1
|
Abstract
After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands.
Collapse
Affiliation(s)
- Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Jonathan Sprent
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea.,Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Mousavi-Niri N, Naseroleslami M, Hadjati J. Anti-regulatory T cell vaccines in immunotherapy: focusing on FoxP3 as target. Hum Vaccin Immunother 2019; 15:620-624. [PMID: 30633616 PMCID: PMC6605713 DOI: 10.1080/21645515.2018.1545625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022] Open
Abstract
Anti- tumor vaccination elicits imperfect immune responses against tumor cells; that is related to the presence of suppressive obstacles in the tumor microenvironment. The main members of suppressive milieu of tumor are heteroogenous groups of immune cells in which regulatory T cell is a substantial component. Tregs express different immunomodulatory molecules such as FoxP3. Transcription factor, FoxP3, is a specific intracellular marker of Treg and crucial for Treg development. Therefore it is an attractive target for cancer treatment. This article reviews some recent anti-Treg vaccine focusing on FoxP3 to ameliorate anti-tumor immune responses. Among them, fusion vaccine of FoxP3-Fc(IgG) recombinant DNA vaccine and its accordant protein vaccine represents effective results.
Collapse
Affiliation(s)
- Neda Mousavi-Niri
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shen ZT, Nguyen TT, Daniels KA, Welsh RM, Stern LJ. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:5139-52. [PMID: 24127554 DOI: 10.4049/jimmunol.1300852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Closely related peptide epitopes can be recognized by the same T cells and contribute to the immune response against pathogens encoding those epitopes, but sometimes cross-reactive epitopes share little homology. The degree of structural homology required for such disparate ligands to be recognized by cross-reactive TCRs remains unclear. In this study, we examined the mechanistic basis for cross-reactive T cell responses between epitopes from unrelated and pathogenic viruses, lymphocytic choriomeningitis virus (LCMV) and vaccinia virus. Our results show that the LCMV cross-reactive T cell response toward vaccinia virus is dominated by a shared asparagine residue, together with other shared structural elements conserved in the crystal structures of K(b)-VV-A11R and K(b)-LCMV-gp34. Based on analysis of the crystal structures and the specificity determinants for the cross-reactive T cell response, we were able to manipulate the degree of cross-reactivity of the T cell response, and to predict and generate a LCMV cross-reactive response toward a variant of a null OVA-derived peptide. These results indicate that protective heterologous immune responses can occur for disparate epitopes from unrelated viruses.
Collapse
Affiliation(s)
- Zu T Shen
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | | | | | | | | |
Collapse
|
4
|
Dustin ML. Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse. Curr Top Microbiol Immunol 2009; 334:47-70. [PMID: 19521681 DOI: 10.1007/978-3-540-93864-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently implemented fluorescence imaging techniques, such as total internal reflection fluorescence microscopy and two-photon laser scanning microscopy, have made possible multiscale analysis of the immune response from single molecules in an interface to cells moving in lymphoid tissues and tumors. In this review, we consider components of T cell sensitivity: the immunological synapse, the coordination of migration, and antigen recognition in vivo. Potency, dose, and detection threshold for peptide-MHC determine T cell sensitivity. The immunological synapse incorporates T cell receptor microclusters that initiate and sustain signaling, and it also determines the positional stability of the T cells through symmetry and symmetry breaking. In vivo decisions by T cells on stopping or migration are based on antigen stop signals and environmental go signals that can sometimes prevent arrest of T cells altogether, and thus can change the outcome of antigen encounters.
Collapse
Affiliation(s)
- Michael L Dustin
- Department of Pathology, Program of Molecular Pathogenesis, Skirball Institute of BioMolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
5
|
Feinerman O, Germain RN, Altan-Bonnet G. Quantitative challenges in understanding ligand discrimination by alphabeta T cells. Mol Immunol 2008; 45:619-31. [PMID: 17825415 PMCID: PMC2131735 DOI: 10.1016/j.molimm.2007.03.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Affiliation(s)
- Ofer Feinerman
- ImmunoDynamics Group – Program in Computational Biology & Immunology – Memorial Sloan-Kettering Cancer Center – New York NY – USA
| | - Ronald N. Germain
- Lymphocyte Biology Section – Laboratory of Immunology – National Institute of Allergy and Infectious Disease – National Institute of Health – Bethesda MD - USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group – Program in Computational Biology & Immunology – Memorial Sloan-Kettering Cancer Center – New York NY – USA
| |
Collapse
|
6
|
Jabbari A, Harty JT. Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4829-33. [PMID: 16210583 DOI: 10.4049/jimmunol.175.8.4829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory T cells do not require self-peptide/MHC (spMHC) complexes to survive long term in vivo. However, memory CD4 T cells lose the ability to reject skin grafts when transiently placed in an environment in which these low-level TCR stimulations are absent. Whether or not spMHC alters the ability of CD8 T cells to respond to stimulation in vivo remains unknown. Here, we show that memory CD8 T cells retain the ability to respond to dendritic cell-mediated stimulation after adoptive transfer into either TAP(-/-) (MHC class I-deficient) or wild-type mice. Surprisingly, naive CD8 T cells, which fail to undergo homeostatic proliferation and erode in number in the absence of MHC class I, also retain the ability to respond to dendritic cell-mediated antigenic stimulation for at least 1 wk after transfer into TAP(-/-) mice. These findings suggest a differential requirement for spMHC signals for maintenance of CD8 T cell function and homeostatic proliferation.
Collapse
Affiliation(s)
- Ali Jabbari
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
7
|
Vukmanović S, Santori FR. Self-peptide/MHC and TCR antagonism: physiological role and therapeutic potential. Cell Immunol 2005; 233:75-84. [PMID: 15950208 DOI: 10.1016/j.cellimm.2005.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
TCR antagonists are peptides that bind MHC molecules and can specifically inhibit T cell activation induced by antigens. Studying TCR antagonism has taken an important place in immunology for both theoretical and practical reasons. Deciphering the mechanism(s) of action of TCR antagonists can yield important information about interactions of the TCR with ligands, T cell development, and TCR signaling. Moreover, microorganisms may employ TCR antagonism to elude the attention of the immune system. Finally, specificity of inhibition makes TCR antagonists an ideal tool to seek antigen-specific immunomodulation. Present state of knowledge on these topics is reviewed.
Collapse
Affiliation(s)
- Stanislav Vukmanović
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970, USA.
| | | |
Collapse
|
8
|
Vukmanović S, Santori FR. Cooperation or sabotage? Self-peptide-MHC complexes influence T-cell responses to antigens. Trends Immunol 2003; 24:472; author reply 473. [PMID: 12967668 DOI: 10.1016/s1471-4906(03)00209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Vukmanović S, Neubert TA, Santori FR. Could TCR antagonism explain associations between MHC genes and disease? Trends Mol Med 2003; 9:139-46. [PMID: 12727139 DOI: 10.1016/s1471-4914(03)00029-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alleles of major histocompatibility complex (MHC) loci are associated with certain types of diseases, including those of infectious and autoimmune origin. MHC products can promote susceptibility or resistance to disease by stimulating or inhibiting immune responses. Recent evidence suggests that MHC-associated peptides derived from self-proteins can act as antagonists of T-cell activation, thereby inhibiting immune responses to antigens. We suggest that self-peptide-promoted antagonism might explain some associations between MHC alleles and particular chronic diseases.
Collapse
Affiliation(s)
- Stanislav Vukmanović
- Michael Heidelberger Division of Immunology, Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
10
|
Stefanova I, Dorfman JR, Tsukamoto M, Germain RN. On the role of self-recognition in T cell responses to foreign antigen. Immunol Rev 2003; 191:97-106. [PMID: 12614354 DOI: 10.1034/j.1600-065x.2003.00006.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The key role of the thymus in shaping the peripheral T cell receptor (TCR) repertoire has been appreciated for nearly a quarter of a century. For most of that time, a single model has dominated thinking about the physiological role of the positive selection process mediated by TCR recognition of self-peptides and major histocompatibility complex (MHC) molecules. This developmental filter was believed to populate secondary lymphoid tissues with T cells bearing receptors best able to recognize unknown foreign peptides associated with the particular allelic forms of the MHC molecules present in an individual. More recently, self-recognition has been suggested to regulate the viability of naïve T cells. Here we focus on new results indicating that a critical contribution of positive selection to host defense is insuring that each peripheral T cell can use self-recognition to (i) enhance TCR signaling sensitivity upon foreign antigen recognition and (ii) augment the clonal expansion that accompanies limiting foreign antigen display at early points in an infectious process. We also detail new insights into the intracellular signaling circuitry that underlies the effective discrimination between low- and high-quality ligands of the TCR and speculate on how this design might facilitate an additional contribution of self-recognition to T cell activation in the presence of foreign stimuli.
Collapse
Affiliation(s)
- Irena Stefanova
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | |
Collapse
|
11
|
Herberts CA, van Gaans-van den Brink J, van der Heeft E, van Wijk M, Hoekman J, Jaye A, Poelen MCM, Boog CJP, Roholl PJM, Whittle H, de Jong APJM, van Els CACM. Autoreactivity against induced or upregulated abundant self-peptides in HLA-A*0201 following measles virus infection. Hum Immunol 2003; 64:44-55. [PMID: 12507814 DOI: 10.1016/s0198-8859(02)00707-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infectious agents have been implied as causative environmental factors in the development of autoimmunity. However, the exact nature of their involvement remains unknown. We describe a possible mechanism for the activation of autoreactive T cells induced by measles virus (MV) infection. The display of HLA-A*0201 associated peptides obtained from MV infected cells was compared with that from uninfected cells by mass spectrometry. We identified two abundant self peptides, IFI-6-16(74-82) and Hsp90beta(570-578), that were induced or upregulated, respectively, following infection. Their parental proteins, the type I interferon inducible protein IFI-6-16, and the beta chain of heat shock protein 90, have not been involved in MV pathogenesis. MV infection caused minor and major changes in the intracellular expression patterns of these proteins, possibly leading to altered peptide processing. CD8+ T cells capable of recognizing the self-peptides in the context of HLA-A*0201 were detectable at low basal levels in the neonatal and adult human T cell repertoire, but were functionally silent. In contrast, peptide-specific producing IFN-gamma producing effector cells were present in MV patients during acute infection. Thus, MV infection induces an enhanced display of self-peptides in MHC class I, which may lead to the temporary activation of autoreactive T cells.
Collapse
Affiliation(s)
- Carla A Herberts
- Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tourdot S, Gould KG. Competition between MHC class I alleles for cell surface expression alters CTL responses to influenza A virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5615-21. [PMID: 12421940 DOI: 10.4049/jimmunol.169.10.5615] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian cells express up to six different MHC class I alleles, many of which differ in terms of their interaction with components of the Ag presentation pathway and level of cell surface expression. However, it is often assumed in Ag presentation studies that class I alleles function independently of each other. We have compared cell surface expression levels and function of MHC class I molecules in F(1) hybrid mice with those in the homozygous parental strains. The level of cell surface expression of certain alleles in F(1) mice differed significantly from 50% of that found on the same cell type in the corresponding parental strain, suggesting allele-specific competition for cell surface expression, and not expression solely according to gene dosage. The strongest effect was observed in H-2(b) x H-2(k) F(1) mice, in which the H-2(b) class I molecules dominated over the H-2(k) class I molecules. The magnitude of H-2(k)-restricted CTL responses to influenza A virus infection was similar in the F(1) hybrid and parental H-2(k) mice. However, in H-2(k) mice expressing a K(b) transgene, cell surface levels of the endogenous class I molecules were down-regulated to a greater degree than in F(1) hybrid mice, and H-2(k)-restricted CTL responses against influenza A virus were greatly reduced, although the CTL repertoire was apparently present. Therefore, certain MHC class I molecules compete with each other for cell surface expression, and the resulting low cell surface expression of specific alleles can lead to a severe reduction in the ability to generate a CTL response.
Collapse
MESH Headings
- Alleles
- Animals
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Crosses, Genetic
- Cytotoxicity, Immunologic/genetics
- Dose-Response Relationship, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Female
- Gene Dosage
- Gene Expression Regulation/immunology
- H-2 Antigens/biosynthesis
- H-2 Antigens/genetics
- Histocompatibility Antigen H-2D
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Influenza A virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Sophie Tourdot
- Department of Immunology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
13
|
Santori FR, Brown SM, Lu Y, Neubert TA, Vukmanovic S. Cutting edge: positive selection induced by a self-peptide with TCR antagonist activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6092-5. [PMID: 11714767 DOI: 10.4049/jimmunol.167.11.6092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antagonist-like engagement of the TCR has been proposed to induce T cell selection in the thymus. However, no natural TCR ligand with TCR antagonist activity is presently known. Using a combination of bioinformatics and functional testing we identified the first self-peptide that can both deliver antagonist-like signals and promote T cell selection in the thymus. The peptide is presented by appropriate MHC class I molecules in vivo. Thus, endogenous antagonist peptides exist and may be involved in TCR repertoire selection.
Collapse
Affiliation(s)
- F R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|