.3390/ijms17060859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C–C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.
Collapse
|
48
|
Sakamoto Y, Kanatsu J, Toh M, Naka A, Kondo K, Iida K. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures. PLoS One 2016; 11:e0149676. [PMID: 26901838 PMCID: PMC4763373 DOI: 10.1371/journal.pone.0149676] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.
Collapse
Affiliation(s)
- Yuri Sakamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Junko Kanatsu
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Mariko Toh
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Ayano Naka
- Laboratory of Applied Nutrition, Faculty of Human Life and Environmental Sciences, Ochanomizu University, Tokyo, Japan
| | - Kazuo Kondo
- Endowed Research Department “Food for Health”, Ochanomizu University, Tokyo, Japan
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
49
|
Transcriptional Control of Synaptic Plasticity by Transcription Factor NF-κB. Neural Plast 2016; 2016:7027949. [PMID: 26881128 PMCID: PMC4736603 DOI: 10.1155/2016/7027949] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
Activation of nuclear factor kappa B (NF-κB) transcription factors is required for the induction of synaptic plasticity and memory formation. All components of this signaling pathway are localized at synapses, and transcriptionally active NF-κB dimers move to the nucleus to translate synaptic signals into altered gene expression. Neuron-specific inhibition results in altered connectivity of excitatory and inhibitory synapses and functionally in selective learning deficits. Recent research on transgenic mice with impaired or hyperactivated NF-κB gave important insights into plasticity-related target gene expression that is regulated by NF-κB. In this minireview, we update the available data on the role of this transcription factor for learning and memory formation and comment on cross-sectional activation of NF-κB in the aged and diseased brain that may directly or indirectly affect κB-dependent transcription of synaptic genes.
Collapse
|
50
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|