1
|
Fiske BE, Wemlinger SM, Crute BW, Getahun A. The Src-family kinase Lyn plays a critical role in establishing and maintaining B cell anergy by suppressing PI3K-dependent signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595208. [PMID: 38826354 PMCID: PMC11142063 DOI: 10.1101/2024.05.21.595208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Although the Src family kinase (SFK) Lyn is known to be involved in induction and maintenance of peripheral B cell tolerance, the molecular basis of its action in this context remains unclear. This question has been approached using conventional as well as B cell-targeted knockouts of Lyn, with varied conclusions likely confused by collateral loss of Lyn functions in B cell and myeloid cell development and activation. Here we utilized a system in which Lyn gene deletion is tamoxifen inducible and B cell restricted. This system allows acute elimination of Lyn in B cells without off-target effects. This genetic tool was employed in conjunction with immunoglobulin transgenic mice in which peripheral B cells are autoreactive. DNA reactive Ars/A1 B cells require continuous inhibitory signaling, mediated by the inositol phosphatase SHIP-1 and the tyrosine phosphatase SHP-1, to maintain an unresponsive (anergic) state. Here we show that Ars/A1 B cells require Lyn to establish and maintain B cell unresponsiveness. Lyn primarily functions by restricting PI3K-dependent signaling pathways. This Lyn-dependent mechanism complements the impact of reduced mIgM BCR expression to restrict BCR signaling in Ars/A1 B cells. Our findings suggest that a subset of autoreactive B cells requires Lyn to become anergic and that the autoimmunity associated with dysregulated Lyn function may, in part, be due to an inability of these autoreactive B cells to become tolerized.
Collapse
|
2
|
Ottens K, Schneider J, Satterthwaite AB. T-bet-expressing B cells contribute to the autoreactive plasma cell pool in Lyn -/- mice. Eur J Immunol 2023; 53:e2250300. [PMID: 37134326 PMCID: PMC10524956 DOI: 10.1002/eji.202250300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by pathogenic autoantibodies against nucleic acid-containing antigens. Understanding which B-cell subsets give rise to these autoantibodies may reveal therapeutic approaches for SLE that spare protective responses. Mice lacking the tyrosine kinase Lyn, which limits B and myeloid cell activation, develop lupus-like autoimmune diseases characterized by increased autoreactive plasma cells (PCs). We used a fate-mapping strategy to determine the contribution of T-bet+ B cells, a subset thought to be pathogenic in lupus, to the accumulation of PCs and autoantibodies in Lyn-/- mice. Approximately, 50% of splenic PCs in Lyn-/- mice originated from T-bet+ cells, a significant increase compared to WT mice. In vitro, splenic PCs derived from T-bet+ B cells secreted both IgM and IgG anti-dsDNA antibodies. To determine the role of these cells in autoantibody production in vivo, we prevented T-bet+ B cells from differentiating into PCs or class switching in Lyn-/- mice. This resulted in a partial reduction in splenic PCs and anti-dsDNA IgM and complete abrogation of anti-dsDNA IgG. Thus, T-bet+ B cells make an important contribution to the autoreactive PC pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
3
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
4
|
New JS, Dizon BLP, Fucile CF, Rosenberg AF, Kearney JF, King RG. Neonatal Exposure to Commensal-Bacteria-Derived Antigens Directs Polysaccharide-Specific B-1 B Cell Repertoire Development. Immunity 2020; 53:172-186.e6. [PMID: 32610078 DOI: 10.1016/j.immuni.2020.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
B-1 B cells derive from a developmental program distinct from that of conventional B cells, through B cell receptor (BCR)-dependent positive selection of fetally derived precursors. Here, we used direct labeling of B cells reactive with the N-acetyl-D-glucosamine (GlcNAc)-containing Lancefield group A carbohydrate of Streptococcus pyogenes to study the effects of bacterial antigens on the emergent B-1 B cell clonal repertoire. The number, phenotype, and BCR clonotypes of GlcNAc-reactive B-1 B cells were modulated by neonatal exposure to heat-killed S. pyogenes bacteria. GlcNAc-reactive B-1 clonotypes and serum antibodies were reduced in germ-free mice compared with conventionally raised mice. Colonization of germ-free mice with a conventional microbiota promoted GlcNAc-reactive B-1 B cell development and concomitantly elicited clonally related IgA+ plasma cells in the small intestine. Thus, exposure to microbial antigens in early life determines the clonality of the mature B-1 B cell repertoire and ensuing antibody responses, with implications for vaccination approaches and schedules.
Collapse
Affiliation(s)
- J Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian L P Dizon
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher F Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
6
|
Luo W, Mayeux J, Gutierrez T, Russell L, Getahun A, Müller J, Tedder T, Parnes J, Rickert R, Nitschke L, Cambier J, Satterthwaite AB, Garrett-Sinha LA. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. THE JOURNAL OF IMMUNOLOGY 2014; 193:909-920. [PMID: 24929000 DOI: 10.4049/jimmunol.1400666] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.
Collapse
Affiliation(s)
- Wei Luo
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jessica Mayeux
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Toni Gutierrez
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lisa Russell
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Andrew Getahun
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jennifer Müller
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Thomas Tedder
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jane Parnes
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Robert Rickert
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lars Nitschke
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - John Cambier
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| |
Collapse
|
7
|
Gutierrez T, Mayeux JM, Ortega SB, Karandikar NJ, Li QZ, Rakheja D, Zhou XJ, Satterthwaite AB. IL-21 promotes the production of anti-DNA IgG but is dispensable for kidney damage in lyn-/- mice. Eur J Immunol 2012; 43:382-93. [PMID: 23169140 DOI: 10.1002/eji.201142095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023]
Abstract
The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear Ags and a heightened inflammatory environment, which together result in end organ damage. Lyn-deficient mice, a model of systemic lupus erythematosus, lack an inhibitor of B-cell and myeloid cell activation. This results in B-cell hyper-responsiveness, plasma cell accumulation, autoantibodies, and glomerulonephritis (GN). IL-21 is associated with autoimmunity in mice and humans and promotes B-cell differentiation and class switching. Here, we explore the role of IL-21 in the autoimmune phenotypes of lyn(-/-) mice. We find that IL-21 mRNA is reduced in the spleens of lyn(-/-) IL-6(-/-) and lyn(-/-) Btk(lo) mice, neither of which produce pathogenic autoantibodies or develop significant GN. While IL-21 is dispensable for plasma cell accumulation and IgM autoantibodies in lyn(-/-) mice, it is required for anti-DNA IgG antibodies and some aspects of T-cell activation. Surprisingly, GN still develops in lyn(-/-) IL-21(-/-) mice. This likely results from the presence of IgG autoantibodies against a limited set of non-DNA Ags. These studies identify a specific role for IL-21 in the class switching of anti-DNA B cells and demonstrate that neither IL-21 nor anti-DNA IgG is required for kidney damage in lyn(-/-) mice.
Collapse
Affiliation(s)
- Toni Gutierrez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Expression of Toll-like receptors (TLRs) in B cells provides a cell-intrinsic mechanism for innate signals regulating adaptive immune responses. In combination with other signaling pathways in B cells, including through the B-cell receptor (BCR), TLR signaling plays multiple roles in B-cell differentiation and activation. The outcome of TLR signaling in B cells is largely context-dependent, which partly explains discrepancies among in vitro and in vivo studies, or studies using different immunogens. We focus on recent findings on how B-cell-intrinsic TLR signaling regulates antibody responses, including germinal center formation and autoantibody production in autoimmune disease models. In addition, TLR signaling also acts on the precursors of B cells, which could influence the immune response of animals by shaping the composition of the immune system. With TLR signaling modulating immune responses at these different levels, much more needs to be understood before we can depict the complete functions of innate signaling in host defense.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
9
|
Gross AJ, Proekt I, DeFranco AL. Elevated BCR signaling and decreased survival of Lyn-deficient transitional and follicular B cells. Eur J Immunol 2011; 41:3645-55. [PMID: 21928281 DOI: 10.1002/eji.201141708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/03/2011] [Accepted: 09/15/2011] [Indexed: 11/10/2022]
Abstract
The Src-family tyrosine kinase Lyn negatively regulates BCR signaling and also myeloid cell activity. Mice deficient in Lyn have substantially decreased numbers of peripheral B cells, despite spontaneously producing IgG anti-DNA antibodies. Here, we examine the mechanism underlying the B-cell depletion in these mice. Lyn-deficient B cells were out-competed by WT B cells in mixed BM chimeras at two steps, at the T1 to T2 transitional maturation stage in the spleen and again between the T2 or T3 stage and the mature follicular B-cell population. Lyn-deficient T2 and follicular B cells expressed elevated levels of the pro-apoptotic factor Bim and deletion of Bim restored splenic B cells of Lyn-deficient mice to close to WT numbers. Lyn-deficient T2 and later stage B cells also had changes in cell surface phenotype consistent with increased in vivo BCR signaling. Similarly, an increased proportion of T2 and follicular B cells had elevated basal intracellular free calcium levels. Overall, these observations suggest that increased BCR signaling is responsible for increased death of weakly self-reactive Lyn-deficient B cells both at the T2 stage and additionally as these cells mature to follicular B cells.
Collapse
Affiliation(s)
- Andrew J Gross
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
10
|
Vu TT, Gatto D, Turner V, Funnell APW, Mak KS, Norton LJ, Kaplan W, Cowley MJ, Agenès F, Kirberg J, Brink R, Pearson RCM, Crossley M. Impaired B cell development in the absence of Krüppel-like factor 3. THE JOURNAL OF IMMUNOLOGY 2011; 187:5032-42. [PMID: 22003205 DOI: 10.4049/jimmunol.1101450] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.
Collapse
Affiliation(s)
- Thi Thanh Vu
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ota M, Duong B, Torkamani A, Doyle C, Gavin A, Ota T, Nemazee D. Regulation of the B cell receptor repertoire and self-reactivity by BAFF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:4128-36. [PMID: 20817867 PMCID: PMC3263398 DOI: 10.4049/jimmunol.1002176] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The TNF-family cytokine BAFF (BLyS) promotes B lymphocyte survival and is overexpressed in individuals with systemic lupus erythematosus and Sjögren's Syndrome. BAFF can rescue anergic autoreactive B cells from death, but only when competition from nonautoreactive B cells is lacking. Yet, high BAFF levels promote autoantibody formation in individuals possessing diverse B cells. To better understand how excess BAFF promotes autoimmunity in a polyclonal immune system, Ig L chain usage was analyzed in 3H9 site-directed IgH chain transgenic mice, whose B cells recognize DNA and chromatin when they express certain endogenous L chains. BAFF levels were manipulated in 3H9 mice by introducing transgenes expressing either BAFF or its natural inhibitor ΔBAFF. B cells in BAFF/3H9 mice were elevated in number, used a broad L chain repertoire, including L chains generating high-affinity autoreactivity, and produced abundant autoantibodies. Comparison of spleen and lymph node B cells suggested that highly autoreactive B cells were expanded. By contrast, ΔBAFF/3H9 mice had reduced B cell numbers with a repertoire similar to that of 3H9 mice, but lacking usage of a subset of Vκ genes. The results show that limiting BAFF signaling only slightly selects against higher affinity autoreactive B cells, whereas its overexpression leads to broad tolerance escape and positive selection of autoreactive cells. The results have positive implications for the clinical use of BAFF-depleting therapy.
Collapse
Affiliation(s)
- Miyo Ota
- The Scripps Research Institute, Department of Immunology and Microbial Science
| | - Bao Duong
- The Scripps Research Institute, Department of Immunology and Microbial Science
- Kellogg School of Science and Technology Doctoral Program in Chemical and Biological Sciences
| | - Ali Torkamani
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, The Scripps Translational Science Institute
| | - Colleen Doyle
- The Scripps Research Institute, Department of Immunology and Microbial Science
| | - Amanda Gavin
- The Scripps Research Institute, Department of Immunology and Microbial Science
| | - Takayuki Ota
- The Scripps Research Institute, Department of Immunology and Microbial Science
| | - David Nemazee
- The Scripps Research Institute, Department of Immunology and Microbial Science
| |
Collapse
|
12
|
Santiago-Raber ML, Amano H, Amano E, Fossati-Jimack L, Swee LK, Rolink A, Izui S. Evidence that Yaa-induced loss of marginal zone B cells is a result of dendritic cell-mediated enhanced activation. J Autoimmun 2010; 34:349-55. [PMID: 20149596 DOI: 10.1016/j.jaut.2010.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 12/19/2022]
Abstract
The development of systemic lupus is accelerated by the Yaa (Y-linked autoimmune acceleration) mutation, which is the consequence of a translocation of the telomeric end containing the Tlr7 gene from the X chromosome onto the Y chromosome. However, the loss of marginal zone (MZ) B cells, one of the Yaa-linked cellular abnormalities, has previously been shown to be unrelated to the Tlr7 gene duplication, and the present study therefore aimed to investigate the mechanism responsible for MZ B-cell loss. Analyses of Yaa and non-Yaa C57BL/6 male mice expressing an MD4 anti-HEL IgM transgene or those deficient in fms-like tyrosine kinase 3 ligand (FL) revealed that the proportion of MZ B cells in these Yaa mice was comparable to that of the respective non-Yaa control mice. Notably, the activation of MZ B cells was compromised in both of these transgenic model systems, due to the absence of cognate antigens or the impaired development of dendritic cells, respectively. These results contrasted with the loss of MZ B cells in non-Yaa mice treated with FL and the lack of accumulation of MZ B cells in Yaa mice treated with a B-cell survival factor, BAFF. Taken together, our results suggest that the persistent and enhanced activation of Yaa-bearing hyperactive MZ B cells by dendritic cells is responsible for the loss of this B-cell subset in Yaa mice.
Collapse
Affiliation(s)
- Marie-Laure Santiago-Raber
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Gross AJ, Lyandres JR, Panigrahi AK, Prak ETL, DeFranco AL. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5382-92. [PMID: 19380785 PMCID: PMC2840041 DOI: 10.4049/jimmunol.0803941] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected. Correspondingly, Lyn deficiency substantially enhanced the sensitivity of mature B cells to activation via the BCR, but minimally affected events associated with tolerance induction at the immature stage. The effects of CD22 deficiency on BCR signaling were very similar in B cells at different stages of maturation. These results indicate that the Lyn-CD22-Src homology region 2 domain-containing phosphatase-1 inhibitory pathway largely becomes operational as B cell mature, and sets a threshold for activation that appears to be critical for the maintenance of tolerance in the B cell compartment.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Gene Expression Regulation, Developmental/physiology
- Immune Tolerance/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2/genetics
- Sialic Acid Binding Ig-like Lectin 2/metabolism
- Sialic Acid Binding Ig-like Lectin 2/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/enzymology
- Spleen/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Andrew J Gross
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
14
|
Ellinghaus U, Rupec RA, Pabst O, Ignatius R, Förster R, Dörken B, Jundt F. IkappaBalpha is required for marginal zone B cell lineage development. Eur J Immunol 2008; 38:2096-105. [PMID: 18604869 DOI: 10.1002/eji.200838254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inactivation of members of the nuclear factor-kappaB (NF-kappaB) family results in the decrease or defect of marginal zone B (MZB) cells. It is not known which inhibitors of the NF-kappaB family (IkappaB) are required for MZB cell development. Here, we show that mice with B cell-specific inactivation of the main NF-kappaB inhibitor IkappaBalpha have a marked decrease of MZB cells and their presumed precursors. They exhibited increased mortality rates after blood-borne bacterial infection, indicating the importance of MZB cells for bacterial clearance. In contrast, response to T cell-dependent and -independent antigens resulted only in minor changes in immunoglobulin production. Our data demonstrate the importance of the intact NF-kappaB/IkappaBalpha pathway for proper MZB cell development.
Collapse
Affiliation(s)
- Ursula Ellinghaus
- Department of Hematology and Oncology, Charité, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Kumar KR, Mohan C. Understanding B-cell tolerance through the use of immunoglobulin transgenic models. Immunol Res 2007; 40:208-23. [DOI: 10.1007/s12026-007-8008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Silver K, Bouriez-Jones T, Crockford T, Ferry H, Tang HL, Cyster JG, Cornall RJ. Spontaneous class switching and B cell hyperactivity increase autoimmunity against intracellular self antigen in Lyn-deficient mice. Eur J Immunol 2007; 36:2920-7. [PMID: 17039569 DOI: 10.1002/eji.200636462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IgG autoantibodies cause pathology due to their ability to bind self antigens. However, the extent to which the initial B cell activation and isotype switching is antigen-driven is unclear and it has been widely proposed that intrinsic B cell hyperactivity may be a contributing factor. To explore this issue we generated mice with B cell hyperactivity secondary to deficiency in the src kinase Lyn that also expressed a gene-targeted anti-hen egg lysozyme Ig construct (VDJkappa) capable of class switching to all isotypes. The B cell hyperactivity caused spontaneous hypersecretion of antibodies and class switching to IgM, IgA, IgG1 and IgG3 isotypes in the absence of self antigen, and this persisted as an autoimmune phenomenon in the presence of intracellularly expressed hen egg lysozyme. Exaggerated class switching was also unaffected by antigen in vitro. These findings show that systemic high-avidity intracellular self antigens do not induce self tolerance in the face of B cell hyperactivity. Under these circumstances, spontaneous activation of hyperactive B cells leads to isotype switching and the development of high titres of IgG autoantibodies against intracellular proteins.
Collapse
Affiliation(s)
- Karlee Silver
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Acevedo-Suárez CA, Kilkenny DM, Reich MB, Thomas JW. Impaired intracellular calcium mobilization and NFATc1 availability in tolerant anti-insulin B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2234-41. [PMID: 16887983 DOI: 10.4049/jimmunol.177.4.2234] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
B lymphocytes that recognize soluble self-Ags are routinely found in normal individuals in a functionally inactive or anergic state. Current models indicate that this tolerant state is maintained by interactions with self-Ags that uncouple the BCR from downstream signaling pathways and increase levels of free calcium. Contrary to this expectation, B cells that harbor anti-insulin Ig transgenes (125Tg) are maintained in a tolerant state even though free calcium levels remain normal and tyrosine kinase substrate phosphorylation is preserved following BCR stimulation. Under basal conditions, intracellular levels of inositol 1,4,5-trisphosphate are increased and NFATc1 levels are reduced in 125Tg B cells. The 125Tg B cells are markedly impaired in their ability to mobilize calcium upon stimulation with ionomycin, and BCR-induced calcium mobilization from internal stores is decreased. In contrast, poisoning intracellular calcium pumps with thapsigargin increases calcium mobilization in 125Tg B cells. Changes in calcium signaling are accompanied by a failure of 125Tg B cells to translocate NFATc1 into the nucleus following stimulation with either anti-IgM or ionomycin. Thus, disassociation of BCR from multiple signaling pathways is not essential for maintaining tolerance in anti-insulin 125Tg B cells. Rather, BCRs that are occupied by autologous insulin deliver signals that induce changes in intracellular calcium mobilization and maintain tolerance by preventing activation of key transcription factors such as NFAT.
Collapse
|
18
|
Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212:28-50. [PMID: 16903904 DOI: 10.1111/j.0105-2896.2006.00420.x] [Citation(s) in RCA: 893] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-10 (IL-10)-secreting T regulatory type 1 (Tr1) cells are defined by their specific cytokine production profile, which includes the secretion of high levels of IL-10 and transforming growth factor-beta(TGF-beta), and by their ability to suppress antigen-specific effector T-cell responses via a cytokine-dependent mechanism. In contrast to the naturally occurring CD4+ CD25+ T regulatory cells (Tregs) that emerge directly from the thymus, Tr1 cells are induced by antigen stimulation via an IL-10-dependent process in vitro and in vivo. Specialized IL-10-producing dendritic cells, such as those in an immature state or those modulated by tolerogenic stimuli, play a key role in this process. We propose to use the term Tr1 cells for all IL-10-producing T-cell populations that are induced by IL-10 and have regulatory activity. The full biological characterization of Tr1 cells has been hampered by the difficulty in generating these cells in vitro and by the lack of specific marker molecules. However, it is clear that Tr1 cells play a key role in regulating adaptive immune responses both in mice and in humans. Further work to delineate the specific molecular signature of Tr1 cells, to determine their relationship with CD4+ CD25+ Tregs, and to elucidate their respective role in maintaining peripheral tolerance is crucial to advance our knowledge on this Treg subset. Furthermore, results from clinical protocols using Tr1 cells to modulate immune responses in vivo in autoimmunity, transplantation, and chronic inflammatory diseases will undoubtedly prove the biological relevance of these cells in immunotolerance.
Collapse
Affiliation(s)
- Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Chu CL, Lowell CA. The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2880-9. [PMID: 16116174 DOI: 10.4049/jimmunol.175.5.2880] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Src family kinase Lyn plays both stimulatory and inhibitory roles in hemopoietic cells. In this report we provide evidence that Lyn is involved in dendritic cell (DC) generation and maturation. Loss of Lyn promoted DC expansion in vitro from bone marrow precursors due to enhanced generation and accelerated differentiation of Lyn-deficient DC progenitors. Differentiated Lyn-deficient DCs also had a higher survival rate. Similarly, the CD11c-positive cell number was increased in aged Lyn-deficient mice in vivo. In contrast to their enhanced generation, lyn-/- DCs failed to mature appropriately in response to innate stimuli, resulting in DCs with lower levels of MHC class II and costimulatory molecules. In addition, IL-12 production and Ag-specific T cell activation were reduced in lyn-/- DCs after maturation, resulting in impaired Th1 responses. This is the first study to characterize Lyn-deficient DCs. Our results suggest that Lyn kinase plays uniquely negative and positive regulatory roles in DC generation and maturation, respectively.
Collapse
Affiliation(s)
- Ching-Liang Chu
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | | |
Collapse
|
20
|
Seo S, Asai T, Saito T, Suzuki T, Morishita Y, Nakamoto T, Ichikawa M, Yamamoto G, Kawazu M, Yamagata T, Sakai R, Mitani K, Ogawa S, Kurokawa M, Chiba S, Hirai H. Crk-Associated Substrate Lymphocyte Type Is Required for Lymphocyte Trafficking and Marginal Zone B Cell Maintenance. THE JOURNAL OF IMMUNOLOGY 2005; 175:3492-501. [PMID: 16148091 DOI: 10.4049/jimmunol.175.6.3492] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lymphocyte-specific Cas family protein Cas-L (Crk-associated substrate lymphocyte type) has been implicated to function in lymphocyte movement, mediated mainly by integrin signaling. However, its physiological role is poorly understood. In this study we analyzed the function of Cas-L in lymphocytes using gene-targeted mice. The mutant mice showed a deficit of marginal zone B (MZB) cells and a decrease of cell number in secondary lymphoid organs. An insufficient chemotactic response and perturbed cell adhesion were observed in Cas-L-deficient lymphocytes, suggesting that the aberrant localization was responsible for the deficit of MZB cells. Moreover, we found that lymphocyte trafficking was altered in Cas-L-deficient mice, which gave a potential reason for contraction of secondary lymphoid tissues. Thus, Cas-L affects homeostasis of MZB cells and peripheral lymphoid organs, which is considered to be relevant to impaired lymphocyte migration and adhesion.
Collapse
Affiliation(s)
- Sachiko Seo
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fields ML, Hondowicz BD, Wharton GN, Adair BS, Metzgar MH, Alexander ST, Caton AJ, Erikson J. The regulation and activation of lupus-associated B cells. Immunol Rev 2005; 204:165-83. [PMID: 15790358 DOI: 10.1111/j.0105-2896.2005.00238.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anti-double-stranded DNA (anti-dsDNA) B cells are regulated in non-autoimmune mice. While some are deleted or undergo receptor editing, a population of anti-dsDNA (VH3H9/V lambda 1) B cells that emigrate into the periphery has also been identified. These cells have an altered phenotype relative to normal B cells in that they have a reduced lifespan, appear developmentally arrested, and localize primarily to the T/B-cell interface in the spleen. This phenotype may be the consequence of immature B cells encountering antigen in the absence of T-cell help. When provided with T-cell help, the anti-dsDNA B cells differentiate into antibody-forming cells. In the context of the autoimmune-prone lpr/lpr or gld/gld mutations, the VH3H9/V lambda 1 anti-dsDNA B cells populate the B-cell follicle and by 12 weeks of age produce serum autoantibodies. The early event of anti-dsDNA B-cell follicular entry, in the absence of autoantibody production, is dependent upon CD4(+) T cells. We hypothesize that control of autoantibody production in young autoimmune-prone mice may be regulated by the counterbalancing effect of T-regulatory (T(reg)) cells. Consistent with this model, we have demonstrated that T(reg) cells are able to prevent autoantibody production induced by T-cell help. Additional studies are aimed at investigating the mechanisms of this suppression as well as probing the impact of distinct forms of T-cell-dependent and -independent activation on anti-dsDNA B cells.
Collapse
Affiliation(s)
- Michele L Fields
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 2005; 22:9-18. [PMID: 15664155 DOI: 10.1016/j.immuni.2004.12.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/21/2022]
Abstract
Lyn, one of several Src-family tyrosine kinases in immune cells, is noted for its ability to negatively regulate signaling pathways through phosphorylation of inhibitory receptors, enzymes, and adaptors. Somewhat paradoxically, it is also a key mediator in several pathways of B cell activation, such as CD19 and CD180. Whether Lyn functions to promote or inhibit immune cell activation depends on the stimulus and the developmental state, meaning that the consequences of Lyn activity are context dependent. The importance of regulating Lyn activity is exemplified by the pathological conditions that develop in both lyn-/- and lyn gain-of-function mice (lynup/up), including lethal antibody-mediated autoimmune diseases and myeloid neoplasia. Here, we review the outcomes of altered Lyn activity within the framework of B cell development and differentiation and the circumstances that appear to dictate the outcome.
Collapse
Affiliation(s)
- Yuekang Xu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | |
Collapse
|
23
|
Acevedo-Suárez CA, Hulbert C, Woodward EJ, Thomas JW. Uncoupling of anergy from developmental arrest in anti-insulin B cells supports the development of autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2005; 174:827-33. [PMID: 15634904 DOI: 10.4049/jimmunol.174.2.827] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss of tolerance is considered to be an early event that is essential for the development of autoimmune disease. In contrast to this expectation, autoimmune (type 1) diabetes develops in NOD mice that harbor an anti-insulin Ig transgene (125Tg), even though anti-insulin B cells are tolerant. Tolerance is maintained in a similar manner in both normal C57BL/6 and autoimmune NOD mice, as evidenced by B cell anergy to stimulation through their Ag receptor (anti-IgM), TLR4 (LPS), and CD40 (anti-CD40). Unlike B cells in other models of tolerance, anergic 125Tg B cells are not arrested in development, and they enter mature subsets of follicular and marginal zone B cells. In addition, 125Tg B cells remain competent to increase CD86 expression in response to both T cell-dependent (anti-CD40) and T cell-independent (anti-IgM or LPS) signals. Thus, for anti-insulin B cells, tolerance is characterized by defective B cell proliferation uncoupled from signals that promote maturation and costimulator function. In diabetes-prone NOD mice, anti-insulin B cells in this novel state of tolerance provide the essential B cell contribution required for autoimmune beta cell destruction. These findings suggest that the degree of functional impairment, rather than an overt breach of tolerance, is a critical feature that governs B cell contribution to T cell-mediated autoimmune disease.
Collapse
|
24
|
Abstract
It is now clear that functionally distinct subsets of mature peripheral B cells exist. Of these subsets, marginal zone (MZ) B cells in the spleen are strategically positioned at the blood-lymphoid interface and are programmed to initiate a fast and intense antibody response to blood-borne viral and bacterial agents. Their ability to respond vigorously to antigen and polyclonal activators make MZ B cells key players in the early response to pathogens in the bloodstream. The specialized functions of these innate-like lymphocytes bridge the gap between the early innate immune response and the slower adaptive antibody response, affected mainly by the more prolific follicular B cells. MZ B cells, like B1 cells, are important not only to combat infections but also in the maintenance of host homeostasis. Here we discuss some aspects of MZ B-cell selection and function in health and disease.
Collapse
Affiliation(s)
- Thiago Lopes-Carvalho
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
25
|
Ekland EH, Forster R, Lipp M, Cyster JG. Requirements for follicular exclusion and competitive elimination of autoantigen-binding B cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:4700-8. [PMID: 15067045 DOI: 10.4049/jimmunol.172.8.4700] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Results from several mouse tolerance models indicate that autoreactive B cells in peripheral lymphoid organs develop an anergic phenotype, migrate to the boundary between the T cell zone and the B cell follicle (T/B boundary), and undergo rapid cell death. We have used B cells from mice that are double-transgenic for soluble hen egg lysozyme (HEL) and an Ig that recognizes HEL with a high affinity to characterize the mechanisms underlying the migration and elimination of autoreactive B cells. In contrast to the situation for acutely activated B cells, we find that anergic B cells have reduced levels of CXCR5, the receptor for the follicular chemokine, CXCL13, and this contributes to their exclusion from follicles. CCR7 expression is required for follicular exclusion of anergic cells, although up-regulation of the receptor does not appear to be necessary. By TUNEL analysis, we observe that excluded anergic cells die in situ at the T/B boundary. We also show that this elimination occurs via a Fas-independent mechanism. Using CCR7(-/-)Ig(HEL)-transgenic B cells we find that localization to the T/B boundary is not a necessary event to achieve the competitive elimination of autoantigen-binding B cells. These findings characterize the mechanism for follicular exclusion of autoantigen-binding B cells and they indicate that B cells compete for survival by mechanisms that are separate from competition for the follicular niche.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Autoantigens/metabolism
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Clonal Anergy/genetics
- Clonal Anergy/immunology
- Interphase/genetics
- Interphase/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Transfusion
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Inbred MRL lpr
- Mice, Knockout
- Mice, Transgenic
- Receptors, CCR7
- Receptors, CXCR5
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/physiology
- Receptors, Cytokine/antagonists & inhibitors
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- fas Receptor/physiology
Collapse
Affiliation(s)
- Eric H Ekland
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
26
|
Bartholdy B, Matthias P. Transcriptional control of B cell development and function. Gene 2004; 327:1-23. [PMID: 14960357 DOI: 10.1016/j.gene.2003.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/14/2003] [Accepted: 11/07/2003] [Indexed: 12/17/2022]
Abstract
The generation, development, maturation and selection of mammalian B lymphocytes is a complex process that is initiated in the embryo and proceeds throughout life to provide the organism an essential part of the immune system it requires to cope with pathogens. Transcriptional regulation of this highly complex series of events is a major control mechanism, although control is also exerted on all other layers, including splicing, translation and protein stability. This review summarizes our current understanding of transcriptional control of the well-studied murine B cell development, which bears strong similarity to its human counterpart. Animal and cell models with loss of function (gene "knock outs") or gain of function (often transgenes) have significantly contributed to our knowledge about the role of specific transcription factors during B lymphopoiesis. In particular, a large number of different transcriptional regulators have been linked to distinct stages of the life of B lymphocytes such as: differentiation in the bone marrow, migration to the peripheral organs and antigen-induced activation.
Collapse
Affiliation(s)
- Boris Bartholdy
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
27
|
Whyburn LR, Halcomb KE, Contreras CM, Lowell CA, Witte ON, Satterthwaite AB. Reduced dosage of Bruton's tyrosine kinase uncouples B cell hyperresponsiveness from autoimmunity in lyn-/- mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1850-8. [PMID: 12902486 DOI: 10.4049/jimmunol.171.4.1850] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of autoimmunity is correlated with heightened sensitivity of B cells to B cell Ag receptor (BCR) cross-linking. BCR signals are down-regulated by Lyn, which phosphorylates inhibitory receptors. lyn(-/-) mice have reduced BCR signaling thresholds and develop autoantibodies, glomerulonephritis, splenomegaly due to myeloid hyperplasia, and increased B-1 cell numbers. Bruton's tyrosine kinase (Btk), a critical component of BCR signaling pathways, is required for autoantibody production in lyn(-/-) mice. It is unclear whether Btk mediates autoimmunity at the level of BCR signal transduction or B cell development, given that lyn(-/-)Btk(-/-) mice have a severe reduction in conventional B and B-1 cell numbers. To address this issue, we crossed a transgene expressing a low dosage of Btk (Btk(low)) in B cells to lyn(-/-)Btk(-/-) mice. Conventional B cell populations were restored to levels similar to those in lyn(-/-) mice. These cells were as hypersensitive to BCR cross-linking as lyn(-/-) B cells as measured by proliferation, Ca(2+) flux, and activation of extracellular signal-regulated kinase and Akt. However, lyn(-/-)Btk(low) mice did not produce anti-ssDNA, anti-dsDNA, anti-histone, or anti-histone/DNA IgM or IgG. They also lacked B-1 cells and did not exhibit splenomegaly. Thus, B cell hyperresponsiveness is insufficient for autoimmunity in lyn(-/-) mice. These studies implicate B-1 and/or myeloid cells as key contributors to the lyn(-/-) autoimmune phenotype.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Autoantibodies/biosynthesis
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Cell Division/genetics
- Cell Division/immunology
- Cross-Linking Reagents/metabolism
- Gene Dosage
- Lymphocyte Activation/genetics
- Lymphopenia/enzymology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oncogene Proteins, Viral/deficiency
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Splenomegaly/genetics
- Splenomegaly/immunology
- Transgenes/immunology
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Lindsey R Whyburn
- Harold Simmons Arthritis Research Center, Department of Internal Medicine and Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
28
|
Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, Yamaguchi T, Yamamoto G, Seo S, Kumano K, Nakagami-Yamaguchi E, Hamada Y, Aizawa S, Hirai H. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003; 18:675-85. [PMID: 12753744 DOI: 10.1016/s1074-7613(03)00111-0] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Notch genes play a key role in cellular differentiation. The significance of Notch1 during thymocyte development is well characterized, but the function of Notch2 is poorly understood. Here we demonstrate that Notch2 but no other Notch family member is preferentially expressed in mature B cells and that conditionally targeted deletion of Notch2 results in the defect of marginal zone B (MZB) cells and their presumed precursors, CD1d(hi) fraction of type 2 transitional B cells. Among Notch target genes, the expression level of Deltex1 is prominent in MZB cells and strictly dependent on that of Notch2, suggesting that Deltex1 may play a role in MZB cell differentiation.
Collapse
Affiliation(s)
- Toshiki Saito
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Amano H, Amano E, Moll T, Marinkovic D, Ibnou-Zekri N, Martinez-Soría E, Semac I, Wirth T, Nitschke L, Izui S. The Yaa mutation promoting murine lupus causes defective development of marginal zone B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2293-301. [PMID: 12594250 DOI: 10.4049/jimmunol.170.5.2293] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of an as yet unidentified mutant gene, Yaa (Y-linked autoimmune acceleration). In view of a possible role of marginal zone (MZ) B cells in murine SLE, we have explored whether the expression of the Yaa mutation affects the differentiation of MZ and follicular B cells, thereby implicating the acceleration of the disease. In this study, we show that both BXSB and C57BL/6 Yaa mice, including two different substrains of BXSB Yaa males that are protected from SLE, displayed an impaired development of MZ B cells early in life. Studies in bone marrow chimeras revealed that the loss of MZ B cells resulted from a defect intrinsic to B cells expressing the Yaa mutation. The lack of selective expansion of MZ B cells in diseased BXSB Yaa males strongly argues against a major role of MZ B cells in the generation of pathogenic autoantibodies in the BXSB model of SLE. Furthermore, a comparative analysis with mice deficient in CD22 or expressing an IgM anti-trinitrophenyl/DNA transgene suggests that the hyperreactive phenotype of Yaa B cells, as judged by a markedly increased spontaneous IgM secretion, is likely to contribute to the enhanced maturation toward follicular B cells and the block in the MZ B cell generation.
Collapse
Affiliation(s)
- Hirofumi Amano
- Department of Pathology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hibbs ML, Harder KW, Armes J, Kountouri N, Quilici C, Casagranda F, Dunn AR, Tarlinton DM. Sustained activation of Lyn tyrosine kinase in vivo leads to autoimmunity. J Exp Med 2002; 196:1593-604. [PMID: 12486102 PMCID: PMC2196073 DOI: 10.1084/jem.20020515] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genetic ablation of the Lyn tyrosine kinase has revealed unique inhibitory roles in B lymphocyte signaling. We now report the consequences of sustained activation of Lyn in vivo using a targeted gain-of-function mutation (Lyn(up/up) mice). Lyn(up/up) mice have reduced numbers of conventional B lymphocytes, down-regulated surface immunoglobulin M and costimulatory molecules, and elevated numbers of B1a B cells. Lyn(up/up) B cells are characterized by the constitutive phosphorylation of negative regulators of B cell antigen receptor (BCR) signaling including CD22, SHP-1, and SHIP-1, and display attributes of lymphocytes rendered tolerant by constitutive engagement of the antigen receptor. However, exaggerated positive signaling is also apparent as evidenced by the constitutive phosphorylation of Syk and phospholipase Cgamma2 in resting Lyn(up/up) B cells. Similarly, Lyn(up/up) B cells show a heightened calcium flux in response to BCR stimulation. Surprisingly, Lyn(up/up) mice develop circulating autoreactive antibodies and lethal autoimmune glomerulonephritis, suggesting that enhanced positive signaling eventually overrides constitutive negative signaling. These studies highlight the difficulty in maintaining tolerance in the face of chronic stimulation and emphasize the pivotal role of Lyn in B cell signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch. Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The lymphocyte's decision between tolerance and immunity/autoimmunity is regulated at many levels. Two important parameters in this decision are the maturation state of the antigen presenting cells (APCs) and the amount of self antigen that is detected by the immune system. Maturation of APCs occurs as a consequence of signals received by the innate immune system and may lead to the breakdown of tolerance. Particularly relevant to this process are the Toll-like receptors and mechanisms of cross presentation of self antigens. In addition, genetic alterations in a variety of cell surface receptors, signalling components and regulators of apoptosis/survival can break tolerance and lead to autoimmunity in vivo.
Collapse
Affiliation(s)
- Pamela S Ohashi
- University Health Network, Ontario Cancer Institute, Toronto, Canada.
| | | |
Collapse
|
32
|
Rudolph EH, Congdon KL, Sackey FNA, Fitzsimons MM, Foster MH. Humoral autoimmunity to basement membrane antigens is regulated in C57BL/6 and MRL/MpJ mice transgenic for anti-laminin Ig receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5943-53. [PMID: 12023401 DOI: 10.4049/jimmunol.168.11.5943] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basement membrane proteins are targeted in organ-limited and systemic autoimmune nephritis, yet little is known about the origin or regulation of immunity to these complex extracellular matrices. We used mice transgenic for a nephrotropic systemic lupus erythematosus (SLE) Ig H chain to test the hypothesis that humoral immunity to basement membrane is actively regulated. The LamH-Cmu Ig H chain transgene combines with diverse L chains to produce nephrotropic Ig reactive with murine laminin alpha1. To determine the fate of transgene-bearing B cells in vivo, transgenic mice were outcrossed onto nonautoimmune B6 and SLE-prone MRL backgrounds and exposed to potent mitogen or Ag in adjuvant. In this work we demonstrate that transgenic autoantibodies are absent in serum from M6 and M29 lineage transgenic mice and transgenic B cells hypoproliferate and fail to increase Ig production upon exposure to endotoxin or when subjected to B cell receptor cross-linking. Administration of LPS or immunization with autologous or heterologous laminin, maneuvers that induce nonoverlapping endogenous anti-laminin IgG responses, fails to induce a transgenic anti-laminin response. The marked reduction in splenic B cell number suggests that selected LamH-Cmu H chain and endogenous L chain combinations generate autospecificities that lead to B cell deletion. It thus appears that SLE-like anti-laminin B cells have access to and engage a tolerizing self-Ag in vivo. Failure to induce autoimmunity by global perturbations in immune regulation introduced by the MRL autoimmune background and exposure to potent environmental challenge suggests that humoral immunity to nephritogenic basement membrane epitopes targeted in systemic autoimmunity is tightly regulated.
Collapse
Affiliation(s)
- Earl H Rudolph
- Department of Medicine, Duke University Medical Center and Veterans Affairs Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
There is growing evidence that the development of naïve B cells depends on the interaction of self antigens with the BCR. A view that has emerged over the past year is that BCR signal output contributes in a large part to the developmental fate of peripheral B cells. Differences in antigen-receptor signal strength may determine whether B cells assume a marginal zone, follicular or B-1 phenotype.
Collapse
Affiliation(s)
- Annaiah Cariappa
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
34
|
Seo SJ, Fields ML, Buckler JL, Reed AJ, Mandik-Nayak L, Nish SA, Noelle RJ, Turka LA, Finkelman FD, Caton AJ, Erikson J. The impact of T helper and T regulatory cells on the regulation of anti-double-stranded DNA B cells. Immunity 2002; 16:535-46. [PMID: 11970877 DOI: 10.1016/s1074-7613(02)00298-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autoreactive B cells that appear to be inactivated can be found in healthy individuals. In this study, we examined the potential of these anergic cells to become activated. We show that anergy of anti-double-stranded DNA (dsDNA) B cells in BALB/c mice is readily reversed, requiring only the provision of T cell help. We further show that spontaneous loss of anergy among anti-dsDNA B cells in autoimmune lpr/lpr mice occurs in two phases: an abortive initial response to T help followed by full loss of tolerance. Strikingly, the abortive response can be reproduced in nonautoimmune mice when CD4+CD25+ T regulatory cells are administered in conjunction with CD4+ T helper cells, suggesting that loss of B cell tolerance may require both the production of T cell help and the overcoming of T suppression.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD
- Antigens, Differentiation/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B7-1 Antigen/immunology
- CD28 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD40 Antigens/immunology
- CD40 Ligand/immunology
- CTLA-4 Antigen
- Cell Differentiation
- Clonal Anergy/immunology
- DNA/immunology
- Female
- Immunoconjugates
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred MRL lpr
- Mice, Transgenic
- Models, Immunological
- Receptors, CXCR5
- Receptors, Chemokine
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/immunology
- Receptors, Interleukin-2/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Su-jean Seo
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
CD22 is a B cell-specific member of the immunoglobulin superfamily and binds to sialic acid. CD22 inhibits B cell receptor signaling. Mice deficient for CD22 show a largely normal B cell development. Here, we have performed a detailed analysis of the splenic B cell population and found that the subset of marginal zone (MZ) B cells was selectively reduced in CD22-deficient mice. CD22-deficient mice showed a lack of TNP-ficoll capturing cells in the MZ and a reduced response to TNP-ficoll, particularly when the antigen was applied intravenously. CD22-deficient B cells showed both enhanced motility as well as enhanced chemotaxis to certain chemokines. The altered chemokine responsiveness or the higher signaling capacity of CD22-deficient B cells may lead to the compromised MZ B cell compartment, as both processes have previously been shown to affect MZ composition.
Collapse
Affiliation(s)
- Tatjana Samardzic
- Department of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Mandik-Nayak L, Huang G, Sheehan KC, Erikson J, Chaplin DD. Signaling through TNF receptor p55 in TNF-alpha-deficient mice alters the CXCL13/CCL19/CCL21 ratio in the spleen and induces maturation and migration of anergic B cells into the B cell follicle. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1920-8. [PMID: 11489971 DOI: 10.4049/jimmunol.167.4.1920] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The organization of secondary lymphoid tissues into distinct T and B cell compartments supports proper regulation of an immune response to foreign Ags. In the splenic white pulp, this compartmentalization is also thought to be important in the maintenance of B cell tolerance. Using lymphotoxin-alpha-(LT-alpha)-, TNF-alpha-, or TNFRp55-deficient mice, all with disrupted splenic architecture, we tested whether normal T/B segregation and/or intact follicular structure are necessary for the maintenance of anti-dsDNA B cell anergy. This study demonstrates that anti-dsDNA B cells remain tolerant in LT-alpha(-/-), TNF-alpha(-/-), and TNFRp55(-/-) mice; however, TNF-alpha or a TNF-alpha-dependent factor is required for their characteristic positioning to the T/B interface. Providing a TNF-alpha signal in TNF-alpha(-/-) mice by systemic administration of an agonist anti-TNFRp55 mAb induces the maturation of the anti-dsDNA B cells and their movement away from the T cell area toward the B cell area. Additionally, the agonist Ab induces changes in the follicular environment, including FDC clustering, up-regulation of the CXC chemokine ligand CXCL13, and down-regulation of the CC chemokine ligands CCL19 and CCL21. Therefore, this study suggests that a balance between B and T cell tropic chemokine signals may be an important mechanism for positioning anergic B cells at the T/B interface of the splenic white pulp.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokine CCL19
- Chemokine CCL21
- Chemokine CXCL13
- Chemokines, CC/antagonists & inhibitors
- Chemokines, CC/metabolism
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Clonal Anergy/genetics
- Dendritic Cells, Follicular/cytology
- Dendritic Cells, Follicular/immunology
- Dendritic Cells, Follicular/metabolism
- Immune Sera/administration & dosage
- Immune Sera/physiology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin lambda-Chains/biosynthesis
- Immunoglobulin lambda-Chains/genetics
- Immunophenotyping
- Injections, Intravenous
- Lymphotoxin-alpha/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- L Mandik-Nayak
- Center for Immunology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|