1
|
Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 2008; 10:1695-710. [PMID: 18419773 PMCID: PMC2562661 DOI: 10.1111/j.1462-5822.2008.01160.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vesicular secretion of macromolecules has recently been described in the basidiomycete Cryptococcus neoformans, raising the question as to whether ascomycetes similarly utilize vesicles for transport. In the present study, we examine whether the clinically important ascomycete Histoplasma capsulatum produce vesicles and utilized these structures to secrete macromolecules. Transmission electron microscopy (TEM) shows transcellular secretion of vesicles by yeast cells. Proteomic and lipidomic analyses of vesicles isolated from culture supernatants reveal a rich collection of macromolecules involved in diverse processes, including metabolism, cell recycling, signalling and virulence. The results demonstrate that H. capsulatum can utilize a trans-cell wall vesicular transport secretory mechanism to promote virulence. Additionally, TEM of supernatants collected from Candida albicans, Candida parapsilosis, Sporothrix schenckii and Saccharomyces cerevisiae documents that vesicles are similarly produced by additional ascomycetes. The vesicles from H. capsulatum react with immune serum from patients with histoplasmosis, providing an association of the vesicular products with pathogenesis. The findings support the proposal that vesicular secretion is a general mechanism in fungi for the transport of macromolecules related to virulence and that this process could be a target for novel therapeutics.
Collapse
Affiliation(s)
- Priscila Costa Albuquerque
- Instituto de Pesquisa Clinica Evandro Chagas, Fundação Oswaldo Cruz, RJ Brazil
- Department of Microbiology and Immunology, Division of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Ernesto S. Nakayasu
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX,, USA
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ Brazil
| | - Susana Frases
- Department of Microbiology and Immunology, Division of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Division of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | | | - Igor C. Almeida
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX,, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Division of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| |
Collapse
|
2
|
Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules? Lipid Insights 2008; 2:27-40. [PMID: 20617119 PMCID: PMC2898286 DOI: 10.4137/lpi.s1000] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.
Collapse
Affiliation(s)
- Marcio L. Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590, Brazil
| | - Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590, Brazil
| | - Debora L. Oliveira
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
| |
Collapse
|
3
|
Abstract
The dramatic increase in fungal diseases in recent years can be attributed to the increased aggressiveness of medical therapy and other human activities. Immunosuppressed patients are at risk of contracting fungal diseases in healthcare settings and from natural environments. Increased prescribing of antifungals has led to the emergence of resistant fungi, resulting in treatment challenges. These concerns, together with the elucidation of the mechanisms of protective immunity against fungal diseases, have renewed interest in the development of vaccines against the mycoses. Most research has used murine models of human disease and, as we review in this article, the knowledge gained from these studies has advanced to the point where the development of vaccines targeting human fungal pathogens is now a realistic and achievable goal.
Collapse
Affiliation(s)
- Jim E. Cutler
- Departments of Pediatrics and Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences, and Research Institute for Children at Children’s Hospital, New Orleans, Louisiana, 70118 USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267–0560 USA
| | - Bruce S. Klein
- Departments of Pediatrics, Internal Medicine, and Medical Microbiology and Immunology and the University of Wisconsin Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792 USA
| |
Collapse
|
4
|
Lindell DM, Ballinger MN, McDonald RA, Toews GB, Huffnagle GB. Diversity of the T-cell response to pulmonary Cryptococcus neoformans infection. Infect Immun 2006; 74:4538-48. [PMID: 16861640 PMCID: PMC1539621 DOI: 10.1128/iai.00080-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell-mediated immunity plays an important role in immunity to the pathogenic fungus Cryptococcus neoformans. However, the antigen specificity of the T-cell response to C. neoformans remains largely unknown. In this study, we used two approaches to determine the antigen specificity of the T-cell response to C. neoformans. We report here that a diverse T-cell receptor (TCR) Vbeta repertoire was maintained throughout the primary response to pulmonary C. neoformans infection in immunocompetent mice. CD4+ T-cell deficiency resulted in relative expansion of all CD8+ T-cell subsets. During a secondary immune response, preferential usage of a TCR Vbeta subset in CD4+ T cells occurred in single individuals, but the preferences were "private" and not shared between individuals. Both CD4+ and CD8+ T cells from the secondary lymphoid tissues of immunized mice proliferated in response to a variety of C. neoformans antigens, including heat-killed whole C. neoformans, culture filtrate antigen, C. neoformans lysate, and purified cryptococcal mannoprotein. CD4+ and CD8+ T cells from the secondary lymphoid tissues of mice undergoing a primary response to C. neoformans proliferated in response to C. neoformans lysate. In response to stimulation with C. neoformans lysate, lung CD4+ and CD8+ T cells produced the effector cytokines tumor necrosis factor alpha and gamma interferon. These results demonstrate that a diverse T-cell response is generated in response to pulmonary C. neoformans infection.
Collapse
Affiliation(s)
- Dennis M Lindell
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, 6301 MSRB III, University of Michigan, Ann Arbor, Michigan 48109-0642, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
6
|
Deepe GS, Wüthrich M, Klein BS. Progress in vaccination for histoplasmosis and blastomycosis: coping with cellular immunity. Med Mycol 2005; 43:381-9. [PMID: 16178365 DOI: 10.1080/13693780500245875] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human infection with Histoplasma capsulatum or Blastomyces dermatitidis is sufficiently frequent to warrant exploring the development of vaccines. This review examines the advancements that have been accomplished over the last few years. The availability of molecular tools to create recombinant antigens or mutant strains has produced a small number of useful vaccine candidates. More importantly, the studies summarized herein demonstrate that understanding the host response to a protein or mutant fungus is critical to creating a vaccine that may be useful for the immunocompromised patient.
Collapse
Affiliation(s)
- George S Deepe
- Veterans Affairs Hospital and Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0560, USA.
| | | | | |
Collapse
|
7
|
Scheckelhoff M, Deepe GS. The protective immune response to heat shock protein 60 of Histoplasma capsulatum is mediated by a subset of V beta 8.1/8.2+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5818-26. [PMID: 12421963 DOI: 10.4049/jimmunol.169.10.5818] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization with recombinant heat shock protein 60 (rHsp60) from Histoplasma capsulatum or a region of the protein designated fragment 3 (F3) confers protection from a subsequent challenge in mice. To determine the T cell repertoire involved in the response to Hsp60, T cell clones from C57BL/6 mice immunized with rHsp60 were generated and examined for Vbeta usage by flow cytometry and RT-PCR. Vbeta8.1/8.2(+) T cells were preferentially expanded; other clones bore Vbeta4, -6, or -11. When Vbeta8.1/8.2(+) cells were depleted in mice, Vbeta4(+) T cell clones were almost exclusively isolated. Measurement of cytokine production demonstrated that nine of 16 Vbeta8.1/8.2(+) clones were Th1, while only three of 13 non-Vbeta8.1/8.2(+) clones were Th1. In mice immunized with rHsp60, depletion of Vbeta8.1/8.2(+), but not Vbeta6(+) plus Vbeta7(+), T cells completely abolished the protective efficacy of Hsp60 to lethal and sublethal challenges. Examination of the TCR revealed that a subset of Vbeta8.1/2(+) clones that produced IFN-gamma and were reactive to F3 shared a common CDR3 sequence, DGGQG. Transfer of these T cell clones into TCR alpha/beta(-/-) or IFN-gamma(-/-) mice significantly improved survival, while transfer of other Vbeta8.1/8.2(+) clones that were F3 reactive but were Th2 or clones that were not reactive to F3 but were Th1 did not confer protection. These data indicate that a distinct subset of Vbeta8.1/8.2(+) T cells is crucial for the generation of a protective response to rHsp60.
Collapse
MESH Headings
- Animals
- Cell Line
- Chaperonin 60/administration & dosage
- Chaperonin 60/genetics
- Chaperonin 60/immunology
- Clone Cells/immunology
- Clone Cells/metabolism
- Clone Cells/microbiology
- Clone Cells/transplantation
- Cytokines/biosynthesis
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/immunology
- Histoplasma/genetics
- Histoplasma/immunology
- Histoplasmosis/immunology
- Histoplasmosis/microbiology
- Histoplasmosis/prevention & control
- Immunoglobulin Variable Region/analysis
- Immunoglobulin Variable Region/biosynthesis
- Immunotherapy, Adoptive/methods
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Receptors, Antigen, T-Cell, alpha-beta/administration & dosage
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- T-Lymphocyte Subsets/transplantation
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Mark Scheckelhoff
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|