1
|
Feldhahn N, Arutyunyan A, Stoddart S, Zhang B, Schmidhuber S, Yi SJ, Kim YM, Groffen J, Heisterkamp N. Environment-mediated drug resistance in Bcr/Abl-positive acute lymphoblastic leukemia. Oncoimmunology 2021; 1:618-629. [PMID: 22934254 PMCID: PMC3429566 DOI: 10.4161/onci.20249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although cure rates for acute lymphoblastic leukemia (ALL) have increased, development of resistance to drugs and patient relapse are common. The environment in which the leukemia cells are present during the drug treatment is known to provide significant survival benefit. Here, we have modeled this process by culturing murine Bcr/Abl-positive acute lymphoblastic leukemia cells in the presence of stroma while treating them with a moderate dose of two unrelated drugs, the farnesyltransferase inhibitor lonafarnib and the tyrosine kinase inhibitor nilotinib. This results in an initial large reduction in cell viability of the culture and inhibition of cell proliferation. However, after a number of days, cell death ceases and the culture becomes drug-tolerant, enabling cell division to resume. Using gene expression profiling, we found that the development of drug resistance was accompanied by massive transcriptional upregulation of genes that are associated with general inflammatory responses such as the metalloproteinase MMP9. MMP9 protein levels and enzymatic activity were also increased in ALL cells that had become nilotinib-tolerant. Activation of p38, Akt and Erk correlated with the development of environment-mediated drug resistance (EMDR), and inhibitors of Akt and Erk in combination with nilotinib reduced the ability of the cells to develop resistance. However, inhibition of p38 promoted increased resistance to nilotinib. We conclude that development of EMDR by ALL cells involves changes in numerous intracellular pathways. Development of tolerance to drugs such as nilotinib may therefore be circumvented by simultaneous treatment with other drugs having divergent targets.
Collapse
Affiliation(s)
- Niklas Feldhahn
- Section of Molecular Carcinogenesis; Division of Hematology/Oncology and The Saban Research Institute of Children's Hospital; Los Angeles, CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhou H, Li N, Yuan Y, Jin YG, Wu Q, Yan L, Bian ZY, Deng W, Shen DF, Li H, Tang QZ. Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-κB pathway. J Mol Med (Berl) 2020; 98:691-705. [PMID: 32280997 DOI: 10.1007/s00109-020-01896-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is a complex pathological process, and the molecular mechanisms underlying hypertrophic remodeling have not been clearly elucidated. Leukocyte immunoglobulin-like receptor B4 (lilrb4) is an inhibitory transmembrane protein that is necessary for the regulation of various cellular signaling pathways. To investigate whether lilrb4 plays a role in cardiac hypertrophy, we performed aortic banding in lilrb4 knockout mice, lilrb4 cardiac-specific transgenic mice, and their wild-type littermates. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. We found that lilrb4 was expressed both in myocardial tissue and on cultured cardiomyocytes under basal conditions, but the expression was obviously decreased in mouse hearts following aortic banding and in cardiomyocytes treated with angiotensin II. Lilrb4 disruption aggravated cardiac hypertrophy, fibrosis, and dysfunction in response to pressure overload. Conversely, the cardiac overexpression of lilrb4 led to the opposite effects. Moreover, lilrb4 overexpression inhibited angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we determined that the cardioprotective effect of lilrb4 was mediated through an interaction with SHP-2, the preservation of phosphorylated SHP-2, and the inhibition of the NF-κB pathway. In addition, SHP-2 knockdown in cardiomyocytes eliminated the inhibitory effects of lilrb4 on angiotensin II-induced hypertrophy and NF-κB activation. Our results suggest that lilrb4 protects against pathological cardiac hypertrophy via the SHP-2-dependent inhibition of the NF-κB pathway and may act as a potential therapeutic target for cardiac hypertrophy. KEY MESSAGES: Lilrb4 expression is decreased by hypertrophic stimuli. Lilrb4 protects against pathological cardiac hypertrophy. Lilrb4 interacts with SHP-2 and inhibits NF-κB pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
3
|
Wong YL, Su MT, Sugahara-Tobinai A, Itoi S, Kezuka D, Endo S, Inui M, Takai T. Gp49B is a pathogenic marker for auto-antibody-producing plasma cells in lupus-prone BXSB/Yaa mice. Int Immunol 2019; 31:397-406. [DOI: 10.1093/intimm/dxz017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yi Li Wong
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akiko Sugahara-Tobinai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - So Itoi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Dai Kezuka
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, Qin X, Zhong J, Li X, Li Y, Sun X, Chen L, Jiang Y. High-Throughput Sequencing and Co-Expression Network Analysis of lncRNAs and mRNAs in Early Brain Injury Following Experimental Subarachnoid Haemorrhage. Sci Rep 2017; 7:46577. [PMID: 28417961 PMCID: PMC5394545 DOI: 10.1038/srep46577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a fatal neurovascular disease following cerebral aneurysm rupture with high morbidity and mortality rates. Long non-coding RNAs (lncRNAs) are a type of mammalian genome transcript, are abundantly expressed in the brain and are involved in many nervous system diseases. However, little is currently known regarding the influence of lncRNAs in early brain injury (EBI) after SAH. This study analysed the expression profiles of lncRNAs and mRNAs in SAH brain tissues of mice using high-throughput sequencing. The results showed a remarkable difference in lncRNA and mRNA transcripts between SAH and control brains. Approximately 617 lncRNA transcripts and 441 mRNA transcripts were aberrantly expressed at 24 hours after SAH. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the differentially expressed mRNAs were mostly involved in inflammation. Based on the lncRNA/mRNA co-expression network, knockdown of fantom3_F730004F19 reduced the mRNA and protein levels of CD14 and toll-like receptor 4 (TLR4) and attenuated inflammation in BV-2 microglia cells. These results indicate that lncRNA fantom3_F730004F19 may be associated with microglia induced inflammation via the TLR signaling pathway in EBI following SAH. LncRNA represent a potential therapeutic target for the prognosis, diagnosis, and treatment of SAH.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Kuai
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Cao
- Department of Neurovascular Disease, the Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xinghu Qin
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, People’s Hospital of Deyang City, Deyang, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinshen Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Oghumu S, Terrazas CA, Varikuti S, Kimble J, Vadia S, Yu L, Seveau S, Satoskar AR. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. FASEB J 2014; 29:1019-28. [PMID: 25466888 DOI: 10.1096/fj.14-264507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innate CD8(+) T cells are a heterogeneous population with developmental pathways distinct from conventional CD8(+) T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8(+) T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3(+) innate CD8(+) T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ(-/-) mice compared with similarly activated CXCR3(-) subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3(+) cells. Further, CXCR3(+) innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3(+) subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3(+) populations. Our results demonstrate that CXCR3 expression in innate CD8(+) T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3(+) innate CD8(+) T-cell populations as novel clinical intervention strategies.
Collapse
Affiliation(s)
- Steve Oghumu
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Cesar A Terrazas
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Sanjay Varikuti
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer Kimble
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Stephen Vadia
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Lianbo Yu
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie Seveau
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Abhay R Satoskar
- *Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio, USA; and Department of Microbiology, Center for Biostatistics, and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Philips ST, Hildenbrand ZL, Oravecz-Wilson KI, Foley SB, Mgbemena VE, Ross TS. Toward a therapeutic reduction of imatinib refractory myeloproliferative neoplasm-initiating cells. Oncogene 2013; 33:5379-90. [PMID: 24240679 PMCID: PMC4025985 DOI: 10.1038/onc.2013.484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/27/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022]
Abstract
Myeloproliferative neoplasms (MPNs) such as chronic myelogenous (CML) and chronic myelomonocytic leukemias (CMML) are frequently induced by tyrosine kinase oncogenes. Although these MPNs are sensitive to tyrosine kinase inhibitors such as imatinib, patients often relapse upon withdrawal of therapy. We used a model of MPN, which is induced by co-expression of the oncoproteins HIP1/PDGFβR (H/P) and AML1/ETO (A/E) from their endogenous loci, to examine the mechanisms of disease development and recurrence following imatinib withdrawal. Although the MPN displayed a full hematologic response to imatinib, 100% of the diseased mice relapsed upon drug withdrawal. MPN persistence was not due to imatinib resistance mutations in the H/P oncogene or massive gene expression changes. Within one week of imatinib treatment, more than 98% of gene expression changes induced by the oncogenes in isolated hematopoietic stem and progenitor cells (LSKs) normalized. Supplementation of imatinib with G-CSF or arsenic trioxide reduced MPN-initiating cell frequencies and the combination of imatinib with arsenic trioxide cured a large fraction of mice with MPNs. In contrast, no mice in the imatinib-treated control cohorts were cured. These data suggest that treatment with a combination of arsenic trioxide and imatinib can eliminate refractory MPN-initiating cells and reduce disease relapse.
Collapse
Affiliation(s)
- S T Philips
- Division of Hematology/Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Z L Hildenbrand
- Division of Hematology/Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | | | - S B Foley
- Division of Hematology/Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - V E Mgbemena
- Division of Hematology/Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - T S Ross
- Division of Hematology/Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX, USA
| |
Collapse
|
7
|
Alam MS, Getz M, Safeukui I, Yi S, Tamez P, Shin J, Velázquez P, Haldar K. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder. PLoS One 2012; 7:e48273. [PMID: 23094108 PMCID: PMC3477142 DOI: 10.1371/journal.pone.0048273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1−/− mice relative to Npc1+/− at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher’s disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1−/− as well as Balb/c Npc1nmf164 mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1−/− mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1−/− spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto not associated with NPC) suggests their role in pathophysiology and disease exacerbation.
Collapse
Affiliation(s)
- Md. Suhail Alam
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michelle Getz
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Innocent Safeukui
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sue Yi
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pamela Tamez
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jenny Shin
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Peter Velázquez
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Kasturi Haldar
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kasai S, Inui M, Nakamura K, Kakizaki Y, Endo S, Nakamura A, Ito S, Takai T. A novel regulatory role of gp49B on dendritic cells in T-cell priming. Eur J Immunol 2008; 38:2426-37. [PMID: 18792399 DOI: 10.1002/eji.200737550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dendritic cells (DC) play pivotal roles in the induction and regulation of both innate and acquired immunity. DC express several cell-surface immune inhibitory receptors. However, little is known about their potential immunoregulatory functions in the context of T-cell activation. Here we report that murine gp49B, a member of the immunoglobulin superfamily, harboring immunoreceptor tyrosine-based inhibitory motifs, is expressed on DC and downregulates cellular activity to prevent the excessive activation of T cells in vitro and in vivo. Bone marrow-derived DC (BMDC) from newly generated gp49B-deficient (gp49B(-/-)) mice induced enhanced proliferation and IL-2 release of antigen-specific CD4(+) and CD8(+) T cells compared with BMDC from wild-type mice, in a cell-cell contact manner. The enhanced proliferation by gp49B(-/-) BMDC was also observed in allogeneic CD4(+) and CD8(+) T cells. Moreover, the transfer of allogeneic BALB/c splenocytes into C57BL/6 gp49B(-/-) mice induced severe acute graft-versus-host disease with an augmented upregulation of CD86 on CD11c(+) splenic gp49B(-/-) DC, while transfer of C57BL/6 gp49B(-/-) splenocytes into BALB/c mice did not, suggesting the exacerbation of the disease was due, at least in part, to augmented activation of recipient gp49B(-/-) DC. These findings demonstrate a novel regulatory role of gp49B in the function of DC.
Collapse
Affiliation(s)
- Satoshi Kasai
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hoelsbrekken SE, Fossum S, Dissen E. Molecular cloning of LILRC1 and LILRC2 in the mouse and the rat, two novel immunoglobulin-like receptors encoded by the leukocyte receptor gene complex. Immunogenetics 2005; 57:479-86. [PMID: 16041585 DOI: 10.1007/s00251-005-0014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
We report the molecular cloning of two novel single-member receptor families with homology to LILR/CD85, PIR, and gp49: LILRC1 in the rat and the mouse, and LILRC2 in the rat. LILRC1 and LILRC2 both have two extracellular Ig-like domains and a cytoplasmic tail devoid of any known signaling motifs. The transmembrane regions of LILRC1 and LILRC2 contain an arginine residue, a common feature in receptors that associate with activating adaptor proteins. Rat and mouse LILRC1 are orthologs sharing 81.5% amino acid identity. LILRC2 represents a distinct receptor family, 47.9% identical to LILRC1. No murine LILRC2 ortholog was detected in genome or expressed sequence tag sequence databases. By radiation hybrid mapping, the rat Lilrc1 and Lilrc2 loci were localized to the leukocyte receptor gene complex (LRC) on chromosome 1, and the mouse Lilrc1 locus was mapped to the LRC on chromosome 7. Moreover, the mouse and rat Lilrc1 loci were localized to similar positions within the LRC. As shown by RT-PCR, rat LILRC1 was expressed by B cells, neutrophils, and a macrophage cell line. Transcription of LILRC2 was detected in T cells, B cells, neutrophils, and macrophages.
Collapse
|
10
|
Cook DN, Wang S, Wang Y, Howles GP, Whitehead GS, Berman KG, Church TD, Frank BC, Gaspard RM, Yu Y, Quackenbush J, Schwartz DA. Genetic regulation of endotoxin-induced airway disease. Genomics 2005; 83:961-9. [PMID: 15177550 DOI: 10.1016/j.ygeno.2003.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Indexed: 11/26/2022]
Abstract
To identify novel genes regulating the biologic response to lipopolysaccharide (LPS), we used a combination of quantitative trait locus (QTL) analysis and microarray-based gene expression studies of C57BL/6J x DBA/2J(BXD) F2 and recombinant inbred (RI) mice. A QTL affecting pulmonary TNF-alpha production was identified on chromosome 2, and a region affecting both polymorphonuclear leukocyte recruitment and TNF-alpha levels was identified on chromosome 11. Microarray analyses of unchallenged and LPS-challenged BXD RI strains identified approximately 500 genes whose expression was significantly changed by inhalation of LPS. Of these genes, 28 reside within the chromosomal regions identified by the QTL analyses, implicating these genes as high priority candidates for functional studies. Additional high priority candidate genes were identified based on their differential expression in mice having high and low responses to LPS. Functional studies of these genes are expected to reveal important molecular mechanisms regulating the magnitude of biologic responses to LPS.
Collapse
Affiliation(s)
- Donald N Cook
- Department of Medicine, Duke University Medical Center, P.O. Box 2629, and the Durham VAMC, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The paired immunoglobulin (Ig)-like receptors (PIRs) represent a typical receptor pair of the Ig-like receptor family in which various combinations of ligand-receptor interaction provide a positive and negative regulation of immune cells, thus enabling those cells to respond properly to extrinsic stimuli. Activating PIR-A and inhibitory PIR-B are expressed in a wide range of cells in the murine immune system, such as B cells, mast cells, macrophages, and dendritic cells, mostly in a pair-wise fashion. PIRs bind to MHC class I molecules expressed ubiquitously on hematopoietic as well as nonhematopoietic cells. The unbalanced binding of PIR-A and PIR-B to MHC class I molecules may lead to the perturbation of cell development, regulation, and function as observed in PIR-B-deficient mice. Thus, PIR-A and PIR-B are indispensable for the regulation of cellular signaling and important for homeostasis of the immune system.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of the Japan Science and Technology Agency, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
12
|
|
13
|
Hedtjärn M, Mallard C, Hagberg H. Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 2004; 24:1333-51. [PMID: 15625408 DOI: 10.1097/01.wcb.0000141559.17620.36] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain ischemia triggers an inflammatory reaction that progresses for days to weeks and seems to have a role in secondary progression of injury. Inflammation induces a complex pattern of signaling molecules with partly contradictory actions, and the responses may be different in the immature and adult brain. The authors characterized the global inflammatory gene expression in the developing brain as a first step toward understanding the protective and deleterious effects of inflammation after hypoxia-ischemia. Oligonucleotide arrays were used to investigate inflammatory genes in cortex, hippocampus, thalamus, and striatum at 2, 8, 24, and 72 hours after hypoxia-ischemia, which was induced in 9-day-old mice by left carotid artery ligation followed by hypoxia. After hypoxia-ischemia, 148 inflammatory genes were differentially expressed. More than 97% of the genes were upregulated and 93% had not previously been reported after hypoxia-ischemia in the immature brain. The results indicate that microglia/macrophages, T- and B-cells, NK-cells, mast cells, dendritic cells, and polymorphonuclear leukocytes may participate in the response to hypoxia-ischemia. In addition, novel cytokines/chemokines, complement-related, interferon-regulated, components of the TIR/nuclear factor-kappaB pathway, and a number of immunomodulatory genes were induced. Several of these genes may of pathophysiologic significance after neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Maj Hedtjärn
- Department of Physiology, Perinatal Center, Göteborg, University, Göteborg, Sweden.
| | | | | |
Collapse
|
14
|
Gu X, Laouar A, Wan J, Daheshia M, Lieberman J, Yokoyama WM, Katz HR, Manjunath N. The gp49B1 inhibitory receptor regulates the IFN-gamma responses of T cells and NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4095-101. [PMID: 12682239 DOI: 10.4049/jimmunol.170.8.4095] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The magnitude and diversity of Ag-specific T cell effector activity have been proposed to be controlled by an integration of positive signals transduced by the TCR and negative signals originating from inhibitory cell surface molecules. Although the lectin family of NK cell-associated inhibitory receptors has been reported to regulate the function of murine CTLs, gp49B1, the Ig superfamily member is not known to be expressed on T cells. Moreover, the consequences of the lack of an endogenously expressed NK cell-associated inhibitory receptor on T cell functions are not known. We report that gp49B1 is expressed by nearly all activated CD8 and CD4 T cells in addition to NK cells during an immune response to viral, bacterial, or tumor challenge. Kinetics of gp49B1 expression parallel functional capability and subside in the memory phase. Following vaccinia viral infection, IFN-gamma production by both subsets of T cells and NK cells is enhanced in gp49B1-deficient mice compared with gp49B1(+/+) mice. The stimulation threshold for IFN-gamma production is also lower in gp49B1-deficient T cells. In contrast, no significant differences were observed in the cytotoxic responses. We conclude that gp49B1 is a unique inhibitory receptor that is induced in multiple lineages of innate and adaptive immune cells during an infection and controls their IFN-gamma, but not cytotoxic responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cytotoxicity Tests, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Immunologic Memory/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Listeria monocytogenes/immunology
- Lymphocyte Activation/genetics
- Male
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Sarcoma, Experimental/genetics
- Sarcoma, Experimental/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Tumor Cells, Cultured
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Xiaogang Gu
- Center for Blood Research and. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Welch AY, Kasahara M, Spain LM. Identification of the mouse killer immunoglobulin-like receptor-like (Kirl) gene family mapping to chromosome X. Immunogenetics 2003; 54:782-90. [PMID: 12618911 DOI: 10.1007/s00251-002-0529-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 11/13/2002] [Indexed: 10/25/2022]
Abstract
Natural killer (NK) inhibitory receptors, which recognize major histocompatability complex (MHC) proteins in humans, are known as killer Ig-like receptors (KIRs) and are encoded by a multi-gene immunoglobulin (Ig) superfamily. In a screen for genes differentially expressed in the mouse thymus, we discovered the first close rodent homologue of the NK receptor KIR family, which we named KIR- Like (Kirl). KIRL1 shares 40% amino acid identity with primate KIR family members, with the majority of the homology contained within the Ig-like ectodomains. KIRL1 is more similar to the KIRs than to any other known member of the Ig domain-containing leukocyte receptor superfamily. This highly significant homology suggests that the KIR family did not arise independently in primates, as has been previously suggested, but rather evolved from a primordial gene already present in the common rodent/primate ancestor. KIRL1 lacks the cytoplasmic protein motifs that mediate inhibition in KIRs (immunoregulatory tyrosine inhibiting motif, ITIM); KIRL1 also lacks the transmembrane activation signature (a conserved K residue involved in association with the immunoregulatory tyrosine activating motif-containing DAP12 molecule) found in some KIRs. Nevertheless, we hypothesize that Kirl1 is functional, for the following reasons: (1) Kirl1 mRNA is expressed at high levels in immature thymocytes; (2) Kirl1 is regulated during thymocyte development; (3) KIRL1 protein is detected in thymus. We also show that the mouse genome contains a closely related, transcribed gene, which we name Kirl2. Kirl2 encodes a KIR-like molecule with three Ig-like domains and also lacks tyrosine-based immunoregulatory motifs in its cytoplasmic region.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- DNA, Complementary/genetics
- Gene Expression
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Molecular Sequence Data
- Multigene Family
- Phylogeny
- RNA/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR
- Receptors, KIR3DL1
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- X Chromosome/genetics
Collapse
Affiliation(s)
- Alice Y Welch
- Immunology Department, Holland Laboratory for Biomedical Research, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | |
Collapse
|
16
|
Redegeld FA, van der Heijden MW, Kool M, Heijdra BM, Garssen J, Kraneveld AD, Van Loveren H, Roholl P, Saito T, Verbeek JS, Claassens J, Koster AS, Nijkamp FP. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nat Med 2002; 8:694-701. [PMID: 12068287 DOI: 10.1038/nm722] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulin (Ig)-free light chains IgLC are present in serum and their production is augmented under pathological conditions such as multiple sclerosis, rheumatoid arthritis and neurological disorders. Until now, no (patho)physiological function has been ascribed to circulating Ig light chains. Here we show that IgLCs can confer mast cell dependent hypersensitivity in mice. Antigenic stimulation results in plasma extravasation, cutaneous swelling and mast-cell degranulation. We show that IgLCs have a crucial role in development of contact sensitivity, which could be completely prevented by a novel IgLC antagonist. Although IgE and IgG(1) are central to the induction of immediate hypersensitivity reactions, our results show that IgLCs have similar activity. IgLCs may therefore be a novel factor in the humoral immune response to antigen exposure. Our findings open new avenues in investigating the pathogenesis of autoimmune diseases and their treatments.
Collapse
Affiliation(s)
- Frank A Redegeld
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|