1
|
Ando T, Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021; 10:cells10071697. [PMID: 34359869 PMCID: PMC8305778 DOI: 10.3390/cells10071697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.
Collapse
Affiliation(s)
- Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| |
Collapse
|
2
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
3
|
A novel, nonanaphylactogenic, bispecific IgE-CD3 antibody eliminates IgE(+) B cells. J Allergy Clin Immunol 2015; 136:800-802.e3. [PMID: 25825213 DOI: 10.1016/j.jaci.2015.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
|
4
|
Eggel A, Baravalle G, Hobi G, Kim B, Buschor P, Forrer P, Shin JS, Vogel M, Stadler BM, Dahinden CA, Jardetzky TS. Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. J Allergy Clin Immunol 2014; 133:1709-19.e8. [PMID: 24642143 DOI: 10.1016/j.jaci.2014.02.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The remarkably stable interaction of IgE with its high-affinity receptor FcεRI on basophils and mast cells is critical for the induction of allergic hypersensitivity reactions. Because of the exceptionally slow dissociation rate of IgE-FcεRI complexes, such allergic effector cells permanently display allergen-specific IgE on their surface and immediately respond to allergen challenge by releasing inflammatory mediators. We have recently described a novel macromolecular inhibitor that actively promotes the dissociation of IgE from FcεRI through a molecular mechanism termed facilitated dissociation. OBJECTIVE Here we assessed the therapeutic potential of this non-immunoglobulin-based IgE inhibitor E2_79, a designed ankyrin repeat protein (DARPin), as well as a novel engineered biparatopic DARPin bi53_79, and directly compared them with the established anti-IgE antibody omalizumab. METHODS IgE-FcεRI complex dissociation was analyzed in vitro by using recombinant proteins in ELISA and surface plasmon resonance, ex vivo by using human primary basophils with flow cytometry, and in vivo by using human FcεRI α-chain transgenic mice in a functional passive cutaneous anaphylaxis test. RESULTS We show that E2_79-mediated removal of IgE from primary human basophils fully abrogates IgE-dependent cell activation and release of proinflammatory mediators ex vivo. Furthermore, we report that omalizumab also accelerates the dissociation of IgE from FcεRI, although much less efficiently than E2_79. Using the biparatopic IgE targeting approach, we further improved the disruptive potency of E2_79 by approximately 100-fold and show that disruptive IgE inhibitors efficiently prevent passive cutaneous anaphylaxis in mice expressing the human FcεRI α-chain. CONCLUSION Our findings highlight the potential of such novel IgE inhibitors as important diagnostic and therapeutic tools for management of allergic diseases.
Collapse
Affiliation(s)
- Alexander Eggel
- Institute of Immunology, University of Bern, Bern, Switzerland.
| | - Günther Baravalle
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - Gabriel Hobi
- Institute of Immunology, University of Bern, Bern, Switzerland
| | - Beomkyu Kim
- Department of Structural Biology, Stanford University School of Medicine, Stanford, Calif
| | - Patrick Buschor
- Institute of Immunology, University of Bern, Bern, Switzerland
| | - Patrik Forrer
- Molecular Partners AG, Zürich-Schlieren, Switzerland
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - Monique Vogel
- Institute of Immunology, University of Bern, Bern, Switzerland
| | - Beda M Stadler
- Institute of Immunology, University of Bern, Bern, Switzerland
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
5
|
Baumann MJ, Eggel A, Amstutz P, Stadler BM, Vogel M. DARPins against a functional IgE epitope. Immunol Lett 2010; 133:78-84. [PMID: 20673836 DOI: 10.1016/j.imlet.2010.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/13/2010] [Accepted: 07/22/2010] [Indexed: 11/29/2022]
Abstract
The monoclonal anti-IgE antibody omalizumab (Xolair is mostly used for the treatment of severe allergic asthma. However, the requirement of high doses and suboptimal cost-effectiveness limits the use of the treatment. Here we propose to use a new drug format based on non-immunoglobulin structures, potentially offering increased clinical efficacy while being more cost-effective. For this purpose, DARPins™ (designed ankyrin repeat proteins) against the constant heavy chain region of IgE have been isolated. DARPins were binding to IgE with high specificity and affinities in the low nanomolar range. Selected DARPins antagonized the interaction between IgE and its high-affinity receptor in inhibition assays. Furthermore, anti-IgE DARPins were shown to inhibit proinflammatory mediator release from rat basophilic leukemia cells expressing human high-affinity IgE receptors with higher efficacy than the monoclonal anti-IgE antibody omalizumab. DARPins may thus represent promising future drug candidates for the treatment of allergy.
Collapse
Affiliation(s)
- Michael J Baumann
- Institute of Immunology, University of Bern, Inselspital, Sahlihaus 2, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Baumann MJ, Stadler BM, Vogel M. Potential applications of designed ankyrin repeat proteins in diagnostics and therapeutics. ACTA ACUST UNITED AC 2007; 1:409-21. [DOI: 10.1517/17530059.1.3.409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Cada DJ, Levien T, Baker DE. Omalizumab. Hosp Pharm 2003. [DOI: 10.1177/001857870303801106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dennis J. Cada
- Drug Information Pharmacist, Drug Information Center, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| | - Terri Levien
- Drug Information Pharmacist, Drug Information Center, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| | - Danial E. Baker
- Drug Information Center and College of Pharmacy, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| |
Collapse
|
8
|
Marchand F, Mecheri S, Guilloux L, Iannascoli B, Weyer A, Blank U. Human serum IgE-mediated mast cell degranulation shows poor correlation to allergen-specific IgE content. Allergy 2003; 58:1037-43. [PMID: 14510723 DOI: 10.1034/j.1398-9995.2003.00251.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although allergen-specific IgE content in serum can be determined immunochemically, little is known about the relationship between this parameter and the strength of the degranulation response upon allergen triggering. OBJECTIVES Analyse the degranulation capacity of immunochemically defined purified and serum IgE after challenge with anti-IgE or allergen using a rat mast cell line (RBL) transfected with the alpha-chain of the human high-affinity IgE receptor (FcepsilonRI). METHODS Purified IgE specific for 4-hydroxy-3nitrophenylacetyl, purified IgE of unknown specificity, and sera from allergic patients sensitive to Dermatophagoides pteronyssinus and Dactylis glomerata were assessed. Degranulation was measured by a beta-hexosaminidase release assay after anti-IgE or allergen-specific challenge. RESULTS For purified monoclonal IgE a significant correlation (r = 0.97) was found between the proportion of bound allergen-specific IgE and the strength of the degranulation response. In contrast, no correlation (r = 0.27) was detected after sensitization with serum IgE. CONCLUSION Our studies demonstrate that mast cell activation mediated through IgE from allergic patients is a result of complex relationships that are not only dependent on allergen-specific IgE content but also relate to the capacity to efficiently sensitize and trigger the signalling responses that lead to degranulation.
Collapse
Affiliation(s)
- F Marchand
- Unité d'Immuno-Allergie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Atopic diseases such as asthma, rhinitis, eczema and food allergies have increased in most industrialised countries of the world during the last 20 years. The reasons for this increase are not known and different hypotheses have been assessed including increased exposure to sensitising allergens or decreased stimulation of the immune system during critical periods of development. In allergic diseases there is a polarisation of the Th2 response and an increase in the production of type 2 cytokines which are involved in the production of immunoglobulin E and the development of mast cells, basophils and eosinophils leading to inflammation and disease. The effector phase of atopy is initiated by interaction with Fc epsilon RI expressed on effector cells such as mast cells and basophils but also found on an ever increasing list of cells. Binding of a polyvalent allergen to the variable part of IgE leads to a cross-link of the receptor that triggers the cell to release histamine and pharmacological mediators of the symptomatic allergic response. Cross-linking of Fc epsilon RI by autoantibodies against the alpha-chain of the Fc epsilon RI, causing subsequent histamine release is thought to be involved in the pathogenesis of other diseases such as chronic idiopathic urticaria (CIU). To date, most therapeutic strategies are aimed at inhibiting and controlling components of the inflammatory response. Recently, new treatment strategies have emerged that focus on the development of preventive and even curative treatments. The most promising therapeutic approaches are aimed at inhibiting the IgE-Fc epsilon RI interaction with the use of non-anaphylactogenic anti-IgE or anti-Fc epsilon RIalpha autoantibodies. Clinical trials in humans using an humanised anti-IgE antibody showed that this antibody was well tolerated and reduced both symptoms and use of medication in asthma and allergic rhinitis. Thus interruption of the atopic cascade at the level of the IgE-Fc epsilon RI interaction with the use of non-anaphylactogenic antibodies is effective and represents an attractive therapy for the treatment of atopic disease.
Collapse
Affiliation(s)
- Sylvia M Miescher
- Institute of Immunology, Sahlihaus 1, Inselspital, CH-3010 Bern, Switzerland.
| | | |
Collapse
|
10
|
|
11
|
|
12
|
Vogel M, Miescher S, Kuhn S, Zürcher AW, Stadler MB, Ruf C, Effenberger F, Kricek F, Stadler BM. Mimicry of human IgE epitopes by anti-idiotypic antibodies. J Mol Biol 2000; 298:729-35. [PMID: 10801344 PMCID: PMC7125776 DOI: 10.1006/jmbi.2000.3713] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
According to Jerne's network hypothesis, the binding site of an anti-idiotypic antibody also represents the internal image of an epitope present on a foreign, or even a self antigen. In recent years, antigen mimicry has been defined at the molecular level for some xeno-antigens. However, until now there has been no demonstration of structural mimicry between a human anti-idiotypic antibody and a self structure. To address this question, we used human IgE as the self structure and a well-defined anti-human IgE mAb (BSW17). We describe the isolation of two anti- idiotypic antibodies specific for the anti-IgE antibody BSW17 from a non-immune human Fab phage display library. Interestingly, these two anti-idiotypic antibodies mimic the same molecular surface region as a previously described IgE peptide mimotope isolated by panning on BSW17, but they cover a much larger epitope on the IgE molecule. Accordingly, immunisation of rabbits with the two anti-idiotypic antibodies induced high-affinity antibodies with the same characteristics as BSW17. Thus, our data demonstrate that it is possible to isolate anti-idiotypic antibodies derived from the human genome without the need for hyperimmunization, and confirm Jerne's hypothesis that both foreign antigens and self structures can be mimicked by our own immunoglobulins.
Collapse
Affiliation(s)
- M Vogel
- Institute of Immunology and Allergology, Sahli Haus 2, Inselspital, 3010, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|