1
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Merenstein A, Obeidat L, Zaravinos A, Bonavida B. The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications. Cancers (Basel) 2024; 17:19. [PMID: 39796650 PMCID: PMC11718991 DOI: 10.3390/cancers17010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities.
Collapse
Affiliation(s)
- Adam Merenstein
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| | - Loiy Obeidat
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
4
|
Dillen A, Bui I, Jung M, Agioti S, Zaravinos A, Bonavida B. Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1. Cancers (Basel) 2024; 16:1237. [PMID: 38539569 PMCID: PMC10968822 DOI: 10.3390/cancers16061237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2025] Open
Abstract
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ana Dillen
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Indy Bui
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Megan Jung
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Stephanie Agioti
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
| | - Apostolos Zaravinos
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| |
Collapse
|
5
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
7
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Bonavida B. Historical Perspectives of the Role of NO/NO Donors in Anti-Tumor Activities: Acknowledging Dr. Keefer's Pioneering Research. Crit Rev Oncog 2023; 28:1-13. [PMID: 37824383 DOI: 10.1615/critrevoncog.2021035853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of nitric oxide (NO) in cancer has been a continuous challenge and particularly the contradictory findings in the literature reporting NO with either anti-cancer properties or pro-cancer properties. This dilemma was largely resolved by the level of NO/inducible nitric oxide synthase in the tumor environment as well as other cancer-associated gene activations in different cancers. The initial findings on the role of NO as an anti-cancer agent was initiated in the late 1990's in Dr. Larry Keefer's laboratory, who had been studying and synthesizing many compounds with releasing NO under different conditions. Using an experimental model with selected NO compounds they demonstrated for the first time that NO can inhibit tumor cell proliferation and sensitizes drug-resistant cancer cells to chemotherapy-induced cytotoxicity. This initial finding was the backbone and the foundation of subsequent reports by the Keefer's laboratory and followed by many others to date on NO-mediated anti-cancer activities and the clinical translation of NO donors in cancer therapy. Our laboratory initiated studies on NO-mediated anti-cancer therapy and chemo-immuno-sensitization following Keefer's findings and used one of his synthesized NO donors, namely, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate), throughout most of our studies. Many of Keefer's collaborators and other investigators have reported on the selected compound, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl] diazen-1-ium-1,2-diolate (JS-K), and its therapeutic role in many tumor model systems. Several lines of evidence that investigated the treatment with NO donors in various cancer models revealed that a large number of gene products are modulated by NO, thus emphasizing the pleiotropic effects of NO on cancers and the identification of many targets of therapeutic significance. The present review reports historically of several examples reported in the literature that emanated on NO-mediated anti-cancer activities by the Keefer's laboratory and his collaborators and other investigators including my laboratory at the University of California at Los Angeles.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
9
|
Guégan JP, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME, Legembre P. CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 2021; 24:103538. [PMID: 34917906 PMCID: PMC8666665 DOI: 10.1016/j.isci.2021.103538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.
Collapse
Affiliation(s)
| | - Justine Pollet
- Technological core facility BISCEm, Université de Limoges, US042 Inserm, UMS 2015 CNRS, Centre hospitalo-universitaire de Limoges, Limoges, France
| | - Christophe Ginestier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, Université Limoges, UMR CNRS 7276, INSERM 1262, Limoges, France
| |
Collapse
|
10
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
11
|
Huang Y, Li L, Chen H, Liao Q, Yang X, Yang D, Xia X, Wang H, Wang WE, Chen L, Zeng C. The Protective Role of Yin-Yang 1 in Cardiac Injury and Remodeling After Myocardial Infarction. J Am Heart Assoc 2021; 10:e021895. [PMID: 34713723 PMCID: PMC8751820 DOI: 10.1161/jaha.121.021895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Exploring potential therapeutic target is of great significance for myocardial infarction (MI) and post-MI heart failure. Transcription factor Yin-Yang 1 (YY1) is an essential regulator of apoptosis and angiogenesis, but its role in MI is unclear. Methods and Results The expression of YY1 was assessed in the C57BL/6J mouse heart following MI. Overexpression or silencing of YY1 in the mouse heart was achieved by adeno-associated virus 9 injection. The survival, cardiac function, and scar size, as well as the apoptosis, angiogenesis, cardiac fibrosis, T helper 2 lymphocyte cytokine production, and macrophage polarization were assessed. The effects of YY1 on Akt phosphorylation and vascular endothelial growth factor production were also investigated. The expression of YY1 in heart was significantly stimulated by MI. The survival rate, cardiac function, scar size, and left ventricular volume of mice were improved by YY1 overexpression but worsened by YY1 silencing. YY1 alleviated cardiac apoptosis and fibrosis, promoted angiogenesis, T helper 2 cytokine production, and M2 macrophage polarization in the post-MI heart, it also enhanced the tube formation and migration ability of endothelial cells. Enhanced Akt phosphorylation, along with the increased vascular endothelial growth factor levels were observed in presence of YY1 overexpression. Conclusions YY1 ameliorates cardiac injury and remodeling after MI by repressing cardiomyocyte apoptosis and boosting angiogenesis, which might be ascribed to the enhancement of Akt phosphorylation and the subsequent vascular endothelial growth factor up-regulation. Increased T helper 2 cytokine production and M2 macrophage polarization may also be involved in YY1's cardioprotective effects. These findings supported YY1 as a potential target for therapeutic investigation of MI.
Collapse
Affiliation(s)
- Yu Huang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - Liangpeng Li
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Hongmei Chen
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Qiao Liao
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Xiaoli Yang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Dezhong Yang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Xuewei Xia
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Hongyong Wang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Wei Eric Wang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Lianglong Chen
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - Chunyu Zeng
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China.,State Key Laboratory of Trauma, Burns and Combined Injury Daping Hospital The Third Military Medical University Chongqing P. R. China.,Department of Cardiology of Chongqing General Hospital Cardiovascular Research Center of Chongqing College University of Chinese Academy of Sciences Chongqing P. R. China.,Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| |
Collapse
|
12
|
BAP1 and YY1 regulate expression of death receptors in malignant pleural mesothelioma. J Biol Chem 2021; 297:101223. [PMID: 34597666 PMCID: PMC8545693 DOI: 10.1016/j.jbc.2021.101223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive, and incurable cancer arising from the mesothelial lining of the pleura, with few available treatment options. We recently reported that loss of function of the nuclear deubiquitinase BRCA1-associated protein 1 (BAP1), a frequent event in MPM, is associated with sensitivity to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)–mediated apoptosis. As a potential underlying mechanism, here we report that BAP1 negatively regulates the expression of TRAIL receptors: death receptor 4 (DR4) and death receptor 5 (DR5). Using tissue microarrays of tumor samples from MPM patients, we found a strong inverse correlation between BAP1 and TRAIL receptor expression. BAP1 knockdown increased DR4 and DR5 expression, whereas overexpression of BAP1 had the opposite effect. Reporter assays confirmed wt-BAP1, but not catalytically inactive BAP1 mutant, reduced promoter activities of DR4 and DR5, suggesting deubiquitinase activity is required for the regulation of gene expression. Co-immunoprecipitation studies demonstrated direct binding of BAP1 to the transcription factor Ying Yang 1 (YY1), and chromatin immunoprecipitation assays revealed BAP1 and YY1 to be enriched in the promoter regions of DR4 and DR5. Knockdown of YY1 also increased DR4 and DR5 expression and sensitivity to TRAIL. These results suggest that BAP1 and YY1 cooperatively repress transcription of TRAIL receptors. Our finding that BAP1 directly regulates the extrinsic apoptotic pathway will provide new insights into the role of BAP1 in the development of MPM and other cancers with frequent BAP1 mutations.
Collapse
|
13
|
Chen Q, Wang WJ, Jia YX, Yuan H, Wu PF, Ge WL, Meng LD, Huang XM, Shen P, Yang TY, Miao Y, Zhang JJ, Jiang KR. Effect of the transcription factor YY1 on the development of pancreatic endocrine and exocrine tumors: a narrative review. Cell Biosci 2021; 11:86. [PMID: 33985581 PMCID: PMC8120816 DOI: 10.1186/s13578-021-00602-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic tumors are classified into endocrine and exocrine types, and the clinical manifestations in patients are nonspecific. Most patients, especially those with pancreatic ductal adenocarcinoma (PDAC), have lost the opportunity to receive for the best treatment at the time of diagnosis. Although chemotherapy and radiotherapy have shown good therapeutic results in other tumors, their therapeutic effects on pancreatic tumors are minimal. A multifunctional transcription factor, Yin-Yang 1 (YY1) regulates the transcription of a variety of important genes and plays a significant role in diverse tumors. Studies have shown that targeting YY1 can improve the survival time of patients with tumors. In this review, we focused on the mechanism by which YY1 affects the occurrence and development of pancreatic tumors. We found that a YY1 mutation is specific for insulinomas and has a role in driving the degree of malignancy. In addition, changes in the circadian network are a key causative factor of PDAC. YY1 promotes pancreatic clock progression and induces malignant changes, but YY1 seems to act as a tumor suppressor in PDAC and affects many biological behaviors, such as proliferation, migration, apoptosis and metastasis. Our review summarizes the progress in understanding the role of YY1 in pancreatic endocrine and exocrine tumors and provides a reasonable assessment of the potential for therapeutic targeting of YY1 in pancreatic tumors.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wu-Jun Wang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | | | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng-Fei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Tao-Yue Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Mabrouk N, Ghione S, Laurens V, Plenchette S, Bettaieb A, Paul C. Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers (Basel) 2020; 12:cancers12051145. [PMID: 32370259 PMCID: PMC7281185 DOI: 10.3390/cancers12051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Véronique Laurens
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
- Correspondence: or ; Tel.: +33-3-80-39-33-51
| |
Collapse
|
15
|
Zhao L, Li R, Qiu JZ, Yu JB, Cao Y, Yuan RT. YY1-mediated PTEN dephosphorylation antagonizes IR-induced DNA repair contributing to tongue squamous cell carcinoma radiosensitization. Mol Cell Probes 2020; 53:101577. [PMID: 32334006 DOI: 10.1016/j.mcp.2020.101577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Ionizing radiation (IR) confers a survival advantage in tongue squamous cell carcinoma (TSCC), however, IR resistance limits its efficacy. Although Yin Yang 1 (YY1) has been reported to play a role in genotoxic drug resistance by accelerating DNA repair, its role in TSCC radioresistance remains unclear. In this study, we examined YY1 mRNA and protein expression in human tongue cancer samples using qRT-PCR and western blotting, respectively. DNA array data identified YY1 mRNA expression in IR sensitivity or resistance cell lines and tissues. Tongue carcinoma primary cells and CAL27 cells with YY1 stably overexpressed or knocked-down were exposed to IR and evaluated for cell proliferation and apoptosis by CCK8-assay and caspase-3 assay, respectively. We also examined DNA damage- or repair-related indicators, such as YY1, p-H2AX, nuclear PTEN, p-PTEN, and Rad51 through Western blot analysis. Additionally, we explored the mechanism of IR-induced PTEN nuclear translocation by introducing a series of PTEN phosphorylation site mutations and co-IP assay. We observed that YY1 mRNA and protein are highly expressed in TSCC tissues, which was correlated with worse overall survival. Moreover, higher expression of YY1 and Rad51 was observed in radioresistant cells and tissues, overexpression of YY1 led to IR resistance in TSCC cells, whereas YY1 knockdown sensitized TSCC cells to IR. The underlying mechanism showed that the overexpression of YY1 upregulated nuclear PTEN and Rad51 expression, which is essential for DNA repair. IR upregulated YY1, nuclear PTEN, and Rad51; thus, knockdown of YY1 completely blocked IR-induced upregulation of nuclear PTEN/Rad51. IR upregulated PTEN phosphorylation, and mutation of the phosphorylation site of Ser380 nearly completely blocked IR-induced PTEN nuclear translocation. Furthermore, the phosphatase PP2A negatively regulated pS380-PTEN, and knockdown of YY1 completely blocked IR-induced pS380-PTEN through PP2A. In conclusion, knockdown of YY1 enhanced TSCC radiosensitivity through PP2A-mediated dephosphorylation of PTEN Ser380; thus, antagonizing the IR-induced nuclear PTEN/Rad51 axis and targeting YY1 may reverse IR resistance in TSCC.
Collapse
Affiliation(s)
- Lu Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Ran Li
- Department of Oral and Maxillo-facial Surgery, Weifang Medical University Affiliated Qingdao Stomatological Hospital, #17 Dexian Road, Qingdao, 266000, PR China
| | - Jian-Zhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Jiang-Bo Yu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Yang Cao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Rong-Tao Yuan
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China.
| |
Collapse
|
16
|
Bonavida B. Sensitizing activities of nitric oxide donors for cancer resistance to anticancer therapeutic drugs. Biochem Pharmacol 2020; 176:113913. [PMID: 32173364 DOI: 10.1016/j.bcp.2020.113913] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
Cancer is not a single disease but it constitutes a large variety of different types that are also different from each other phenotypically and molecularly. Although the standard treatments have resulted in clinical responses in a subset of patients, though, many patients relapse and no longer respond to further treatments. Hence, both the innate and adaptive resistance to treatments are the main challenges in today's treatment strategies. Noteworthy, several novel treatment strategies, particularly immunotherapies, used alone or in combination, have been developed and that have significantly improved the therapeutic response of many unresponsive cancer patients. Nevertheless, even with the latest new developments of therapeutics that were effective in a larger subset of patients, there is still an urgent need to treat the remaining unresponsive subset of patients. This requires the development of new targeting agents of superior antitumor activities that will lead to overcoming the unaffected resistance by current treatments. There has been accumulating evidence suggesting nitric oxide donors as such targeting agents and considering their pleiotropic antitumor activities, including both the reversal of chemo and immuno-resistance of various unresponsive resistant cancers. The in vitro and in vivo preclinical findings corroborate the sensitizing antitumor activities of nitric oxide donors. In addition, a few clinical findings with NO donors that have been applied in patients have corroborated their antitumor and sensitizing activities in combination with standard therapies. In this review, the role and underlying mechanisms by which nitric oxide donors sensitize cancer resistant cells to both chemotherapy and immunotherapy are briefly described.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
17
|
Meliala ITS, Hosea R, Kasim V, Wu S. The biological implications of Yin Yang 1 in the hallmarks of cancer. Theranostics 2020; 10:4183-4200. [PMID: 32226547 PMCID: PMC7086370 DOI: 10.7150/thno.43481] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is a multistep process characterized by the acquisition of genetic and epigenetic alterations. During the course of malignancy development, tumor cells acquire several features that allow them to survive and adapt to the stress-related conditions of the tumor microenvironment. These properties, which are known as hallmarks of cancer, include uncontrolled cell proliferation, metabolic reprogramming, tumor angiogenesis, metastasis, and immune system evasion. Zinc-finger protein Yin Yang 1 (YY1) regulates numerous genes involved in cell death, cell cycle, cellular metabolism, and inflammatory response. YY1 is highly expressed in many cancers, whereby it is associated with cell proliferation, survival, and metabolic reprogramming. Furthermore, recent studies also have demonstrated the important role of YY1-related non-coding RNAs in acquiring cancer-specific characteristics. Therefore, these YY1-related non-coding RNAs are also crucial for YY1-mediated tumorigenesis. Herein, we summarize recent progress with respect to YY1 and its biological implications in the context of hallmarks of cancer.
Collapse
|
18
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
19
|
Tsai CK, Huang LC, Wu YP, Kan IY, Hueng DY. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT. FASEB J 2019; 33:14171-14184. [PMID: 31725331 DOI: 10.1096/fj.201901021rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring and gravest primary tumor of the CNS in adults. The development of chemoresistance to temozolomide (TMZ), the first-line chemotherapy for GBM, is an important factor contributing to poor treatment outcomes. Down-regulation of O-6-methylguanine-DNA methyltransferase (MGMT) expression in GBM cells is an attractive strategy for overcoming TMZ resistance and improving outcomes. This study revealed that the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) exerts antitumorigenic effects on TMZ-sensitive and TMZ-resistant (TMZ-R) glioma cells. Pretreatment with SNAP not only induced apoptosis, mitochondrial dysfunction, and hypoxia-inducing factor 1, but also resensitized TMZ-R GBM cells to TMZ through down-regulation of MGMT expression. SNAP acted principally through post-translational modification of p53, phosphorylated N-myc downstream regulated gene 1, and MGMT protein stability in TMZ-R GBM cells. Additionally, when applied together, SNAP and TMZ enhanced the inhibition of tumor growth in vitro and in vivo. This study sheds new light on a potential strategy to overcome TMZ resistance in GBM and thus possesses the potential for prolonging survival of patients with GBM.-Tsai, C.-K., Huang, L.-C., Wu, Y.-P., Kan, I.-Y., Hueng, D.-Y. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT.
Collapse
Affiliation(s)
- Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ping Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - I-Ying Kan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Jaufmann J, Lelis FJN, Teschner AC, Fromm K, Rieber N, Hartl D, Beer-Hammer S. Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur J Immunol 2019; 50:33-47. [PMID: 31557313 DOI: 10.1002/eji.201948240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/16/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are key regulators of immunity that initially have been defined by their ability to potently suppress T-cell responses. Recent studies collectively demonstrate that the suppressive activity of MDSCs is not limited to T cells, but rather affects a broad range of immune cell subsets. However, relatively few studies have assessed the impact of MDSCs on B cells, particularly in the human context. Here, we report that human monocytic MDSCs (M-MDSCs) significantly interfere with human B-cell proliferation and function in vitro. We further show that the inhibition occurs independent of direct cell-contact and involves the expression of suppressive mediators such as indoleamine 2, 3-dioxygenase (IDO), arginase-1 (Arg1), and nitric oxide (NO). In addition, our studies demonstrate that the suppression of B cells by M-MDSCs is paralleled by a skewing in B-cell phenotype and gene expression signatures. M-MDSCs induced the downregulation of key surface markers on activated B cells, including IgM, HLA-DR, CD80, CD86, TACI, and CD95. Concurrently, M-MDSCs but not conventional monocytes elicited alterations in the transcription of genes involved in apoptosis induction, class-switch regulation, and B-cell differentiation and function. In summary, this study expands our understanding of the regulatory role of M-MDSCs for human B-cell responses.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, Tuebingen, Germany.,Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany
| | - Felipe J N Lelis
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany.,Department of Medicine, Division of Rheumatology, Immunology and Allergy Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, USA
| | - Annkathrin C Teschner
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany
| | - Katja Fromm
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany.,Biozentrum, University of Basel, Infection Biology, Basel, Switzerland
| | - Nikolaus Rieber
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany.,Department of Pediatrics, Kinderklinik Muenchen Schwabing, Muenchen Klinik und Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Hartl
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019; 43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Recent advances in the treatment of various cancers have resulted in the adaptation of several novel immunotherapeutic strategies. Notably, the recent intervention through immune checkpoint inhibitors has resulted in significant clinical responses and prolongation of survival in patients with several therapy-resistant cancers (melanoma, lung, bladder, etc.). This intervention was mediated by various antibodies directed against inhibitory receptors expressed on cytotoxic T-cells or against corresponding ligands expressed on tumor cells and other cells in the tumor microenvironment (TME). However, the clinical responses were only observed in a subset of the treated patients; it was not clear why the remaining patients did not respond to checkpoint inhibitor therapies. One hypothesis stated that the levels of PD-L1 expression correlated with poor clinical responses to cell-mediated anti-tumor immunotherapy. Hence, exploring the underlying mechanisms that regulate PD-L1 expression on tumor cells is one approach to target such mechanisms to reduce PD-L1 expression and, therefore, sensitize the resistant tumor cells to respond to PD-1/PD-L1 antibody treatments. Various investigations revealed that the overexpression of the transcription factor Yin Yang 1 (YY1) in most cancers is involved in the regulation of tumor cells' resistance to cell-mediated immunotherapies. We, therefore, hypothesized that the role of YY1 in cancer immune resistance may be correlated with PD-L1 overexpression on cancer cells. This hypothesis was investigated and analysis of the reported literature revealed that several signaling crosstalk pathways exist between the regulations of both YY1 and PD-L1 expressions. Such pathways include p53, miR34a, STAT3, NF-kB, PI3K/AKT/mTOR, c-Myc, and COX-2. Noteworthy, many clinical and pre-clinical drugs have been utilized to target these above pathways in various cancers independent of their roles in the regulation of PD-L1 expression. Therefore, the direct inhibition of YY1 and/or the use of the above targeted drugs in combination with checkpoint inhibitors should result in enhancing the cell-mediated anti-tumor cell response and also reverse the resistance observed with the use of checkpoint inhibitors alone.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
22
|
Galloway NR, Ball KF, Stiff T, Wall NR. Yin Yang 1 (YY1): Regulation of Survivin and Its Role In Invasion and Metastasis. Crit Rev Oncog 2019; 22:23-36. [PMID: 29604934 DOI: 10.1615/critrevoncog.2017020836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite significant clinical and basic science advancements, cancer remains a devastating disease that affects people of all ages, races, and backgrounds. The pathogenesis of cancer has recently been described to result from eight biological capabilities or hallmarks and two enabling characteristics. These eight hallmarks are: deregulation of cellular energetics, avoiding immune destruction, enabling replicative immortality, inducing angiogenesis, sustaining proliferative signaling, evading growth suppressors, resisting cell death, and activating invasion and metastasis. The enabling characteristics are: genome instability and mutation and tumor-promoting inflammation. Survivin, the fourth most common transcript found in cancer cells, is a protein that is thought to be involved in the enhanced proliferation, survival, and metastasis and possibly other key hallmarks of cancer cells. Understanding how this gene is turned on and off is vitally important for attempt improving cancer management and therapy. Our work has identified a novel transcriptional regulator of survivin called Yin Yang 1 (YY1), which has been observed to activate some gene promoters and repress others and is gaining increasing interest as a target of cancer therapy. Our work shows for the first time that YY1 represses survivin transcription by physically interacting with the survivin promoter. Furthermore, YY1 appears to contribute to basal survivin transcriptional activity, indicating that disruption of its binding may in part contribute to survivin overexpression after cellular stress events including chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nicholas R Galloway
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Kathryn F Ball
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - TessaRae Stiff
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Nathan R Wall
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| |
Collapse
|
23
|
Li X, Shang B, Li YN, Shi Y, Shao C. IFNγ and TNFα synergistically induce apoptosis of mesenchymal stem/stromal cells via the induction of nitric oxide. Stem Cell Res Ther 2019; 10:18. [PMID: 30635041 PMCID: PMC6330503 DOI: 10.1186/s13287-018-1102-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) have been widely used to treat various inflammatory diseases. The immunomodulatory capabilities of MSCs are usually licensed by inflammatory cytokines and may vary depending on the levels and the types of inflammatory cytokines. However, how the inflammatory microenvironment affects the fate of MSCs remains elusive. Here we characterized the molecular mechanism underlying the apoptosis of mouse MSCs triggered by the synergistic action of IFNγ and TNFα. METHODS We isolated and expanded MSCs by flushing the femoral and tibial bone marrow of wild-type, iNOS-/-, and Fas-/- mice. BM-MSCs were treated with IFNγ and TNFα in vitro, and cell viability was evaluated by a CCK-8 kit. Apoptosis was assessed by Annexin V/propidium iodide-stained flow cytometry. Expression of genes related to apoptosis and endoplasmic reticulum (ER) stress was measured by reverse transcription-polymerase chain reaction (RT-PCR). Apoptosis and autophagy-related proteins were examined by Western blot analysis. RESULTS IFNγ and TNFα synergistically trigger apoptosis of mouse BM-MSCs. The two cytokines were shown to stimulate the expression of inducible nitric oxide synthase (iNOS) and consequently the generation of nitric oxide (NO), which is required for the apoptosis of mouse BM-MSCs. The two cytokines similarly induced apoptosis in Fas-/- BM-MSCs. iNOS and NO were shown to upregulate Fas in mouse MSCs and sensitize them to Fas agonist-induced apoptosis. Moreover, NO stimulated by IFNγ/TNFα impairs autophagy, which aggravates ER stress and promotes apoptosis. CONCLUSIONS IFNγ/TNFα-induced apoptosis in mouse MSCs is mediated by NO. Our findings shed new light on cytokine-induced apoptosis of MSCs and have implications in MSC-based therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Bingxue Shang
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ya-Nan Li
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
24
|
Antonio-Andrés G, Rangel-Santiago J, Tirado-Rodríguez B, Martinez-Ruiz GU, Klunder-Klunder M, Vega MI, Lopez-Martinez B, Jiménez-Hernández E, Torres Nava J, Medina-Sanson A, Huerta-Yepez S. Role of Yin Yang-1 (YY1) in the transcription regulation of the multi-drug resistance ( MDR1) gene. Leuk Lymphoma 2018; 59:2628-2638. [PMID: 29616858 DOI: 10.1080/10428194.2018.1448083] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/24/2018] [Accepted: 02/17/2018] [Indexed: 10/17/2022]
Abstract
Resistance to chemotherapy hinders the successful treatment of acute lymphoblastic leukemia (ALL). The multi-drug resistance-1 (MDR1/ABCB1) gene encodes P-glycoprotein (P-gp), which plays an important role in chemoresistance; however, its transcriptional regulation remains unclear. We investigated the role of YY1 in the regulation of MDR1 and its relation to ALL outcomes. Analysis of the MDR1 promoter revealed four putative YY1-binding sites, which we analyzed using a reporter system and ChIP analysis. YY1 silencing resulted in the inhibition of MDR1 expression and function. The clinical roles of YY1 and MDR1 expression were evaluated in children with ALL. Expression of both proteins was increased in ALL patients compared to controls. We identified a positive correlation between YY1 and MDR1 expression. High levels of YY1 were associated with decreased overall survival. Our results demonstrated that YY1 regulates the transcription of MDR1. Therefore, YY1 may serve as a useful prognostic and/or therapeutic target.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adolescent
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/analysis
- Cell Proliferation
- Child
- Child, Preschool
- Cohort Studies
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Etoposide/pharmacology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Infant, Newborn
- Male
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Promoter Regions, Genetic
- Survival Rate
- Tumor Cells, Cultured
- YY1 Transcription Factor/genetics
- YY1 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Gabriela Antonio-Andrés
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Jesus Rangel-Santiago
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Belen Tirado-Rodríguez
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Gustavo U Martinez-Ruiz
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
- b Facultad de Medicina , Universidad Nacional Autonoma de México , Mexico City , Mexico
| | - Miguel Klunder-Klunder
- c Departamento de Investigación en Salud Comunitaria , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| | - Mario I Vega
- d Department of Medicine, Hematology-Oncology Division , VA West Los Angeles Medical Center BBRI, UCLA Medical Center, Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA
- e Molecular Signal Pathway in Cancer Laboratory , UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS , México City , México
| | | | | | - Jose Torres Nava
- g Servicio de Hemato-Oncología , Hospital Infantil de Moctezuma , Mexico City , Mexico
| | - Aurora Medina-Sanson
- h Departamento de Hemato-Oncologia , Hospital Infantil de Mexico, Federico Gomez , Mexico City , Mexico
| | - Sara Huerta-Yepez
- a Unidad de Investigación en Enfermedades Oncológicas , Hospital Infantil de México, Federico Gómez , Mexico City , Mexico
| |
Collapse
|
25
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
26
|
Mun BG, Lee SU, Hussain A, Kim HH, Rolly NK, Jung KH, Yun BW. S-nitrosocysteine-responsive genes modulate diverse regulatory pathways in Oryza sativa: a transcriptome profiling study. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:630-644. [PMID: 32290965 DOI: 10.1071/fp17249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/05/2017] [Indexed: 06/11/2023]
Abstract
Rice (Oryza sativa L.) is a major food crop and also a well-established genetic model. Nitric oxide (NO) and its derivatives are important signalling molecules that actively participate in various signalling pathways in response to different stresses. In this study, we performed RNA-seq mediated transcriptomic analysis of rice after treatment with the nitric oxide donor, S-nitroso-L-cysteine (CySNO), generating an average of 37.5 and 41.5 million reads from control and treated leaf samples respectively. More than 95% of the reads were successfully mapped to the O. sativa reference genome yielding a total of 33539 differentially expressed genes (DEGs, P < 0.05). Further analyses identified 825 genes with at least 2-fold change in the expression following treatment with CySNO (P < 0.01). The DEGs identified were involved in diverse molecular functions such as catalytic activity, binding, transport, and receptor activity and were mostly located in the membrane, organelles such as nucleus, Golgi apparatus and mitochondria. DEGs also contained several genes that regulate responses to abiotic stresses such as drought, heat, cold and salt stress and biotic stresses. We also found significantly similar expression patterns of CySNO-responsive DEGs of rice with the CySNO-responsive DEGs of Arabidopsis in a previous study. Expression patterns of genes involved in key biological functions were verified using quantitative real time (qRT)-PCR. The findings of this study suggest that NO regulates the transcriptional control of genes involved in a wide variety of physiological functions in rice, and that NO-mediated transcriptional networks are highly conserved across the plant kingdom. This study provides useful information regarding the transcriptional response of plants to nitrosative stress.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Sang-Uk Lee
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Adil Hussain
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Hyun-Ho Kim
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Nkulu Kabange Rolly
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotechnology Institute, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| |
Collapse
|
27
|
Pothoulakis C, Torre-Rojas M, Duran-Padilla MA, Gevorkian J, Zoras O, Chrysos E, Chalkiadakis G, Baritaki S. CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis. Int J Cancer 2018; 142:334-346. [PMID: 28929494 PMCID: PMC5918308 DOI: 10.1002/ijc.31064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) responds poorly to immuno-mediated cytotoxicity. Underexpression of corticotropin-releasing-hormone-receptor-2 (CRHR2) in CRC, promotes tumor survival, growth and Epithelial to Mesenchymal Transition (EMT), in vitro and in vivo. We explored the role of CRHR2 downregulation in CRC cell resistance to Fas/FasL-mediated apoptosis and the underlying molecular mechanism. CRC cell sensitivity to CH11-induced apoptosis was compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing CRC cell lines and targets of CRHR2/Ucn2 signaling were identified through in vitro and ex vivo analyses. Induced CRHR2/Ucn2 signaling in SW620 and DLD1 cells increased specifically their sensitivity to CH11-mediated apoptosis, via Fas mRNA and protein upregulation. CRC compared to control tissues had reduced Fas expression that was associated with lost CRHR2 mRNA, poor tumor differentiation and high risk for distant metastasis. YY1 silencing increased Fas promoter activity in SW620 and re-sensitized them to CH11-apoptosis, thus suggesting YY1 as a putative transcriptional repressor of Fas in CRC. An inverse correlation between Fas and YY1 expression was confirmed in CRC tissue arrays, while elevated YY1 mRNA was clinically relevant with advanced CRC grade and higher risk for distant metastasis. CRHR2/Ucn2 signaling downregulated specifically YY1 expression through miR-7 elevation, while miR-7 modulation in miR-7high SW620-CRHR2+ and miR-7low HCT116 cells, had opposite effects on YY1 and Fas expressions and cell sensitivity to CH11-killing. CRHR2/Ucn2 signaling is a negative regulator of CRC cell resistance to Fas/FasL-apoptosis via targeting the miR-7/YY1/Fas circuitry. CRHR2 restoration might prove effective in managing CRC response to immune-mediated apoptotic stimuli.
Collapse
Affiliation(s)
- Charalabos Pothoulakis
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Monica Torre-Rojas
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Marco A. Duran-Padilla
- Servicio de Patologia, Hospital General de Mexico ‘Eduardo Liceaga’, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Jonathan Gevorkian
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Odysseas Zoras
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Emmanuel Chrysos
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - George Chalkiadakis
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stavroula Baritaki
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
28
|
Zhong L, Schivo S, Huang X, Leijten J, Karperien M, Post JN. Nitric Oxide Mediates Crosstalk between Interleukin 1β and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression. Int J Mol Sci 2017; 18:ijms18112491. [PMID: 29165387 PMCID: PMC5713457 DOI: 10.3390/ijms18112491] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
Interleukin 1 beta (IL1β) and Wingless-Type MMTV Integration Site Family (WNT) signaling are major players in Osteoarthritis (OA) pathogenesis. Despite having a large functional overlap in OA onset and development, the mechanism of IL1β and WNT crosstalk has remained largely unknown. In this study, we have used a combination of computational modeling and molecular biology to reveal direct or indirect crosstalk between these pathways. Specifically, we revealed a mechanism by which IL1β upregulates WNT signaling via downregulating WNT antagonists, DKK1 and FRZB. In human chondrocytes, IL1β decreased the expression of Dickkopf-1 (DKK1) and Frizzled related protein (FRZB) through upregulation of nitric oxide synthase (iNOS), thereby activating the transcription of WNT target genes. This effect could be reversed by iNOS inhibitor 1400W, which restored DKK1 and FRZB expression and their inhibitory effect on WNT signaling. In addition, 1400W also inhibited both the matrix metalloproteinase (MMP) expression and cytokine-induced apoptosis. We concluded that iNOS/NO play a pivotal role in the inflammatory response of human OA through indirect upregulation of WNT signaling. Blocking NO production may inhibit the loss of the articular phenotype in OA by preventing downregulation of the expression of DKK1 and FRZB.
Collapse
Affiliation(s)
- Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands.
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Stefano Schivo
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands.
- Formal Methods and Tools, CTIT, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Jeroen Leijten
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
29
|
Burke AJ, Garrido P, Johnson C, Sullivan FJ, Glynn SA. Inflammation and Nitrosative Stress Effects in Ovarian and Prostate Pathology and Carcinogenesis. Antioxid Redox Signal 2017; 26:1078-1090. [PMID: 28326819 DOI: 10.1089/ars.2017.7004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Prostate and ovarian cancers are major contributors to cancer-related deaths worldwide. Recently, inflammation and nitrosative stress have been implicated in carcinogenesis, with the overexpression of NOS2 and concomitant release of nitric oxide (NO) associated with cancer initiation and progression. Recent Advances: An increasing body of evidence indicates an association between NOS2 expression and aggressive ovarian cancer. Research also indicates a role for NO in prostate disease pathology and prostate cancer. A therapeutic role for NOS2 inhibition and/or NO drugs exists for the treatment of both ovarian and prostate tumors. CRITICAL ISSUES Herein, we review the key molecular effects associated with NOS2 in ovarian and prostate cancer. NOS2 increases angiogenesis and tumor proliferation and correlates with aggressive type II ovarian tumors. NOS2 expressing tumors are sensitive to cisplatin chemotherapy, and NO may be used to sensitize cisplatin-resistant tumors to chemotherapy. NOS2 is highly expressed in prostate tumors compared to non-neoplastic prostate pathologies. NO may play a role in the development of androgen-independent prostate cancer via s-nitrosylation of the androgen receptor. Moreover, NOS2 inhibitors and NO donor drugs show therapeutic potential in ovarian and prostate cancer as single agents or dual drugs, by either inhibiting the effects of NOS2 or increasing NO levels to induce cytotoxic effects. FUTURE DIRECTIONS NOS2 and NO present new targets for the treatment of ovarian and prostate tumors. Furthermore, understanding NO-related tumor biology in these cancers presents a new means for improved patient stratification to the appropriate treatment regimen. Antioxid. Redox Signal. 26, 1078-1090.
Collapse
Affiliation(s)
- Amy J Burke
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Pablo Garrido
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland .,2 Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Carol Johnson
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland .,2 Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Francis J Sullivan
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland
| | - Sharon A Glynn
- 1 Prostate Cancer Institute, School of Medicine, National University of Ireland Galway , Galway, Ireland .,2 Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway , Galway, Ireland .,3 Apoptosis Research Centre, Biomedical Sciences, National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
30
|
Reséndiz-Martínez J, Asbun-Bojalil J, Huerta-Yepez S, Vega M. Correlation of the expression of YY1 and Fas cell surface death receptor with apoptosis of peripheral blood mononuclear cells, and the development of multiple organ dysfunction in children with sepsis. Mol Med Rep 2017; 15:2433-2442. [PMID: 28447715 PMCID: PMC5428261 DOI: 10.3892/mmr.2017.6310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023] Open
Abstract
Multiple organ dysfunction (MOD) is a lethal complication in children with sepsis. Apoptosis of several cell types is involved in this process, and it is associated with increased Fas cell surface death receptor (Fas) expression. As YY1 transcription factor (YY1) negatively regulates the expression of Fas in cancer models, and is associated with the clinical outcome, it may be important in MOD. The present study aimed to determine the association between the expression of Fas, YY1 and apoptosis in children with sepsis, and its association with MOD, these factors were analyzed in 30 pediatric patients that had been diagnosed with sepsis. Peripheral blood mononuclear cells were purified from patients, and YY1 and Fas protein expression was assessed by immunocytochemistry. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick‑end labeling. Sepsis was monitored using clinical parameters, pediatric logistic organ dysfunction (PELOD) score and the pediatric mortality index. The results demonstrated that Fas expression was directly correlated with apoptosis levels and the expression of YY1 was inversely correlated with apoptosis levels. Patients with high levels of apoptosis exhibited increased disease severity and poor clinical outcome. Notably, the findings of the present study demonstrated that there were higher survival rates in patients with high YY1 expression, compared with those with low YY1 expression. Additionally, patients with MOD exhibited lower proportions of apoptotic cells compared with sepsis patients without MOD. Furthermore, the PELOD score was positively correlated with Fas and inversely correlated with YY1 expression. Finally, high apoptosis and low YY1 expression were prognostic factors associated with poor survival rates. These data suggested that YY1 may be important for apoptosis induction via the regulation of Fas during sepsis. Therefore, Fas may be a potential therapeutic target to prevent MOD through regulation of YY1 expression. Furthermore, YY1 and Fas expression in PBMCs may be used to as prognostic markers.
Collapse
Affiliation(s)
- Judith Reséndiz-Martínez
- Servicio de Terapia Intensiva Pediátrica, Hospital General Dr Gaudencio González Garza, Centro Medico La Raza IMSS, 02990 Mexico City, Mexico
| | - Juan Asbun-Bojalil
- Servicio de Terapia Intensiva Pediátrica, Hospital General Dr Gaudencio González Garza, Centro Medico La Raza IMSS, 02990 Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez S.S.A, 06720 Mexico City, Mexico
| | - Mario Vega
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, 06720 Mexico City, Mexico
| |
Collapse
|
31
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|
32
|
Takiar V, Ip CKM, Gao M, Mills GB, Cheung LWT. Neomorphic mutations create therapeutic challenges in cancer. Oncogene 2016; 36:1607-1618. [PMID: 27841866 DOI: 10.1038/onc.2016.312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/24/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023]
Abstract
Oncogenesis is a pathologic process driven by genomic aberrations, including changes in nucleotide sequences. The majority of these mutational events fall into two broad categories: inactivation of tumor suppressor genes (hypomorph, antimorph or amorph) or activation of oncogenes (hypermorph). The recent surge in genome sequence data and functional genomics research has ushered in the discovery of aberrations in a third category: gain-of-novel-function mutation (neomorph). These neomorphic mutations, which can be found in both tumor suppressor genes and oncogenes, produce proteins with entirely different functions from their respective wild-type (WT) proteins and the other morphs. The unanticipated phenotypic outcomes elicited by neomorphic mutations imply that tumors with the neomorphic mutations may not respond to therapies designed to target the WT protein. Therefore, understanding the functional activities of each genomic aberration to be targeted is crucial in devising effective treatment strategies that will benefit specific cancer patients.
Collapse
Affiliation(s)
- V Takiar
- Departments of Radiation Oncology and Cancer Biology, University of Cincinnati College of Medicine, UC Barrett Cancer Center, OH, USA
| | - C K M Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Gao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L W T Cheung
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
33
|
El-Sehemy A, Postovit LM, Fu Y. Nitric oxide signaling in human ovarian cancer: A potential therapeutic target. Nitric Oxide 2016; 54:30-7. [DOI: 10.1016/j.niox.2016.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/27/2022]
|
34
|
Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D. Myeloid-Derived Suppressor Cells in Bacterial Infections. Front Cell Infect Microbiol 2016; 6:37. [PMID: 27066459 PMCID: PMC4814452 DOI: 10.3389/fcimb.2016.00037] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/15/2016] [Indexed: 01/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics.
Collapse
Affiliation(s)
- Michael Ost
- Children's Hospital, University of Tübingen Tübingen, Germany
| | - Anurag Singh
- Children's Hospital, University of Tübingen Tübingen, Germany
| | - Andreas Peschel
- Infection Biology Department, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| | - Roman Mehling
- Children's Hospital, University of Tübingen Tübingen, Germany
| | - Nikolaus Rieber
- Children's Hospital, University of TübingenTübingen, Germany; Department of Pediatrics, Kinderklinik München Schwabing, Klinikum Schwabing, StKM GmbH und Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| | - Dominik Hartl
- Children's Hospital, University of Tübingen Tübingen, Germany
| |
Collapse
|
35
|
A molecular perspective on rituximab: A monoclonal antibody for B cell non Hodgkin lymphoma and other affections. Crit Rev Oncol Hematol 2015; 97:275-90. [PMID: 26443686 DOI: 10.1016/j.critrevonc.2015.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
Rituximab (a chimeric anti-CD20 monoclonal antibody) is the first Food and Drug Administration approved anti-tumor antibody. Immunotherapy by rituximab, especially in combination-therapy, is a mainstay for a vast variety of B-cell malignancies therapy. Its therapeutic value is unquestionable, yet the mechanisms of action responsible for anti-tumor activity of rituximab and rituximab resistance mechanisms are not completely understood. Investigation of the mechanisms of action that contribute to the rituximab activity have eventually directed to a suite of novel combinations and novel treatment schedules, and also have resulted new generations of antibodies with more desired effects. Although, further investigations are needed to define the mechanisms of rituximab resistance and prominent effector activity of the altered next generation anti-CD20 to improve their efficacies and develop new anti-CD20 monoclonal antibodies in NHL treatment. This article focuses on the properties of CD20 which led scientists to select it as an effective therapeutic target and the molecular details of mechanisms of rituximab action and resistance. We also discuss about the impact of rituximab in monotherapy and in combination with chemotherapy regimens. Finally, we comparatively summarize the next generations of anti CD20 monoclonal antibodies to highlight their advantages relative to their ancestor: Rituximab.
Collapse
|
36
|
Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol 2015; 6:486-494. [PMID: 26432660 PMCID: PMC4596920 DOI: 10.1016/j.redox.2015.08.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022] Open
Abstract
The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in target cells by immune cytokines (e.g. IFN-γ, IL-1, TNF-α, etc.) and resulting in the sensitization of resistant tumor cells to death ligands-induced apoptosis. Endogenous/exogenous NO mediated its immune sensitizing effect by inhibiting NF-κΒ activity and downstream, inactivating the repressor transcription factor YY1, which inhibited both Fas and DR5 expressions. In addition, NO-mediated inhibition of NF-κΒ activity and inhibition downstream of its anti-apoptotic gene targets sensitized the tumor cells to apoptosis by chemotherapeutic drugs. We have identified in tumor cells a dysregulated pro-survival/anti-apoptotic loop consisting of NF-κB/Snail/YY1/RKIP/PTEN and its modification by NO was responsible, in large, for the reversal of chemo and immune resistance and sensitization to apoptotic mechanisms by cytotoxic agents. Moreover, tumor cells treated with exogenous NO donors resulted in the inhibition of NF-κΒ activity via S-nitrosylation of p50 and p65, inhibition of Snail (NF-κΒ target gene), inhibition of transcription repression by S-nitrosylation of YY1 and subsequent inhibition of epithelial-mesenchymal transition (EMT), induction of RKIP (inhibition of the transcription repressor Snail), and induction of PTEN (inhibition of the repressors Snail and YY1). Further, each gene product modified by NO in the loop was involved in chemo-immunosensitization. These above findings demonstrated that NO donors interference in the regulatory circuitry result in chemo-immunosensitization and inhibition of EMT. Overall, these observations suggest the potential anti-tumor therapeutic effect of NO donors in combination with subtoxic chemo-immuno drugs. This combination acts on multiple facets including reversal of chemo-immune resistance, and inhibition of both EMT and metastasis.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
| | - Hermes Garban
- NantBioScience, Inc., NantWorks, LLC., California NanoSystems Institute (CnSI) at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Predonzani A, Calì B, Agnellini AHR, Molon B. Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J Exp Med 2015; 5:64-76. [PMID: 25992321 PMCID: PMC4436941 DOI: 10.5493/wjem.v5.i2.64] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, nitric oxide (NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species (RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
Collapse
|
38
|
Bonavida B. RKIP-mediated chemo-immunosensitization of resistant cancer cells via disruption of the NF-κB/Snail/YY1/RKIP resistance-driver loop. Crit Rev Oncog 2015; 19:431-45. [PMID: 25597353 DOI: 10.1615/critrevoncog.2014011929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer remains one of the most dreadful diseases. Whereas most treatment regimens for various cancers have resulted in improved clinical responses and sometimes cures, unfortunately, subsets of cancer patients are either pretreatment resistant or develop resistance following therapy. These subsets of patients develop cross-resistance to unrelated therapeutics and usually succumb to death. Thus, delineating the underlying molecular mechanisms of resistance of various cancers and identifying molecular targets for intervention are the current main focus of research investigations. One approach to investigate cancer resistance has been to identify pathways that regulate resistance and develop means to disrupt these pathways in order to override resistance and sensitize the resistant cells to cell death. Hence, we have identified one pathway that is dysregulated in cancer, namely, the NF-κB/Snail/YY1/RKIP loop, that has been shown to regulate, in large part, tumor cell resistance to apoptosis by chemotherapeutic and immunotherapeutic cytotoxic drugs. The dysregulated resistant loop is manifested by the overexpression of NF-κB, Snail, and YY1 activities and the underexpression of RKIP. The induction of RKIP expression results in the downregulation of NF-κB, Snail, and YY1 and the sensitization of resistant cells to drug-induced apoptosis. These findings identified RKIP, in addition to its antiproliferative and metastatic suppressor functions, as an anti-resistance factor. This brief review describes the role of RKIP in the regulation of drug sensitivity via disruption of the NF-κB/Snail/ YY1/RKIP loop that regulates resistance in cancer cells.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, USA
| |
Collapse
|
39
|
Bonavida B, Kaufhold S. Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: a therapeutic target. Pharmacol Ther 2015; 150:149-68. [PMID: 25619146 DOI: 10.1016/j.pharmthera.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/15/2015] [Indexed: 01/22/2023]
Abstract
Conventional therapeutic treatments for various cancers include chemotherapy, radiotherapy, hormonal therapy and immunotherapy. While such therapies have resulted in clinical responses, they were coupled with non-tumor specificity, toxicity and resistance in a large subset of the treated patients. During the last decade, novel approaches based on scientific knowledge on the biology of cancer were exploited and led to the development of novel targeted therapies, such as specific chemical inhibitors and immune-based therapies. Although these targeted therapies resulted in better responses and less toxicity, there still remains the problem of the inherent or acquired resistance. Hence, current studies are seeking additional novel therapeutic targets that can overcome several mechanisms of resistance. The transcription factor Yin Yang 1 (YY1) is a ubiquitous protein expressed in normal and cancer tissues, though the expression level is much higher in a large number of cancers; hence, YY1 has been considered as a potential novel prognostic biomarker and therapeutic target. YY1 has been reported to be involved in the regulation of drug/immune resistance and also in the regulation of EMT. Several excellent reviews have been published on YY1 and cancer (see below), and, thus, this review will update recently published reports as well as report on the analysis of bioinformatics datasets for YY1 in various cancers and the relationship between reported protein expression and mRNA levels. The potential clinical significance of YY1 is discussed.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Samantha Kaufhold
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
40
|
Huerta-Yepez S, Liu H, Baritaki S, Del Lourdes Cebrera-Muñoz M, Rivera-Pazos C, Maldonado-Valenzuela A, Valencia-Hipolito A, Vega MI, Chen H, Berenson JR, Bonavida B. Overexpression of Yin Yang 1 in bone marrow-derived human multiple myeloma and its clinical significance. Int J Oncol 2014; 45:1184-1192. [PMID: 24970600 DOI: 10.3892/ijo.2014.2511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) patients initially respond to conventional therapy, however, many develop resistance and have recurrences. We have reported in other tumors that the transcription factor Yin Yang 1 (YY1) is a resistant factor and, thus, we hypothesized that YY1 may be over-expressed in MM. Significantly, higher expression (staining intensity and cell frequency) of YY1 in MM cell lines and in bone marrow-derived (BM) MM from 22 MM patients was observed as compared to expression in normal BM. Higher nuclear YY1 staining was associated with disease progression. Bioinformatic analyses of mRNA in data sets corroborated the above findings and showed significant overexpression of YY1 in MM compared to normal tissues and other hematopoietic disorders. The role of YY1 expression in the regulation of drug resistance was exemplified in a drug-resistant MM cell line transfected with YY1 siRNA and which was shown to be sensitized to bortezomib-induced apoptosis. These findings highlight the potential prognostic significance of YY1 expression level in MM patients and as a therapeutic target.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hong Liu
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stavroula Baritaki
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Clara Rivera-Pazos
- Oncology Disease Research Unit, Mexican Children Hospital 'Federico Gomez, Mexico City, Mexico
| | | | - Alberto Valencia-Hipolito
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center IMSS, Mexico City, Mexico
| | - Mario I Vega
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Haiming Chen
- Institute for Myeloma and Bone Cancer Research, Los Angeles, CA, USA
| | - James R Berenson
- Institute for Myeloma and Bone Cancer Research, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Bonavida B. Postulated mechanisms of resistance of B-cell non-Hodgkin lymphoma to rituximab treatment regimens: strategies to overcome resistance. Semin Oncol 2014; 41:667-77. [PMID: 25440611 DOI: 10.1053/j.seminoncol.2014.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibody-mediated immunotherapy has gained significant momentum since 1997 when the US Food and Drug Administration approved the first monoclonal antibody (mAb) for the treatment of B-cell non-Hodgkin lymphoma (B-NHL), namely, rituximab (chimeric anti-CD20 mAb). Subsequently, more than 20 approved mAbs have been in use clinically for the treatment of various cancers and several non-cancer-related diseases. Further, the combination treatment of mAbs with chemotherapy, immunotherapy, proteaosome inhibitors, and other inhibitors has resulted in synergistic anti-tumor activity with significant objective clinical responses. Despite their successful clinical use, the underlying mechanisms of rituximab's in vivo activities remain elusive. Further, it is not clear why a subset of patients is initially unresponsive and many responding patients become refractory and resistant to further treatments; hence, the underlying mechanisms of resistance are not known, Attempts have been made to develop model systems to investigate resistance to mAb therapy with the hope to apply the findings in both the generation of new therapeutics and in their use as new prognostic biomarkers. This review focuses on the development of resistance to rituximab treatments and discusses possible underlying mechanisms of action, postulated mechanisms of resistance in model systems, and suggested means to overcome resistance. Several prior reviews on the subject of rituximab resistance have been published and the present review both complements as well as adds new topics of relevance.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA.
| |
Collapse
|
43
|
Iyer AKV, Rojanasakul Y, Azad N. Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide 2014; 42:9-18. [PMID: 25064181 DOI: 10.1016/j.niox.2014.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/01/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
Nitric oxide, a reactive free radical, is an important signaling molecule that can lead to a plethora of cellular effects affecting homeostasis. A well-established mechanism by which NO manifests its effect on cellular functions is the post-translational chemical modification of cysteine thiols in substrate proteins by a process known as S-nitrosation. Studies that investigate regulation of cellular functions through NO have increasingly established S-nitrosation as the primary modulatory mechanism in their respective systems. There has been a substantial increase in the number of reports citing various candidate proteins undergoing S-nitrosation, which affects cell-death and -survival pathways in a number of tissues including heart, lung, brain and blood. With an exponentially growing list of proteins being identified as substrates for S-nitrosation, it is important to assimilate this information in different cell/tissue systems in order to gain an overall view of protein regulation of both individual proteins and a class of protein substrates. This will allow for broad mapping of proteins as a function of S-nitrosation, and help delineate their global effects on pathophysiological responses including cell death and survival. This information will not only provide a much better understanding of overall functional relevance of NO in the context of various disease states, it will also facilitate the generation of novel therapeutics to combat specific diseases that are driven by NO-mediated S-nitrosation.
Collapse
Affiliation(s)
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA
| |
Collapse
|
44
|
Oronsky B, Fanger GR, Oronsky N, Knox S, Scicinski J. The implications of hyponitroxia in cancer. Transl Oncol 2014; 7:167-73. [PMID: 24731473 PMCID: PMC4101386 DOI: 10.1016/j.tranon.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 01/31/2023] Open
Abstract
Tumors are spatially heterogeneous, with regions of relative hypoxia and normoxia. The tumor microenvironment is an important determinant of both tumor growth and response to a variety of cytotoxic and targeted therapies. In the tumor microenvironment, reactive oxygen species and nitric oxide (NO) are important mediators of the level of expression of many transcription factors and signaling cascades that affect tumor growth and responses to therapy. The primary objective of this review is to explore and discuss the seemingly dichotomous actions of NO in cancer biology as both a tumor promoter and suppressor with an emphasis on understanding the role of persistently low NO concentrations or hyponitroxia as a key mediator in tumor progression. This review will also discuss the potential role of hyponitroxia as a novel therapeutic target to treat cancer and outline an approach that provides new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | - Susan Knox
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | | |
Collapse
|
45
|
Schouppe E, Mommer C, Movahedi K, Laoui D, Morias Y, Gysemans C, Luyckx A, De Baetselier P, Van Ginderachter JA. Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events. Eur J Immunol 2013; 43:2930-42. [PMID: 23878002 DOI: 10.1002/eji.201343349] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/10/2013] [Accepted: 07/17/2013] [Indexed: 01/04/2023]
Abstract
Tumor growth coincides with an accumulation of myeloid-derived suppressor cells (MDSCs), which exert immune suppression and which consist of two main subpopulations, known as monocytic (MO) CD11b(+) CD115(+) Ly6G(-) Ly6C(high) MDSCs and granulocytic CD11b(+) CD115(-) Ly6G(+) Ly6C(int) polymorphonuclear (PMN)-MDSCs. However, whether these distinct MDSC subsets hamper all aspects of early CD8(+) T-cell activation--including cytokine production, surface marker expression, survival, and cytotoxicity--is currently unclear. Here, employing an in vitro coculture system, we demonstrate that splenic MDSC subsets suppress antigen-driven CD8(+) T-cell proliferation, but differ in their dependency on IFN-γ, STAT-1, IRF-1, and NO to do so. Moreover, MO-MDSC and PMN-MDSCs diminish IL-2 levels, but only MO-MDSCs affect IL-2Rα (CD25) expression and STAT-5 signaling. Unexpectedly, however, both MDSC populations stimulate IFN-γ production by CD8(+) T cells on a per cell basis, illustrating that some T-cell activation characteristics are actually stimulated by MDSCs. Conversely, MO-MDSCs counteract the activation-induced change in CD44, CD62L, CD162, and granzyme B expression, while promoting CD69 and Fas upregulation. Together, these effects result in an altered CD8(+) T-cell adhesiveness to the extracellular matrix and selectins, sensitivity to FasL-mediated apoptosis, and cytotoxicity. Hence, MDSCs intricately influence different CD8(+) T-cell activation events in vitro, whereby some parameters are suppressed while others are stimulated.
Collapse
Affiliation(s)
- Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Modulation of CD8(+) T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells. Immunobiology 2013; 218:1385-91. [PMID: 23932436 DOI: 10.1016/j.imbio.2013.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 02/05/2023]
Abstract
Myeloid-derived suppressor cells are immature myeloid cells, consisting of a monocytic and a granulocytic fraction, that are known to suppress anti-tumor immune responses. Important targets of the immunosuppressive capacity of MDSC are CD8(+) T cells, which are crucial cytotoxic effector cells in immunotherapeutic settings. CD8(+) T-cell activation and differentiation comprises a well-orchestrated series of events, starting from early TCR-mediated signaling and leading to cytokine secretion, the expression of activation markers, proliferation and the differentiation into several subsets of effector and memory cells. In this review, we summarize the available data on how the production of reactive oxygen species, nitric oxide, the arginase-mediated depletion of l-arginine and Cystine depletion by MDSCs interfere with the signaling molecules necessary for normal CTL differentiation and activation.
Collapse
|
47
|
Bonavida B, Jazirehi A, Vega MI, Huerta-Yepez S, Baritaki S. Roles Each of Snail, Yin Yang 1 and RKIP in the Regulation of Tumor Cells Chemo-immuno-resistance to Apoptosis. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2013; 4:10.1615/ForumImmunDisTher.2013008299. [PMID: 24187651 PMCID: PMC3811117 DOI: 10.1615/forumimmundisther.2013008299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current anti-cancer therapeutic armamentarium consists of surgery, chemotherapy, radiation, hormonal therapy, immunotherapy, and combinations thereof. Initial treatments usually result in objective clinical responses with prolongation of overall survival (OS) and progression-free survival (PFS) in a large subset of the treated patients. However, at the onset, there is a subset of patients who does not respond and another subset that initially responded but experiences relapses and recurrences. These latter subsets of patients develop a state of cross-resistance to a variety of unrelated therapies. Therefore, there is an urgent need to first unravel the underlying mechanisms of resistance and associated gene products that regulate the cross-resistance. Such gene products are potential therapeutic targets as well as potential prognostic/diagnostic biomarkers. In this context, we have identified three interrelated gene products involved in resistance, namely, Snail, YY1, and RKIP that are components of the dysregulated NF-κB/Snail/YY1/RKIP loop in many cancers. In this review, we will discuss the roles each of Snail, YY1 and RKIP in the regulation of tumor cell resistance to chemo and immunotherapies. Since these same gene products have also been shown to be involved in the regulation of the EMT phenotype and metastasis, we suggest that targeting any of these three gene products can simultaneously inhibit tumor cell resistance and metastasis.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Ali Jazirehi
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Mario I. Vega
- Oncology Research Unit, Oncology Hospital Siglo XXI National Medical Center, IMSS
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, SSA, México City, Mexico
| | - Stavroula Baritaki
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
48
|
Pulit-Penaloza JA, Scherbik SV, Brinton MA. Activation of Oas1a gene expression by type I IFN requires both STAT1 and STAT2 while only STAT2 is required for Oas1b activation. Virology 2012; 425:71-81. [PMID: 22305621 DOI: 10.1016/j.virol.2011.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/15/2011] [Accepted: 11/29/2011] [Indexed: 12/24/2022]
Abstract
The murine 2'-5' oligoadenylate synthetase 1a (Oas1a) and Oas1b genes are type 1 IFN responsive genes. Oas1a is an active synthetase with broad antiviral activity mediated through RNase L. Oas1b is inactive but can inhibit Oas1a synthetase activity and mediate a flavivirus-specific antiviral activity through an unknown RNase L-independent mechanism. Analysis of promoter elements regulating gene transcription confirmed that an IFN-stimulated response element (ISRE) is required for IFN beta-activation but neither the overlapping IRF binding site present in both promoters nor the adjacent Oas1b NF-kappa B site is required. Mutation of the overlapping STAT site negatively affected IFN beta-induction of Oas1a but not of Oas1b. Also, IFN beta induction of Oas1a was STAT1- and STAT2-dependent, while induction of Oas1b was STAT1-independent but STAT2-dependent. The two promoters differ at a single nucleotide in the STAT site. The data indicate that these two duplicated genes can be differentially regulated by IFN beta.
Collapse
|
49
|
Phosphorylation of the transcription factor YY1 by CK2α prevents cleavage by caspase 7 during apoptosis. Mol Cell Biol 2011; 32:797-807. [PMID: 22184066 DOI: 10.1128/mcb.06466-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this report, we describe the phosphorylation of Yin Yang 1 (YY1) in vitro and in vivo by CK2α (casein kinase II), a multifunctional serine/threonine protein kinase. YY1 is a ubiquitously expressed multifunctional zinc finger transcription factor implicated in regulation of many cellular and viral genes. The products of these genes are associated with cell growth, the cell cycle, development, and differentiation. Numerous studies have linked YY1 to tumorigenesis and apoptosis. YY1 is a target for cleavage by caspases in vitro and in vivo as well, but very little is known about the mechanisms that regulate its cleavage during apoptosis. Here, we identify serine 118 in the transactivation domain of YY1 as the site of CK2α phosphorylation, proximal to a caspase 7 cleavage site. CK2α inhibitors, as well as knockdown of CK2α by small interfering RNA, reduce S118 phosphorylation in vivo and enhance YY1 cleavage under apoptotic conditions, whereas increased CK2α activity by overexpression in vivo elevates S118 phosphorylation. A serine-to-alanine substitution at serine 118 also increases the cleavage of YY1 during apoptosis compared to wild-type YY1. Taken together, we have discovered a regulatory link between YY1 phosphorylation at serine 118 and regulation of its cleavage during programmed cell death.
Collapse
|
50
|
Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C, Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A. S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 2011; 140:2009-18, 2018.e1-4. [PMID: 21354149 DOI: 10.1053/j.gastro.2011.02.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/27/2011] [Accepted: 02/14/2011] [Indexed: 12/06/2022]
Abstract
BACKGROUND & AIMS Fas belongs to the family of tumor necrosis factor receptors which induce apoptosis. Many cancer cells express Fas but do not undergo Fas-mediated apoptosis. Nitric oxide reverses this resistance by increasing levels of Fas at the plasma membrane. We studied the mechanisms by which NO affects Fas function. METHODS Colon and mammary cancer cell lines were incubated with the NO donor glyceryl trinitrate or lipid A; S-nitrosylation of Fas was monitored using the biotin switch assay. Fas constructs that contained mutations at cysteine residues that prevent S-nitrosylation were used to investigate the involvement of S-nitrosylation in Fas-mediated cell death. Apoptosis was monitored according to morphologic criteria. RESULTS NO induced S-nitrosylation of cysteine residues 199 and 304 in the cytoplasmic part of Fas. In cancer cells that overexpressed wild-type Fas, S-nitrosylation induced Fas recruitment to lipid rafts and sensitized the cells to Fas ligand. In cells that expressed a mutant form of Fas in which cysteine 304 was replaced by valine residue, NO-mediated translocation of Fas to lipid rafts was affected and the death-inducing signal complex and synergistic effect of glyceryl trinitrate-Fas ligand were inhibited significantly. These effects were not observed in cells that expressed Fas with a mutation at cysteine 199. CONCLUSIONS We identified post-translational modifications (S-nitrosylation of cysteine residues 199 and 304) in the cytoplasmic domain of Fas. S-nitrosylation at cysteine 304 promotes redistribution of Fas to lipid rafts, formation of the death-inducing signal complex, and induction of cell death.
Collapse
Affiliation(s)
- Lissbeth Leon-Bollotte
- Ecole Pratique des Hautes Etudes, Tumor Immunology and Immunotherapy Laboratory, Dijon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|