1
|
Liu Z, Ou Y, He X, Yuan T, Li M, Long Y, Li Y, Tan Y. Guardians of the Lung: The Multifaceted Roles of Macrophages in Cancer and Infectious Disease. DNA Cell Biol 2025. [PMID: 40106386 DOI: 10.1089/dna.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The lung as an organ that is fully exposed to the external environment for extended periods, comes into contact with numerous inhaled microorganisms. Lung macrophages are crucial for maintaining lung immunity and operate primarily through signaling pathways such as toll-like receptor 4 and nuclear factor-κB pathways. These macrophages constitute a diverse population with significant plasticity, exhibiting different phenotypes and functions on the basis of their origin, tissue residence, and environmental factors. During lung homeostasis, they are involved in the clearance of inhaled particles, cellular remnants, and even participate in metabolic processes. In disease states, lung macrophages transition from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. These distinct phenotypes have varying transcriptional profiles and serve different functions, from combating pathogens to repairing inflammation-induced damage. However, macrophages can also exacerbate lung injury during prolonged inflammation or exposure to antigens. In this review, we delve into the diverse roles of pulmonary macrophages the realms in homeostasis, pneumonia, tuberculosis, and lung tumors.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Zhuzhou, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaojin He
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ting Yuan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Miao Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
2
|
Gao X, You X, Wang G, Liu M, Ye L, Meng Y, Luo G, Xu D, Liu M. MiR-320 inhibits PRRSV replication by targeting PRRSV ORF6 and porcine CEBPB. Vet Res 2024; 55:61. [PMID: 38750508 PMCID: PMC11097481 DOI: 10.1186/s13567-024-01309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/23/2024] [Indexed: 05/18/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease caused by Porcine reproductive and respiratory syndrome virus (PRRSV), results in huge economic losses to the world pig industry. MiRNAs have been reported to be involved in regulation of viral infection. In our study, miR-320 was one of 21 common differentially expressed miRNAs of Meishan, Pietrain, and Landrace pig breeds at 9-h post-infection (hpi). Bioinformatics and experiments found that PRRSV replication was inhibited by miR-320 through directly targeting PRRSV ORF6. In addition, the expression of CCAAT enhancer binding protein beta (CEBPB) was also inhibited by miR-320 by targeting the 3' UTR of CEBPB, which significantly promotes PRRSV replication. Intramuscular injection of pEGFP-N1-miR-320 verified that miR-320 significantly inhibited the replication of PRRSV and alleviated the symptoms caused by PRRSV in piglets. Taken together, miR-320 have significant roles in the infection and may be promising therapeutic target for PRRS.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangbin You
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guowei Wang
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengtian Liu
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longlong Ye
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Meng
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gan Luo
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dequan Xu
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Liu
- Colleges of Animal Science and Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Abreu C, Shirk EN, Queen SE, Mankowski JL, Gama L, Clements JE. A Quantitative Approach to SIV Functional Latency in Brain Macrophages. J Neuroimmune Pharmacol 2019; 14:23-32. [PMID: 30167896 PMCID: PMC9070040 DOI: 10.1007/s11481-018-9803-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.
Collapse
Affiliation(s)
- Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Gama L, Abreu C, Shirk EN, Queen SE, Beck SE, Metcalf Pate KA, Bullock BT, Zink MC, Mankowski JL, Clements JE. SIV Latency in Macrophages in the CNS. Curr Top Microbiol Immunol 2018; 417:111-130. [PMID: 29770863 DOI: 10.1007/82_2018_89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.
Collapse
Affiliation(s)
- Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Hayman YA, Sadofsky LR, Williamson JD, Hart SP, Morice AH. The effects of exogenous lipid on THP-1 cells: an in vitro model of airway aspiration? ERJ Open Res 2017; 3:00026-2016. [PMID: 28344981 PMCID: PMC5358527 DOI: 10.1183/23120541.00026-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/14/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammatory diseases of the airways are associated with gastro-oesophageal reflux (GOR) and aspiration events. The observation of lipid-laden macrophages (LLMs) within the airway may indicate aspiration secondary to GOR. The proposed mechanism, that lipid droplets from undigested or partially digested food are aspirated leading to accumulation in scavenging macrophages, led us to hypothesise that an activated population of LLMs could interact with other immune cells to induce bronchial inflammation. To test this, we generated an in vitro model using differentiated THP-1 cells, which were treated with a high-fat liquid feed. Here, we show that THP-1 cells can take up lipid from the high-fat feed independent of actin polymerisation or CD36-dependent phagocytosis. These cells did not exhibit M1 or M2 polarisation. Gene array analysis confirmed over 8000 genes were upregulated by at least twofold following high fat exposure, and IL-8 was the most upregulated gene. Pathway analysis revealed upregulation of genes known to be involved in chronic obstructive pulmonary disease (COPD) pathophysiology. We suggest that aspiration and macrophage phagocytosis may be important mechanisms in the aetiology of diseases such as COPD and cystic fibrosis that are characterised by high levels of IL-8 within the airways.
Collapse
Affiliation(s)
| | - Laura R. Sadofsky
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull , UK
| | | | | | | |
Collapse
|
6
|
George J, Renn L, Verthelyi D, Roederer M, Rabin RL, Mattapallil JJ. Early treatment with reverse transcriptase inhibitors significantly suppresses peak plasma IFNα in vivo during acute simian immunodeficiency virus infection. Cell Immunol 2016; 310:156-164. [PMID: 27622386 PMCID: PMC11348878 DOI: 10.1016/j.cellimm.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/04/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Innate interferons (IFN) are comprised of multiple Type I and III subtypes. The in vivo kinetics of subtype responses during human immunodeficiency virus (HIV) infection is not well defined. Using the acute simian immunodeficiency virus (SIV) infection model, we show that plasma IFNα levels peak at day 10 post-infection (pi) after which they rapidly declined. The mRNA expression of Type I and III IFN subtypes were significantly elevated in the lymph nodes (LN) at day 10 pi. Though the expression levels of all subtypes declined by day 14-31 pi, numerous subtypes remained elevated suggesting that ongoing viral replication in LN continues to drive induction of these subtypes. Interestingly, treatment with reverse transcriptase (RT) inhibitors at day 7 pi significantly suppressed plasma IFNα responses by day 10 pi that significantly correlated with cell-associated SIV DNA loads suggesting that RT byproducts such as viral DNA likely plays a role in driving IFN responses during acute SIV infection. Quantification of Type I and III subtype transcripts in sorted subsets of LN CD4+ and CD8+ T cells, CD14+/CD14- monocytes/macrophages, and total CD11c/CD123+ dendritic cells (DC) at day 10 pi showed that DC expressed ∼3-4 log more subtype transcripts as compared to the other subsets. Taken together, our results provide new insights into the kinetics of innate interferon responses during early stages of infection, and provide evidence that DC's are a major in vivo source of innate IFN during acute SIV infection.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lynnsey Renn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Joseph J Mattapallil
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
7
|
Chingwaru W, Glashoff RH, Vidmar J, Kapewangolo P, Sampson SL. Mammalian cell cultures as models for Mycobacterium tuberculosis-human immunodeficiency virus (HIV) interaction studies: A review. ASIAN PAC J TROP MED 2016; 9:832-838. [PMID: 27633294 DOI: 10.1016/j.apjtm.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis and human immunodeficiency virus (HIV) co-infections have remained a major public health concern worldwide, particularly in Southern Africa. Yet our understanding of the molecular interactions between the pathogens has remained poor due to lack of suitable preclinical models for such studies. We reviewed the use, this far, of mammalian cell culture models in HIV-MTB interaction studies. Studies have described the use of primary human cell cultures, including (1) monocyte-derived macrophage (MDM) fractions of peripheral blood mononuclear cell (PBMC), alveolar macrophages (AM), (2) cell lines such as the monocyte-derived macrophage cell line (U937), T lymphocyte cell lines (CEMx174, ESAT-6-specific CD4(+) T-cells) and an alveolar epithelial cell line (A549) and (3) special models such as stem cells, three dimensional (3D) or organoid cell models (including a blood-brain barrier cell model) in HIV-MTB interaction studies. The use of cell cultures from other mammals, including: mouse cell lines [macrophage cell lines RAW 264.7 and J774.2, fibroblast cell lines (NIH 3T3, C3H clones), embryonic fibroblast cell lines and T-lymphoma cell lines (S1A.TB, TIMI.4 and R1.1)]; rat (T cells: Rat2, RGE, XC and HH16, and alveolar cells: NR8383) and primary guinea pigs derived AMs, in HIV-MTB studies is also described. Given the spectrum of the models available, cell cultures offer great potential for host-HIV-MTB interactions studies.
Collapse
Affiliation(s)
- Walter Chingwaru
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Institute Ceres/Zavod Ceres, Lahovna 16, 3000 Celje, Slovenia; Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.
| | - Richard H Glashoff
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000 Celje, Slovenia; Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe; Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Petrina Kapewangolo
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, Windhoek, Namibia
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Wu C, Ma J, Xu Y, Zhang X, Lao S, Yang B. Pleural fluid mononuclear cells (PFMCs) from tuberculous pleurisy can migrate in vitro in response to CXCL10. Tuberculosis (Edinb) 2014; 94:123-30. [DOI: 10.1016/j.tube.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023]
|
9
|
Tomlinson GS, Bell LCK, Walker NF, Tsang J, Brown JS, Breen R, Lipman M, Katz DR, Miller RF, Chain BM, Elkington PTG, Noursadeghi M. HIV-1 infection of macrophages dysregulates innate immune responses to Mycobacterium tuberculosis by inhibition of interleukin-10. J Infect Dis 2013; 209:1055-65. [PMID: 24265436 DOI: 10.1093/infdis/jit621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 and Mycobacterium tuberculosis (M. tuberculosis) both target macrophages, which are key cells in inflammatory responses and their resolution. Therefore, we tested the hypothesis that HIV-1 may modulate macrophage responses to coinfection with M. tuberculosis. HIV-1 caused exaggerated proinflammatory responses to M. tuberculosis that supported enhanced virus replication, and were associated with deficient stimulus-specific induction of anti-inflammatory interleukin (IL)-10 and attenuation of mitogen-activated kinase signaling downstream of Toll-like receptor 2 and dectin-1 stimulation. Our in vitro data were mirrored by lower IL-10 and higher proinflammatory IL-1β in airway samples from HIV-1-infected patients with pulmonary tuberculosis compared with those with non-tuberculous respiratory tract infections. Single-round infection of macrophages with HIV-1 was sufficient to attenuate IL-10 responses, and antiretroviral treatment of replicative virus did not affect this phenotype. We propose that deficient homeostatic IL-10 responses may contribute to the immunopathogenesis of active tuberculosis and propagation of virus infection in HIV-1/M. tuberculosis coinfection.
Collapse
|
10
|
Salamon H, Qiao Y, Cheng JC, Yamaguchi KD, Soteropoulos P, Weiden M, Gennaro ML, Pine R. Evidence for postinitiation regulation of mRNA biogenesis in tuberculosis. THE JOURNAL OF IMMUNOLOGY 2013; 190:2747-55. [PMID: 23378427 DOI: 10.4049/jimmunol.1202185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis infection alters macrophage gene expression and macrophage response to IFN-γ, a critical host defense cytokine. However, regulation of these changes is poorly understood. We report discordance of changes in nascent transcript and total nuclear RNA abundance for the transcription factors STAT1 and IRF1, together with lack of effect on their RNA half-lives, in human THP-1 cells infected with M. tuberculosis and stimulated with IFN-γ. The results indicate that negative postinitiation regulation of mRNA biogenesis limits the expression of these factors, which mediate host defense against M. tuberculosis through the cellular response to IFN-γ. Consistent with the results for STAT1 and IRF1, transcriptome analysis reveals downregulation of postinitiation mRNA biogenesis processes and pathways by infection, with and without IFN-γ stimulation. Clinical relevance for regulation of postinitiation mRNA biogenesis is demonstrated by studies of donor samples showing that postinitiation mRNA biogenesis pathways are repressed in latent tuberculosis infection compared with cured disease and in active tuberculosis compared with ongoing treatment or with latent tuberculosis. For active disease and latent infection donors from two populations (London, U.K., and The Gambia), each analyzed using a different platform, pathway-related gene expression differences were highly correlated, demonstrating substantial specificity in the effect. Collectively, the molecular and bioinformatic analyses point toward downregulation of postinitiation mRNA biogenesis pathways as a means by which M. tuberculosis infection limits expression of immunologically essential transcription factors. Thus, negative regulation of postinitiation mRNA biogenesis can constrain the macrophage response to infection and overall host defense against tuberculosis.
Collapse
Affiliation(s)
- Hugh Salamon
- Knowledge Synthesis, Inc., Berkeley, CA 94716, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ravimohan S, Gama L, Engle EL, Zink MC, Clements JE. Early emergence and selection of a SIV-LTR C/EBP site variant in SIV-infected macaques that increases virus infectivity. PLoS One 2012; 7:e42801. [PMID: 22952612 PMCID: PMC3428313 DOI: 10.1371/journal.pone.0042801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
CCAAT/enhancer binding protein (C/EBP)β, and C/EBP binding sites in the HIV/SIV-long terminal repeat (LTR) are crucial for regulating transcription and for IFNβ-mediated suppression of virus replication in macrophages, the predominant source of productive virus replication in the brain. We investigated sequence variation within the SIV-LTR C/EBP sites that may be under selective pressure in vivo and therefore associated with disease progression. Using the SIV-macaque model, we examined viral LTR sequences derived from the spleen, a site of macrophage and lymphocyte infection, and the brain from macaques euthanized at 10, 21, 42, 48 and 84 days postinoculation (p.i.). A dominant variant, DS1C/A, containing an adenine-to-guanine substitution and a linked cytosine-to-adenine substitution in the downstream (DS1) C/EBP site, was detected in the spleen at 10 days p.i. The DS1C/A genotype was not detected in the brain until 42 days p.i., after which it was the predominant replicating genotype in both brain and spleen. Functional characterization of the DS1C/A containing SIV showed increased infectivity with or without IFNβ treatment over the wild-type virus, SIV/17E-Fr. The DS1C/A C/EBP site had higher affinity for both protein isoforms of C/EBPβ compared to the wild-type DS1 C/EBP site. Cytokine expression in spleen compared to brain implicated IFNβ and IL-6 responses as part of the selective pressures contributing to emergence of the DS1C/A genotype in vivo. These studies demonstrate selective replication of virus containing the DS1C/A genotype that either emerges very early in spleen and spreads to the brain, or evolves independently in the brain when IFNβ and IL-6 levels are similar to that found in spleen earlier in infection.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
12
|
Weiden MD, Naveed B, Kwon S, Segal LN, Cho SJ, Tsukiji J, Kulkarni R, Comfort AL, Kasturiarachchi KJ, Prophete C, Cohen MD, Chen LC, Rom WN, Prezant DJ, Nolan A. Comparison of WTC dust size on macrophage inflammatory cytokine release in vivo and in vitro. PLoS One 2012; 7:e40016. [PMID: 22815721 PMCID: PMC3399845 DOI: 10.1371/journal.pone.0040016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers’ lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. Methodology/Principal Findings Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM10–53 or WTC-PM2.5 at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM10–53 and PM2.5. GM-CSF clustered with IL-6 and IL-12(p70) at baseline, after exposure to WTC-PM10–53 and in sera of WTC dust-exposed subjects (n = 70) with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM10–53 consistently induced more cytokine release than WTC-PM2.5 at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. Conclusions WTC-PM10–53 induced a stronger inflammatory response by human AM than WTC-PM2.5. This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure.
Collapse
Affiliation(s)
- Michael D. Weiden
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York, United States of America
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
| | - Bushra Naveed
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Soo Jung Cho
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Jun Tsukiji
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Rohan Kulkarni
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Ashley L. Comfort
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Kusali J. Kasturiarachchi
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Colette Prophete
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York, United States of America
- Ruth L. and David S. Gottesman Institute for Stem and Regenerative Medicine Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mitchell D. Cohen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York, United States of America
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York, United States of America
| | - William N. Rom
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna Nolan
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York, United States of America
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
14
|
Contreras X, Mzoughi O, Gaston F, Peterlin MB, Bahraoui E. Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages. Retrovirology 2012; 9:37. [PMID: 22554282 PMCID: PMC3432598 DOI: 10.1186/1742-4690-9-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Background Macrophages, which are CD4 and CCR5 positive, can sustain HIV-1 replication for long periods of time. Thus, these cells play critical roles in the transmission, dissemination and persistence of viral infection. Of note, current antiviral therapies do not target macrophages efficiently. Previously, it was demonstrated that interactions between CCR5 and gp120 stimulate PKC. However, the PKC isozymes involved were not identified. Results In this study, we identified PKC-delta as a major cellular cofactor for HIV-1 replication in macrophages. Indeed, PKC-delta was stimulated following the interaction between the virus and its target cell. Moreover, inhibition of PKC-delta blocked the replication of R5-tropic viruses in primary human macrophages. However, this inhibition did not have significant effects on receptor and co-receptor expression or fusion. Additionally, it did not affect the formation of the early reverse transcription product containing R/U5 sequences, but did inhibit the synthesis of subsequent cDNAs. Importantly, the inhibition of PKC-delta altered the redistribution of actin, a cellular cofactor whose requirement for the completion of reverse transcription was previously established. It also prevented the association of the reverse transcription complex with the cytoskeleton. Conclusion This work highlights the importance of PKC-delta during early steps of the replicative cycle of HIV-1 in human macrophages.
Collapse
Affiliation(s)
- Xavier Contreras
- Université Paul Sabatier, EA 3038, 118 Route de Narbonne, Toulouse 31062, France.
| | | | | | | | | |
Collapse
|
15
|
Ranjbar S, Jasenosky LD, Chow N, Goldfeld AE. Regulation of Mycobacterium tuberculosis-dependent HIV-1 transcription reveals a new role for NFAT5 in the toll-like receptor pathway. PLoS Pathog 2012; 8:e1002620. [PMID: 22496647 PMCID: PMC3320587 DOI: 10.1371/journal.ppat.1002620] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/21/2012] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) disease in HIV co-infected patients contributes to increased mortality by activating innate and adaptive immune signaling cascades that stimulate HIV-1 replication, leading to an increase in viral load. Here, we demonstrate that silencing of the expression of the transcription factor nuclear factor of activated T cells 5 (NFAT5) by RNA interference (RNAi) inhibits Mycobacterium tuberculosis (MTb)-stimulated HIV-1 replication in co-infected macrophages. We show that NFAT5 gene and protein expression are strongly induced by MTb, which is a Toll-like receptor (TLR) ligand, and that an intact NFAT5 binding site in the viral promoter of R5-tropic HIV-1 subtype B and subtype C molecular clones is required for efficent induction of HIV-1 replication by MTb. Furthermore, silencing by RNAi of key components of the TLR pathway in human monocytes, including the downstream signaling molecules MyD88, IRAK1, and TRAF6, significantly inhibits MTb-induced NFAT5 gene expression. Thus, the innate immune response to MTb infection induces NFAT5 gene and protein expression, and NFAT5 plays a crucial role in MTb regulation of HIV-1 replication via a direct interaction with the viral promoter. These findings also demonstrate a general role for NFAT5 in TLR- and MTb-mediated control of gene expression. The major cause of AIDS deaths globally has been tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (MTb). Co-infection with MTb exacerbates human immunodeficiency virus type1 (HIV-1) replication and disease progression via both innate and adaptive host immune responses to MTb infection. In this report, we present evidence that the transcription factor NFAT5 plays a crucial role in MTb-induced HIV-1 replication in human peripheral blood cells and monocytes. We also show that MTb infection itself stimulates NFAT5 gene expression in human monocytes and that its expression involves the TLR signalling pathway and requires the downstream adaptor proteins MyD88, IRAK1, and TRAF6. This identification of a novel role for NFAT5 in TB/HIV-1 co-infection reveals that NFAT5 is a major mediator of TLR-dependent gene expression and thus provides a potential new therapeutic target for treatment of HIV-1 and possibly other diseases.
Collapse
Affiliation(s)
- Shahin Ranjbar
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Pediatrics Harvard Medical School, Boston, Massachusetts, United States of America
| | - Luke D. Jasenosky
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Nancy Chow
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Anne E. Goldfeld
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
MAGOMBEDZE GESHAM, GARIRA WINSTON, MWENJE EDDIE. IN-VIVOMATHEMATICAL STUDY OF CO-INFECTION DYNAMICS OF HIV-1 ANDMYCOBACTERIUM TUBERCULOSIS. J BIOL SYST 2011. [DOI: 10.1142/s0218339008002551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) fuels the pathogenesis of Mycobacterium tuberculosis (Mtb) in humans. We develop a mathematical model in an attempt to understand the immune mechanisms that are involved during the co-infection of Mtb and HIV-1. Our study reveals that infection of an Mtb infected individual with HIV-1 results in fast development of active TB. The mathematical model analysis and simulations show that Mtb infection is linked to HIV infection through macrophages and CD4+ T cells. The study shows that depletion of macrophages and CD4+ T cells by HIV-1 worsens the picture of Mtb infection and in-turn Mtb infection affects the progression of HIV-1 infection since it is also capable of inducing rapid replication of HIV. Our analytical and numerical simulations show that macrophages are a potential reservoir of HIV particles during HIV-1 infection. Co-infection simulations reveal that co-infection exacerbates more the pathogen that caused the first infection. Simulations also show that co-infection disease progression patterns converge to a similar trend after a considerable time interval irrespective of which pathogen first caused infection and the second pathogen that caused co-infection. This work suggests directions for further studies and potential treatment strategies.
Collapse
Affiliation(s)
- GESHAM MAGOMBEDZE
- Departments of Applied Mathematics, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| | - WINSTON GARIRA
- Departments of Applied Mathematics, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| | - EDDIE MWENJE
- Departments of Applied Biology, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| |
Collapse
|
17
|
Abstract
Community-acquired pneumonia affects approximately 4 million people in the United States, with 40,000 deaths per year. The incidence is increased about 35-fold in HIV-infected individuals, and this rate has decreased since the antiretroviral era has begun. Bacterial pneumonia has decreased from 5 to 20 cases per 100 person-years to less than 1 to 5 cases per 100 person-years in the era of antiretroviral therapy. HIV-1 infection impairs the function of neutrophils in the lung and infects CD4⁺ cells and alveolar macrophages. Opportunistic infections dramatically increase local HIV replication in the lung cells, especially alveolar macrophages and CD4⁺ cells. This enhanced replication increases viral mutations and provides opportunities for viral escape from latent reservoirs. Mortality is increased with more comorbidities in this highly susceptible population. Immunization with vaccines is recommended, especially pneumococcal vaccines, although the vaccine itself may stimulate viral replication. Recent studies show that the lower respiratory tract is a microbial reservoir in HIV-infected individuals rather than being a sterile environment, as originally thought. This may provide new opportunities for preventing opportunistic infections in HIV-infected subjects. Bacterial pneumonia presents an ongoing challenge in these high-risk individuals, particularly in studying the functions of the innate and acquired immune response.
Collapse
|
18
|
Role of oxidants in interstitial lung diseases: pneumoconioses, constrictive bronchiolitis, and chronic tropical pulmonary eosinophilia. Mediators Inflamm 2011; 2011:407657. [PMID: 22131646 PMCID: PMC3205778 DOI: 10.1155/2011/407657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/23/2011] [Indexed: 12/27/2022] Open
Abstract
Oxidants such as superoxide anion, hydrogen peroxide, and myeloperoxidase from activated inflammatory cells in the lower respiratory tract contribute to inflammation and injury. Etiologic agents include inorganic particulates such as asbestos, silica, or coal mine dust or mixtures of inorganic dust and combustion materials found in World Trade Center dust and smoke. These etiologic agents are phagocytosed by alveolar macrophages or bronchial epithelial cells and release chemotactic factors that recruit inflammatory cells to the lung. Chemotactic factors attract and activate neutrophils, eosinophils, mast cells, and lymphocytes and further activate macrophages to release more oxidants. Inorganic dusts target alveolar macrophages, World Trade Center dust targets bronchial epithelial cells, and eosinophils characterize tropical pulmonary eosinophilia (TPE) caused by filarial organisms. The technique of bronchoalveolar lavage in humans has recovered alveolar macrophages (AMs) in dust diseases and eosinophils in TPE that release increased amounts of oxidants in vitro. Interestingly, TPE has massively increased eosinophils in the acute form and after treatment can still have ongoing eosinophilic inflammation. A course of prednisone for one week can reduce the oxidant burden and attendant inflammation and may be a strategy to prevent chronic TPE and interstitial lung disease.
Collapse
|
19
|
Falvo JV, Ranjbar S, Jasenosky LD, Goldfeld AE. Arc of a vicious circle: pathways activated by Mycobacterium tuberculosis that target the HIV-1 long terminal repeat. Am J Respir Cell Mol Biol 2011; 45:1116-24. [PMID: 21852682 DOI: 10.1165/rcmb.2011-0186tr] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this review, we examine how a subset of signal transduction cascades initiated by Mycobacterium tuberculosis (Mtb) infection modulates transcription mediated by the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). We describe two distinct phases of signaling that target transcription factors known to bind the HIV-1 LTR, and thus drive viral transcription and replication, in cells of the Mtb-infected host. First, Mtb-derived molecules, including cell wall components and DNA, interact with a number of host pattern recognition receptors. Second, cytokines and chemokines secreted in response to Mtb infection initiate signal transduction cascades through their cognate receptors. Given the variation in cell wall components among distinct clinical Mtb strains, the initial pattern recognition receptor interaction leading to direct LTR activation and differential cytokine and chemokine production is likely to be an important aspect of Mtb strain-specific regulation of HIV-1 transcription and replication. Improved understanding of these molecular mechanisms in the context of bacterial and host genetics should provide key insights into the accelerated viral replication and disease progression characteristic of HIV/TB coinfection.
Collapse
Affiliation(s)
- James V Falvo
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, MA, USA.
| | | | | | | |
Collapse
|
20
|
Jones JW, Broz P, Monack DM. Innate immune recognition of francisella tularensis: activation of type-I interferons and the inflammasome. Front Microbiol 2011; 2:16. [PMID: 21687410 PMCID: PMC3109290 DOI: 10.3389/fmicb.2011.00016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/20/2011] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen that can cause severe disease in a wide range of mammalian hosts. Primarily residing in host macrophages, F. tularensis escapes phagosomal degradation, and replicates in the macrophage cytosol. The macrophage uses a series of pattern recognition receptors to detect conserved microbial molecules from invading pathogens, and initiates an appropriate host response. In the cytosol, F. tularensis is recognized by the inflammasome, a multiprotein complex responsible for the activation of the cysteine protease caspase-1. Caspase-1 activation leads to processing and release of proinflammatory cytokines and host cell death. Here we review recent work on the molecular mechanisms of inflammasome activation by F. tularensis, and its consequences both in vitro and in vivo. Finally, we discuss the coordination between the inflammasome and other cytosolic host responses, and the evidence for F. tularensis virulence factors that suppress inflammasome activation.
Collapse
Affiliation(s)
- Jonathan Wiley Jones
- Department of Microbiology and Immunology, School of Medicine, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|
21
|
Graham DR, Gama L, Queen SE, Li M, Brice AK, Kelly KM, Mankowski JL, Clements JE, Zink MC. Initiation of HAART during acute simian immunodeficiency virus infection rapidly controls virus replication in the CNS by enhancing immune activity and preserving protective immune responses. J Neurovirol 2010; 17:120-30. [PMID: 21165785 DOI: 10.1007/s13365-010-0005-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/07/2010] [Accepted: 11/08/2010] [Indexed: 11/28/2022]
Abstract
The CNS remains vulnerable to HIV-induced damage despite highly active antiretroviral therapy (HAART). Using a rigorous simian immunodeficiency virus (SIV) macaque model of HAART that combines three classes of antiretroviral drugs (a protease inhibitor, a reverse transcriptase inhibitor, and an integrase inhibitor), we examined immune responses and virus replication in the plasma and cerebrospinal fluid (CSF) following HAART initiation during acute infection (4 days postinoculation (p.i.)). HAART-treated macaques did not experience the level of acute CD4+ and CD8+ T cell and NK cell count suppression in the peripheral blood normally observed during acute infection. Initiation of HAART produced a rapid four-log decline in viral load in plasma and a slower two-log decline of viral RNA in the CSF over the subsequent 17 days of infection. Despite a dramatic reduction of viral RNA levels in the brain at 21 days p.i., viral DNA levels were not different between the two groups. Expression of most cytokine mRNA in brain of HAART-treated macaques did not significantly differ from untreated controls. Expression of the IFN responsive gene MxA was significantly reduced in the brain of HAART-treated macaques, suggesting control of hyperactive immune responses. Control of virus replication likely was enhanced by significant increases in CD4+ and CD8+ T cell trafficking in the brain of infected animals on HAART therapy and the concomitant increase in levels of IFNγ. Collectively, these data indicate preserved innate and adaptive immune activity in the brain following HAART initiation during acute SIV infection in this macaque model, suggesting profound benefits following acute treatment of SIV.
Collapse
Affiliation(s)
- David R Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB 831, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kobayashi H, Nolan A, Naveed B, Hoshino Y, Segal LN, Fujita Y, Rom WN, Weiden MD. Neutrophils activate alveolar macrophages by producing caspase-6-mediated cleavage of IL-1 receptor-associated kinase-M. THE JOURNAL OF IMMUNOLOGY 2010; 186:403-10. [PMID: 21098228 DOI: 10.4049/jimmunol.1001906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alveolar macrophages (AMs) are exposed to respirable microbial particles. Similar to phagocytes in the gastrointestinal tract, AMs can suppress inflammation after exposure to nonpathogenic organisms. IL-1R-associated kinase-M (IRAK-M) is one inhibitor of innate immunity, normally suppressing pulmonary inflammation. During pneumonia, polymorphonuclear neutrophils (PMNs) are recruited by chemotactic factors released by AMs to produce an intense inflammation. We report that intact IRAK-M is strongly expressed in resting human AMs but is cleaved in patients with pneumonia via PMN-mediated induction of caspase-6 (CASP-6) activity. PMN contact is necessary and PMN membranes are sufficient for CASP-6 induction in macrophages. PMNs fail to induce TNF-α fully in macrophages expressing CASP-6 cleavage-resistant IRAK-M. Without CASP-6 expression, PMN stimulation fails to cleave IRAK-M, degrade IκBα, or induce TNF-α. CASP-6(-/-) mice subjected to cecal ligation and puncture have impaired TNF-α production in the lung and decreased mortality. LPS did not induce or require CASP-6 activity demonstrating that TLR2/4 signaling is independent from the CASP-6 regulated pathway. These data define a central role for CASP-6 in PMN-driven macrophage activation and identify IRAK-M as an important target for CASP-6. PMNs de-repress AMs via CASP-6-mediated IRAK-M cleavage. This regulatory system will blunt lung inflammation unless PMNs infiltrate the alveolar spaces.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Tools for effective TB control have been available for years. Case finding, active medications, case management and directly observed therapy are the foundations for the management of TB. The current TB epidemic, centered in resource-limited settings is fueled by the HIV-1 epidemic. Lack of ability to diagnose and treat drug-resistant TB has led to development of more extensive patterns of resistance. Among the currently available drugs, there is reason to hope that rifamycins paired with fluoroquinolones will lead to shorter treatment regimens for drug-susceptible TB. As the result of novel public-private collaborations and investments of resources, new drugs are being developed. These include TMC207, already shown to have activity early in the treatment of multidrug-resistant TB and others that are likely to be active against persistor organisms, and have the prospect to dramatically shorten treatment courses for active and latent TB. Given that these drugs have novel mechanisms of action, combinations have the prospect to be highly active even against multidrug-resistant organisms.
Collapse
Affiliation(s)
- Eric Leibert
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
24
|
Reeve AB, Pearce NC, Patel K, Augustus KV, Novembre FJ. Neuropathogenic SIVsmmFGb genetic diversity and selection-induced tissue-specific compartmentalization during chronic infection and temporal evolution of viral genes in lymphoid tissues and regions of the central nervous system. AIDS Res Hum Retroviruses 2010; 26:663-79. [PMID: 20518690 DOI: 10.1089/aid.2009.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SIVsmmFGb is a lentivirus swarm that induces neuropathology in over 90% of infected pigtailed macaques and reliably models central nervous system HIV infection in people. We have previously studied SIVsmmFGb genetic diversity and compartmentalization during acute infection, but little is understood about diversity and intertissue compartmentalization during chronic infection. Tissue-specific pressure appeared to affect the diversity of Nef sequences between tissues, but changes to the Env V1 region and Int diversity were similar across all tissues. At 2 months postinfection, compartmentalization of the SIVsmmFGb env V1 region, nef, and int was noted between different brain regions and between brain regions and lymph nodes. Convergent evolution of the nef and env V1 region, and divergent evolution of int, was noted between compartments and all genes demonstrated intratissue temporal segregation. For the env V1 region and nef, temporal segregation was stronger in the brain regions than the periphery, but little difference between tissues was noted for int. Positive selection of the env V1 region appeared in most tissues at 2 months postinfection, whereas nef and int faced negative selection in all tissues. Positive selection of the env V1 region sequences increased in some brain regions over time. SIVsmmFGb nef and int sequences each saw increased negative selection in brain regions, and one lymph node, over the course of infection. Functional differences between tissue compartments decreased over time for int and env V1 region sequences, but increased for nef sequences.
Collapse
Affiliation(s)
- Aaron B. Reeve
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Nicholas C. Pearce
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kalpana Patel
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Katherine V. Augustus
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Francis J. Novembre
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| |
Collapse
|
25
|
Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 2010; 7:210-20. [PMID: 20227664 DOI: 10.1016/j.chom.2010.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/05/2009] [Accepted: 02/09/2010] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis uses the ESX-1 secretion system to deliver virulence proteins during infection of host cells. Here we report a mechanism of posttranscriptional control of ESX-1 mediated by MycP1, a M. tuberculosis serine protease. We show that MycP1 is required for ESX-1 secretion but that, unexpectedly, genetic inactivation of MycP1 protease activity increases secretion of ESX-1 substrates. We demonstrate that EspB, an ESX-1 substrate required for secretion, is a target of MycP1 in vitro and in vivo. During macrophage infection, an inactive MycP1 protease mutant causes hyperactivation of ESX-1-stimulated innate signaling pathways. MycP1 is required for growth in mice during acute infection, while loss of its protease activity leads to attenuated virulence during chronic infection. As the key ESX-1 substrates ESAT-6 and CFP-10 are highly immunogenic, fine-tuning of their secretion by MycP1 may balance virulence and immune detection and be essential for successful maintenance of long-term M. tuberculosis infection.
Collapse
Affiliation(s)
- Yamini M Ohol
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
26
|
Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 2010; 7:32. [PMID: 20380694 PMCID: PMC2873506 DOI: 10.1186/1742-4690-7-32] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/09/2010] [Indexed: 01/09/2023] Open
Abstract
The introduction of the highly active antiretroviral therapy (HAART) has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication.
Collapse
Affiliation(s)
- Valentin Le Douce
- INSERM unit 575, Pathophysiology of Central Nervous System, Institute of Virology, rue Koeberlé, Strasbourg, France
| | | | | | | |
Collapse
|
27
|
Bergamaschi A, Pancino G. Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 2010; 7:31. [PMID: 20374633 PMCID: PMC2868797 DOI: 10.1186/1742-4690-7-31] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/07/2010] [Indexed: 11/29/2022] Open
Abstract
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France.
| | | |
Collapse
|
28
|
Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010; 92:425-44. [PMID: 20159032 PMCID: PMC7117016 DOI: 10.1016/j.biochi.2010.02.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
Abstract
STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) α, and thereafter found to be a major component of the cellular response to IFNγ. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein–Barr virus, have evolved a strategy which uses STAT1 activation.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM Unité 978, SMBH, 74 rue Marcel Cachin, Bobigny-cedex 93017, France.
| | | |
Collapse
|
29
|
Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 2009; 4:e8129. [PMID: 20019816 PMCID: PMC2790080 DOI: 10.1371/journal.pone.0008129] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/11/2009] [Indexed: 11/19/2022] Open
Abstract
Central nervous system (CNS) invasion during acute-stage HIV-infection has been demonstrated in a small number of individuals, but there is no evidence of neurological impairment at this stage and virus infection in brain appears to be controlled until late-stage disease. Using our reproducible SIV macaque model to examine the earliest stages of infection in the CNS, we identified immune responses that differentially regulate inflammation and virus replication in the brain compared to the peripheral blood and lymphoid tissues. SIV replication in brain macrophages and in brain of SIV-infected macaques was detected at 4 days post-inoculation (p.i.). This was accompanied by upregulation of innate immune responses, including IFNβ, IFNβ-induced gene MxA mRNA, and TNFα. Additionally, IL-10, the chemokine CCL2, and activation markers in macrophages, endothelial cells, and astrocytes were all increased in the brain at four days p.i. We observed synchronous control of virus replication, cytokine mRNA levels and inflammatory markers (MHC Class II, CD68 and GFAP) by 14 days p.i.; however, control failure was followed by development of CNS lesions in the brain. SIV infection was accompanied by induction of the dominant-negative isoform of C/EBPβ, which regulates SIV, CCL2, and IL6 transcription, as well as inflammatory responses in macrophages and astrocytes. This synchronous response in the CNS is in part due to the effect of the C/EBPβ on virus replication and cytokine expression in macrophage-lineage cells in contrast to CD4+ lymphocytes in peripheral blood and lymphoid tissues. Thus, we have identified a crucial period in the brain when virus replication and inflammation are controlled. As in HIV-infected individuals, though, this control is not sustained in the brain. Our results suggest that intervention with antiretroviral drugs or anti-inflammatory therapeutics with CNS penetration would sustain early control. These studies further suggest that interventions should target HIV-infected individuals with increased CCL2 levels or HIV RNA in the CNS.
Collapse
|
30
|
Bergamaschi A, David A, Le Rouzic E, Nisole S, Barré-Sinoussi F, Pancino G. The CDK inhibitor p21Cip1/WAF1 is induced by FcgammaR activation and restricts the replication of human immunodeficiency virus type 1 and related primate lentiviruses in human macrophages. J Virol 2009; 83:12253-65. [PMID: 19759136 PMCID: PMC2786717 DOI: 10.1128/jvi.01395-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/10/2009] [Indexed: 12/26/2022] Open
Abstract
Macrophages are major targets of human immunodeficiency virus type 1 (HIV-1). We have previously shown that aggregation of activating immunoglobulin G Fc receptors (FcgammaR) by immune complexes inhibits reverse transcript accumulation and integration of HIV-1 and related lentiviruses in monocyte-derived macrophages. Here, we show that FcgammaR-mediated restriction of HIV-1 is not due to enhanced degradation of incoming viral proteins or cDNA and is associated to the induction of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1) (p21). Small interfering RNA-mediated p21 knockdown rescued viral replication in FcgammaR-activated macrophages and enhanced HIV-1 infection in unstimulated macrophages by increasing reverse transcript and integrated DNA levels. p21 induction by other stimuli, such as phorbol myristate acetate and the histone deacetylase inhibitor MS-275, was also associated with preintegrative blocks of HIV-1 replication in macrophages. Binding of p21 to reverse transcription/preintegration complex-associated HIV-1 proteins was not detected in yeast two-hybrid, pulldown, or coimmunoprecipitation assays, suggesting that p21 may affect viral replication independently of a specific interaction with an HIV-1 component. Consistently, p21 silencing rescued viral replication from the FcgammaR-mediated restriction also in simian immunodeficiency virus SIV(mac)- and HIV-2-infected macrophages. Our results point to a role of p21 as an inhibitory factor of lentiviral infection in macrophages and to its implication in FcgammaR-mediated restriction.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Annie David
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Erwann Le Rouzic
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Sébastien Nisole
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Françoise Barré-Sinoussi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| |
Collapse
|
31
|
Ravimohan S, Gama L, Barber SA, Clements JE. Regulation of SIV mac 239 basal long terminal repeat activity and viral replication in macrophages: functional roles of two CCAAT/enhancer-binding protein beta sites in activation and interferon beta-mediated suppression. J Biol Chem 2009; 285:2258-73. [PMID: 19933495 DOI: 10.1074/jbc.m109.075929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) beta and C/EBP sites in the HIV-1 long terminal repeat (LTR) are crucial for HIV-1 replication in monocyte/macrophages and for the ability of interferon beta (IFN beta) to inhibit ongoing active HIV replication in these cells. This IFN beta-mediated down-regulation involves induction of the truncated, dominant-negative isoform of C/EBP beta referred to as liver-enriched transcriptional inhibitory protein (LIP). Although binding of the C/EBP beta isoform to C/EBP sites in the simian immunodeficiency virus (SIV) LTR has previously been examined, the importance of these sites in core promoter-mediated transcription, virus replication, IFN beta-mediated regulation, and the relative binding of the two isoforms (C/EBP beta and LIP) has not been investigated. Here, we specifically examine two C/EBP sites, JC1 (-100 bp) and DS1 (+134 bp), located within the minimal region of the SIV LTR, required for core promoter-mediated transcription and virus replication in macrophages. Our studies revealed that the JC1 but not DS1 C/EBP site is important for basal level transcription, whereas the DS1 C/EBP site is imperative for productive virus replication in primary macrophages. In contrast, either JC1 or DS1 C/EBP site is sufficient to mediate IFN beta-induced down-regulation of SIV LTR activity and virus replication in these cells. We also characterized the differential binding properties of C/EBP beta and LIP to the JC1 and DS1 sites. In conjunction with previous studies from our laboratory, we demonstrate the importance of these sites in virus gene expression, and we propose a model for their role in establishing latency and persistence in macrophages in the brain.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- McKusick-Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
32
|
Kaner RJ, Santiago F, Rahaghi F, Michaels E, Moore JP, Crystal RG. Adenovirus vectors block human immunodeficiency virus-1 replication in human alveolar macrophages by inhibition of the long terminal repeat. Am J Respir Cell Mol Biol 2009; 43:234-42. [PMID: 19805482 DOI: 10.1165/rcmb.2008-0063oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heterologous viruses may transactivate or suppress human immunodeficiency virus (HIV)-1 replication. An adenovirus type 5 gene transfer vector (Ad5) HIV-1 vaccine was recently evaluated in a clinical trial, without efficacy. In this context, it is relevant to ask what effect Ad vectors have on HIV-1 replication, particularly in cells that are part of the innate immune system. Infection of HIV-1-infected human alveolar macrophages (AMs) obtained from HIV-1(+) individuals with an Ad vector containing no transgene (AdNull) resulted in dose-responsive inhibition of endogenous HIV-1 replication. HIV-1 replication in normal AMs infected with HIV-1 in vitro was inhibited by AdNull with a similar dose response. Ad reduced AM HIV-1 replication up to 14 days after HIV-1 infection. Fully HIV-1-infected AMs were treated with 3'-azido-3'-deoxythymidine, after which Ad infection still inhibited HIV-1 replication, suggesting a postentry step was affected. Substantial HIV-1 DNA was still produced after Ad infection, as quantified by TaqMan real-time PCR, suggesting that the replication block occurred after reverse transcription. AdNull blocked HIV-1 long terminal repeat (LTR) transcription, as assessed by an vesicular stomatitis virus G protein pseudotyped HIV-1 LTR luciferase construct. The formation of HIV-1 DNA integrated into the host chromosome was not inhibited by Ad, as quantified by a two-step TaqMan real-time PCR assay, implying a postintegration block to HIV-1 replication. These data indicate that Ad vectors are inhibitory to HIV-1 replication in human AMs based, in part, on their ability to inhibit LTR-driven transcription.
Collapse
Affiliation(s)
- Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
33
|
González OA, Ebersole JL, Huang CB. Oral infectious diseases: a potential risk factor for HIV virus recrudescence? Oral Dis 2009; 15:313-27. [PMID: 19364391 DOI: 10.1111/j.1601-0825.2009.01533.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As the highly active antiretroviral therapy (HAART) has transitioned human immunodeficiency virus (HIV) infection into a 'chronic disease' management strategy, there is growing evidence that infection with non-HIV pathogens in HIV+ patients may have important public health implications in undermining HAART success and acquired immunodeficiency syndrome progression. Several bacterial and host cell products during infections with non-HIV pathogens have shown the capacity to regulate HIV replication in latently infected cells. A high prevalence of oral infections caused by bacteria, viruses and fungi has been described in HIV+ patients, including periodontal disease. The oral cavity appears to be a site of HIV pathogenesis and potential reservoir for the disease as HIV RNA and DNA forms are present in saliva as well as in gingival crevicular fluid, and oral epithelial cells are susceptible to either cell free or cell-associated HIV infection. The clinical and biological bases of potential associations between chronic oral inflammatory disorders, such as periodontal disease, and exacerbation of HIV viraemia have received little attention. This review attempts to evaluate the current understanding of HIV reactivation as a result of co-infection and/or inflammation induced by non-HIV pathogens in HIV-infected patients, and presents a hypothetic model about the potential role of periodontitis as a global oral infection that potentially contributes to HIV recrudescence.
Collapse
Affiliation(s)
- O A González
- Center for Oral Health Research, College of Dentistry,University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
34
|
The magnitude of interferon-gamma responses to human cytomegalovirus is predictive for HIV-1 disease progression. J Acquir Immune Defic Syndr 2009; 49:507-12. [PMID: 18989229 DOI: 10.1097/qai.0b013e318189a7af] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection has been strongly associated to HIV-1 progression. We have investigated whether the magnitude of the overall peripheral blood mononuclear cell responses to HCMV stimulation correlated with HIV-1 progression. METHODS Blood samples were collected from 75 HIV-1-positive individuals on highly active antiretroviral therapy with CD4 count>500 cells per cubic millimeter and undetectable HIV RNA just before interrupting treatment. Specific interferon-gamma (IFN-gamma) HCMV cell responses were measured by an enzyme-linked immunospot (ELISPOT) assay. The results were analyzed by Kaplan-Meier survival curves, contingency tests, and the Cox proportional hazard models to evaluate the predictive value of peripheral blood responses to HCMV and the length of time that patients were off treatment. RESULTS Patients were stratified into those with weak (<500 spot-forming units) or strong (>500 spot-forming units) IFN-gamma responses to HCMV. During the 3-year follow-up, 51% of patients with strong responses remained untreated compared with 14% of patients with weak HCMV responses (P=0.0015). Length of time without therapy was also longer in patients with stronger responses (hazard ratio=2.08; P=0.001). HCMV responses were still predictive of restarting therapy after adjusting for the CD4 nadir counts. CONCLUSION Specific IFN-gamma responses to HCMV may be employed as a predictive useful marker for the evolution of HIV-1 infection.
Collapse
|
35
|
Erythromycin derivatives inhibit HIV-1 replication in macrophages through modulation of MAPK activity to induce small isoforms of C/EBPbeta. Proc Natl Acad Sci U S A 2008; 105:12509-14. [PMID: 18719105 DOI: 10.1073/pnas.0805504105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophages (MPhis) are a major source of HIV-1 especially in patients with tuberculosis. There are MPhis that are permissive and those that restrict HIV-1. Regulation of hematopoietic cell kinase (Hck) activity and selective expression of CCAAT enhancer binding protein beta (C/EBPbeta) isoforms greatly contribute to determine distinct susceptibility of MPhis to HIV-1. Resistance is attributable to reduced expression of Hck and augmented expression of an inhibitory small isoform of C/EBPbeta. Derivatives of erythromycin A (EMA) EM201 and EM703 inhibit the replication of HIV-1 in tissue MPhis, at posttranscriptional and translational levels. We demonstrate that EM201 and EM703 convert tissue MPhis from HIV-1 susceptible to HIV-1 resistant through down-regulation of Hck and induction of small isoforms of C/EBPbeta. These drugs inhibit p38MAPK activation which is expressed only in susceptible tissue MPhis. Activated CD4(+)T cells stimulate the viral replication in HIV-1 resistant MPhis through down-regulation of small isoforms of C/EBPbeta via activation of ERK1/2. EM201 and EM703 can inhibit the MAPK activation and inhibit the burst of viral replication produced when CD4(+)T cells and MPhis interact. These EM derivatives may be highly beneficial for repression of residual HIV-1 in the lymphoreticular system of HIV-1-infected patients and offer great promise for the creation of new anti-HIV drugs for the future treatment of AIDS patients.
Collapse
|
36
|
Mohan M, Aye PP, Borda JT, Alvarez X, Lackner AA. CCAAT/enhancer binding protein beta is a major mediator of inflammation and viral replication in the gastrointestinal tract of simian immunodeficiency virus-infected rhesus macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:106-18. [PMID: 18535173 DOI: 10.2353/ajpath.2008.080108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gastrointestinal tract (GIT) is a major target of infection with human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Chronic GIT disease and inflammation are common sequelae to HIV/SIV infection. Nonetheless, the molecular mechanisms that cause and maintain GIT dysfunction remain unclear. We investigated the contribution of CCAAT/enhancer-binding protein beta (C/EBPbeta) to GIT disease and viral replication in jejunum and colon collected at necropsy from 12 SIV-infected (group 1), or 10 uninfected macaques with chronic diarrhea (group 2), and 9 uninfected control macaques (group 3). All group 1 and 2 macaques had chronic diarrhea, wasting, and colitis, but group 1 animals had more severe lesions in the jejunum. C/EBPbeta gene expression increased significantly in colon of groups 1 and 2 and in jejunum of only group 1 macaques compared with controls. In group 1 animals, CEBPbeta expression was localized predominantly to macrophages and occasionally lymphocytes. Chromatin immunoprecipitation assays confirmed the binding of C/EBPbeta and p65 to the SIV long terminal repeat region in colonic lamina propria cells, suggesting a mechanistic link between inflammation and activation of viral replication in vivo. This is the first in vivo study describing the transcriptional changes and immunophenotypic localization of C/EBPbeta in the GIT of SIV-infected macaques. More importantly, these data provide a molecular mechanism for persistent inflammation and immune activation leading to increased SIV burden and GIT pathology in SIV-infected macaques and perhaps HIV-infected individuals.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | | | | | | |
Collapse
|
37
|
Dudaronek JM, Barber SA, Clements JE. CUGBP1 is required for IFNbeta-mediated induction of dominant-negative CEBPbeta and suppression of SIV replication in macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 179:7262-9. [PMID: 18025168 DOI: 10.4049/jimmunol.179.11.7262] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Productive HIV replication in the CNS occurs very early after infection, yet HIV-associated cognitive disorders do not typically manifest until the development of AIDS, suggesting that mechanisms exist in the CNS to control HIV replication and associated virus-induced pathological changes during the acute and asymptomatic stages of disease. Using an established SIV/macaque model of HIV dementia, we recently demonstrated that the mechanisms regulating virus replication in the brain at these stages involve the production of IFNbeta, which induces the truncated, dominant-negative isoform of C/EBPbeta, also referred to as LIP (liver-enriched transcriptional inhibitory protein). Alternative translation of C/EBPbeta mRNA and increased production of LIP can be mediated by CUGBP1 (CUG-repeat RNA-binding protein 1). Because IFNbeta induces the inhibitory C/EBPbeta in macrophages, we considered the possibility that IFNbeta signaling regulates the activity of CUGBP1, resulting in increased expression of LIP and suppression of SIV replication. In this study, we report that IFNbeta induces LIP and suppresses active SIV replication in primary macrophages from rhesus macaques. Further, we demonstrate that IFNbeta induces the phosphorylation of CUGBP1 and the formation of CUGBP1-C/EBPbeta mRNA complexes in the human monocytic U937 cell line. Finally, we demonstrate that CUGBP1 is not only required for IFNbeta-mediated induction of LIP but also for IFNbeta-mediated suppression of SIV replication. These results suggest that CUGBP1 is a previously unrecognized downstream effector of IFNbeta signaling in primary macrophages that likely plays a pivotal role in innate immune responses that control acute HIV/SIV replication in the brain.
Collapse
Affiliation(s)
- Justyna M Dudaronek
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
38
|
Remoli ME, Gafa V, Giacomini E, Severa M, Lande R, Coccia EM. IFN-beta modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression. Eur J Immunol 2007; 37:3499-508. [PMID: 17985330 DOI: 10.1002/eji.200737566] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type I IFN are cytokines which play a central role in host resistance to viral or microbial infections and are important components linking innate and adaptive immunity. We and others have previously demonstrated that the production of IFN-beta by DC following bacterial infections or TLR triggering influences, in an autocrine manner, their maturation. In this study, we investigated whether IFN-beta release modulates the phenotype of the immature DC and their response to a subsequent TLR stimulation. The induction of CD86, HLA-DR, CD38 and B7H1 and the absence of CCR7 and CD83 expression upon IFN-beta treatment suggest that IFN-beta-primed DC remain at the site of infection acquiring an activated phenotype. These results prompted us to investigate the response of IFN-beta-primed DC to TLR stimulation. While IFN-beta pretreatment increases slightly the expression of maturation markers in TLR2- or TLR4-stimulated DC, it is able to modulate selectively the secretion of inflammatory and immuno-regulating cytokines. Interestingly, IL-27p28 subunit was induced by IFN-beta alone or during LPS-induced maturation of DC in a type I IFN-dependent manner through IFN regulatory factor-1 (IRF-1) activation. Taken together, our results shed light on the capacity of IFN-beta to finely tune DC response to invading pathogens.
Collapse
Affiliation(s)
- Maria Elena Remoli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Gold JA, Hoshino Y, Jones MB, Hoshino S, Nolan A, Weiden MD. Exogenous interferon-alpha and interferon-gamma increase lethality of murine inhalational anthrax. PLoS One 2007; 2:e736. [PMID: 17710136 PMCID: PMC1937023 DOI: 10.1371/journal.pone.0000736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 07/16/2007] [Indexed: 01/14/2023] Open
Abstract
Background Bacillus anthracis, the etiologic agent of inhalational anthrax, is a facultative intracellular pathogen. Despite appropriate antimicrobial therapy, the mortality from inhalational anthrax approaches 45%, underscoring the need for better adjuvant therapies. The variable latency between exposure and development of disease suggests an important role for the host's innate immune response. Type I and Type II Interferons (IFN) are prominent members of the host innate immune response and are required for control of intracellular pathogens. We have previously described a protective role for exogenous Type I and Type II IFNs in attenuating intracellular B.anthracis germination and macrophage cell death in vitro. Methodology and Principal Findings We sought to extend these findings in an in vivo model of inhalational anthrax, utilizing the Sterne strain (34F2) of B.anthracis. Mice devoid of STAT1, a component of IFN-α and IFN-γ signaling, had a trend towards increased mortality, bacterial germination and extrapulmonary spread of B.anthracis at 24 hrs. This was associated with impaired IL-6, IL-10 and IL-12 production. However, administration of exogenous IFN-γ, and to a lesser extent IFN-α, at the time of infection, markedly increased lethality. While IFNs were able to reduce the fraction of germinated spores within the lung, they increased both the local and systemic inflammatory response manifest by increases in IL-12 and reductions in IL-10. This was associated with an increase in extrapulmonary dissemination. The mechanism of IFN mediated inflammation appears to be in part due to STAT1 independent signaling. Conclusions In conclusion, while endogenous IFNs are essential for control of B.anthracis germination and lethality, administration of exogenous IFNs appear to increase the local inflammatory response, thereby increasing mortality.
Collapse
Affiliation(s)
- Jeffrey A Gold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon, United States of America.
| | | | | | | | | | | |
Collapse
|
40
|
Severa M, Remoli ME, Giacomini E, Annibali V, Gafa V, Lande R, Tomai M, Salvetti M, Coccia EM. Sensitization to TLR7 agonist in IFN-beta-preactivated dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6208-16. [PMID: 17475848 DOI: 10.4049/jimmunol.178.10.6208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TLRs interact with a growing list of pathogen-derived products and these interactions drive the activation of innate and adaptive immune responses. Dendritic cells (DC) play a key role in these events expressing a heterogeneous repertoire of TLRs. We have previously demonstrated the production of type I IFNs in DC following bacterial infections and TLR triggering. In this study, we sought to characterize the transcriptome specifically induced in human DC by IFN-beta production stimulated upon LPS treatment. To this aim, by using cDNA microarrays, we compared the transcriptome of DC following LPS treatment in the absence or presence of neutralizing anti-type I IFN Abs. Interestingly, we found that the expression of TLR7 was induced during LPS-induced maturation of DC in a type I IFN-dependent manner. The induction of TLR7 in maturing DC was mainly a consequence of the transcriptional activity of IRF-1, whose binding site was located within TLR7 promoter. Moreover, we also demonstrated that "priming" of immature DC, that usually express TLR8 but not TLR7, with exogenous IFN-beta induced a functionally active TLR7. In fact, treatment with the TLR7-specific ligand 3M-001 up-regulated the expression of CD83, CD86, and CD38 in IFN-beta-primed DC but not in immature DC. Therefore, a robust enhancement in proinflammatory as well as regulatory cytokines was observed. These data suggest that TLR4-mediated type I IFN release activates specific transcription programs in DC amplifying the expression of pathogen sensors to correctly and combinatorially respond to a bacterial as well as viral infection.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious, Parasitic, and Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Horiba M, Martinez LB, Buescher JL, Sato S, Limoges J, Jiang Y, Jones C, Ikezu T. OTK18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Virol 2007; 88:236-241. [PMID: 17170456 PMCID: PMC3229096 DOI: 10.1099/vir.0.82066-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has previously been shown by our laboratory that OTK18, a human immunodeficiency virus (HIV)-inducible zinc-finger protein, reduces progeny-virion production in infected human macrophages. OTK18 antiviral activity is mediated through suppression of Tat-induced HIV-1 long terminal repeat (LTR) promoter activity. Through the use of LTR-scanning mutant vectors, the specific regions responsible for OTK18-mediated LTR suppression have been defined. Two different LTR regions were identified as potential OTK18-binding sites by an enhanced DNA-transcription factor ELISA system; the negative-regulatory element (NRE) at -255/-238 and the Ets-binding site (EBS) at -150/-139 in the LTR. In addition, deletion of the EBS in the LTR blocked OTK18-mediated LTR suppression. These data indicate that OTK18 suppresses LTR activity through two distinct regulatory elements. Spontaneous mutations in these regions might enable HIV-1 to escape from OTK18 antiretroviral activity in human macrophages.
Collapse
Affiliation(s)
- Masahide Horiba
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Lindsey B. Martinez
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - James L. Buescher
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Shinji Sato
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Jenae Limoges
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| | - Yunquan Jiang
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln NE 68583-0905
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln NE 68583-0905
| | - Tsuneya Ikezu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880
| |
Collapse
|
42
|
Stanley SA, Johndrow JE, Manzanillo P, Cox JS. The Type I IFN Response to Infection with Mycobacterium tuberculosis Requires ESX-1-Mediated Secretion and Contributes to Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:3143-52. [PMID: 17312162 DOI: 10.4049/jimmunol.178.5.3143] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ESX-1 secretion system is a major determinant of Mycobacterium tuberculosis virulence, although the pathogenic mechanisms resulting from ESX-1-mediated transport remain unclear. By global transcriptional profiling of tissues from mice infected with either wild-type or ESX-1 mutant bacilli, we found that host genes controlled by ESX-1 in vivo are predominantly IFN regulated. ESX-1-mediated secretion is required for the production of host type I IFNs during infection in vivo and in macrophages in vitro. The macrophage signaling pathway leading to the production of type I IFN required the host kinase TANK-binding kinase 1 and occurs independently of TLR signaling. Importantly, the induction of type I IFNs during M. tuberculosis infection is a pathogenic mechanism as mice lacking the type I IFNR were more restrictive for bacterial growth in the spleen than wild-type mice, although growth in the lung was unaffected. We propose that the ESX-1 secretion system secretes effectors into the cytosol of infected macrophages, thereby triggering the type I IFN response for the manipulation of host immunity.
Collapse
Affiliation(s)
- Sarah A Stanley
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Cheeran MCJ, Hu S, Ni HT, Sheng W, Palmquist JM, Peterson PK, Lokensgard JR. Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways. J Neurosci Res 2006; 82:839-50. [PMID: 16273540 DOI: 10.1002/jnr.20682] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytomegalovirus (CMV) is a major cause of congenital brain disease, and its neuropathogenesis may be related to viral infection of rapidly dividing, susceptible neural precursor cells (NPCs). In the present study, we evaluated the susceptibility of human fetal brain-derived NPCs (nestin(+), A2B5(+), CD133(+)) to infection with CMV. Data derived from these studies demonstrated that undifferentiated NPCs supported productive viral replication. After differentiation in the presence of serum, a treatment that promotes development of an astroglial cell phenotype (GFAP(+), nestin(-), A2B5(-)), viral expression was retained. However, differentiation of NPCs in medium containing platelet-derived growth factor and brain-derived neurotropic factor, conditions that support the development of neurons (Tuj-1(+), nestin(-), A2B5(-)), resulted in reduced viral expression, with corresponding decreased CMV major immediate-early promoter (MIEP) activity relative to undifferentiated cells. Further experiments showed that cellular differentiation into a neuronal phenotype was associated with elevated levels of various CCAAT/enhancer binding protein beta (C/EBP)-beta isoforms, which suppressed MIEP activity in cotransfected NPCs. Taken together, these data demonstrate that the susceptibility of primary human NPCs to CMV is retained concomitantly with differentiation into glial cells but is actively repressed following differentiation into neurons.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, 55455, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Shin HH, Lee EA, Kim SJ, Kwon BS, Choi HS. A signal through 4-1BB ligand inhibits receptor for activation of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis by increasing interferon (IFN)-beta production. FEBS Lett 2006; 580:1601-6. [PMID: 16480981 DOI: 10.1016/j.febslet.2006.01.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 01/21/2006] [Accepted: 01/25/2006] [Indexed: 11/24/2022]
Abstract
We tested whether any intracellular signals are transmitted through 4-1BB/CD137 ligand (4-1BBL), using a 4-1BB-Fc fusion protein and 4-1BB-deficient mice. Immobilized 4-1BB-Fc fusion protein strongly inhibited osteoclastogenesis induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappaB ligand (RANKL) derived from bone marrow macrophages (BMM). Incubation of BMM with M-CSF increased 4-1BBL mRNA and surface expression of 4-1BBL protein. Cross-linking 4-1BBL with immobilized 4-1BB-Fc also dramatically reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) derived from the BMM from 4-1BB-deficient mice, suggesting that the inhibitory effect of immobilized 4-1BB on osteoclastogenesis is due to a signal through 4-1BBL. Reverse signaling by 4-1BB-Fc increased the level of interferon (IFN)-beta in BMM and neutralization of IFN-beta reversed the inhibitory effect of immobilized 4-1BB-Fc. Inhibition of osteoclastogenesis by immobilized 4-1BB-Fc is, therefore, at least in part, due to elevation of the level of the negative regulator, IFN-beta in BMM.
Collapse
Affiliation(s)
- Hyun-Hee Shin
- Department of Biological Sciences and Immunomodulation Research Center, University of Ulsan, Ulsan 680-749, Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Singh A, Singh Y, Pine R, Shi L, Chandra R, Drlica K. Protein kinase I of Mycobacterium tuberculosis: Cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinb) 2006; 86:28-33. [PMID: 16256441 DOI: 10.1016/j.tube.2005.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2005] [Indexed: 11/30/2022]
Abstract
Protein kinase I of Mycobacterium tuberculosis, which has an unusual amino acid composition in its catalytic loop, displayed autophosphorylation and transphosphorylation activity. Immunoblot analysis of sub-cellular fractions of M. tuberculosis, using anti-PknI antibodies raised in rabbits, showed that PknI localizes to the bacterial cytosol. In contrast, PknA was membrane-bound. Relative expression of pknI, when measured by combining molecular beacons and RT-PCR, decreased during infection of THP-1 human macrophages. Expression of pknA and pknB was upregulated during infection. Thus PknI represents a group of protein kinases that is distinct from the more extensively studied enzymes PknA and PknB.
Collapse
Affiliation(s)
- Anubha Singh
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nolan A, Weiden MD, Thurston G, Gold JA. Vascular endothelial growth factor blockade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation 2005; 28:271-8. [PMID: 16134000 PMCID: PMC3417046 DOI: 10.1007/s10753-004-6050-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous cytokines, including vascular endothelial growth factor (VEGF), are implicated in the pathogenesis of sepsis. While overexpression of VEGF produces pulmonary capillary leak, the role of VEGF in sepsis is less clear. We investigated VEGF in sepsis, utilizing a VEGF trap (VEGF(T)). Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP) and resulted in significantly increased plasma VEGF levels (234 vs. 46 pg/mL; p = 0.03). Inhibition of VEGF had no effect on mortality or lung leak but did attenuate plasma IL-6 (120 vs. 236 ng/mL; p = 0.02) and IL-10 (16 vs. 41 ng/mL; p = 0.03). These alterations in inflammatory cytokines were associated with increased levels of the dominant negative inhibitory C/EBPbeta. In vitro, VEGF stimulated IL-6, IL-10 and reduced the inhibitory isoform of C/EBPbeta in cultured macrophages. Together these data suggest VEGF can regulate inflammatory cytokine production in murine polymicrobial sepsis, via regulation of C/EBPbeta.
Collapse
Affiliation(s)
- Anna Nolan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine. New York
| | - Michael D. Weiden
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine. New York
| | | | - Jeffrey A. Gold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine. New York
- To whom correspondence should be addressed at Division of Pulmonary/Critical Care Medicine, New York University School of Medicine, 27th St and 1st Avenue, New Bellevue Hospital Room 7N24, New York.
| |
Collapse
|
48
|
Tanaka N, Hoshino Y, Gold J, Hoshino S, Martiniuk F, Kurata T, Pine R, Levy D, Rom WN, Weiden M. Interleukin-10 induces inhibitory C/EBPbeta through STAT-3 and represses HIV-1 transcription in macrophages. Am J Respir Cell Mol Biol 2005; 33:406-11. [PMID: 16014896 PMCID: PMC2715348 DOI: 10.1165/rcmb.2005-0140oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary tuberculosis (TB) has been characterized by inflammation with increased pro- or anti-inflammatory cytokines produced by macrophages. We have reported that IFN produces inhibitory C/EBPbeta and represses transcription of the HIV-1 LTR in macrophages. STAT-1 and type I IFN receptor knockout mice have macrophages that are defective in IFN signaling, yet LPS stimulation induces inhibitory C/EBPbeta, demonstrating that other cytokines can induce this repressor. LPS or Mycobacterium tuberculosis-derived lipoarabinomannan induce the anti-inflammatory cytokine interleukin (IL)-10, which represses the HIV-1 LTR in differentiated THP-1 macrophages by inducing inhibitory C/EBPbeta. In contrast, in undifferentiated THP-1 monocytes, IL-10 did not inhibit HIV-1 replication or induce C/EBPbeta. IL-10 signal transduction uses STAT-3, and macrophages from STAT-3-/- mice fail to produce inhibitory C/EBPbeta after LPS or IL-10 stimulation. Transfection of STAT-3 into THP-1 cells enhances C/EBPbeta promoter activity. THP-1 differentiation also increases STAT-3 protein, but not STAT-3 gene transcription, and induces a translational regulator, CUG-binding protein, that was essential for production of C/EBPbeta. Differentiation induced post-transcriptional regulation is required to produce inhibitory C/EBPbeta in response to IL-10. Only macrophages are able to repress HIV-1 LTR promoter activity and inhibit viral replication in response to IL-10 or type I IFN.
Collapse
Affiliation(s)
- Naohiko Tanaka
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, N.Y.U. School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Res 2005; 15:407-22. [PMID: 15987599 DOI: 10.1038/sj.cr.7290309] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFN) are well studied cytokines with anti-viral and immune-modulating functions. Type I IFNs are produced following viral infections, but until recently, the mechanisms of viral recognition leading to IFN production were largely unknown. Toll like receptors (TLRs) have emerged as key transducers of type I IFN during viral infections by recognizing various viral components. Furthermore, much progress has been made in defining the signaling pathways downstream of TLRs for type I IFN production. TLR7 and TLR9 have become apparent as universally important in inducing type I IFN during infection with most viruses, particularly by plasmacytoid dendritic cells. New intracellular viral pattern recognition receptors leading to type I IFN production have been identified. Many bacteria can also induce the up-regulation of these cytokines. Interestingly, recent studies have found a detrimental effect on host cells if type I IFN is produced during infection with the intracellular gram-positive bacterial pathogen, Listeria monocytogenes. This review will discuss the recent advances made in defining the signaling pathways leading to type I IFN production.
Collapse
Affiliation(s)
- Andrea K Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Alfano M, Poli G. Role of cytokines and chemokines in the regulation of innate immunity and HIV infection. Mol Immunol 2005; 42:161-82. [PMID: 15488606 DOI: 10.1016/j.molimm.2004.06.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The earliest defense against microbial infection is represented by the responses of the innate (or natural) immune system, that also profoundly regulates the adaptive (or acquired) T- and B-cell immune responses. Activation of the innate immune system is primed by microbial invasion in response to conserved structures present in large groups of microorganisms (LPS, peptidoglycan, double-stranded RNA), and is finely tuned by different cell types (including dendritic cells, macrophages, natural killer cells, natural killer T cells, and gammadelta T cells). In addition, several soluble factors (complement components, defensins, mannose-binding lectins, interferons, cytokines and chemokines) can play a major role in the regulation of both the innate and adaptive immunity. In this review, we will briefly overview the regulation of some cellular subsets of the innate immune system particularly involved in human immunodeficiency virus (HIV) infection and then focus our attention on those cytokines and chemokines whose levels of expression are more profoundly affected by HIV infection and that, conversely, can modulate virus infection and replication.
Collapse
Affiliation(s)
- Massimo Alfano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, P2-P3 Laboratories, DIBIT, Via Olgettina no. 58, 20132 Milano, Italy
| | | |
Collapse
|