1
|
Funasaki S, Hatano A, Nakatsumi H, Koga D, Sugahara O, Yumimoto K, Baba M, Matsumoto M, Nakayama KI. A stepwise and digital pattern of RSK phosphorylation determines the outcome of thymic selection. iScience 2023; 26:107552. [PMID: 37646020 PMCID: PMC10460994 DOI: 10.1016/j.isci.2023.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/02/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Developing CD4+CD8+ double-positive (DP) thymocytes with randomly generated T cell receptors (TCRs) undergo positive (maturation) or negative (apoptosis) selection on the basis of the strength of TCR stimulation. Selection fate is determined by engagement of TCR ligands with a subtle difference in affinity, but the molecular details of TCR signaling leading to the different selection outcomes have remained unclear. We performed phosphoproteome analysis of DP thymocytes and found that p90 ribosomal protein kinase (RSK) phosphorylation at Thr562 was induced specifically by high-affinity peptide ligands. Such phosphorylation of RSK triggered its translocation to the nucleus, where it phosphorylated the nuclear receptor Nur77 and thereby promoted its mitochondrial translocation for apoptosis induction. Inhibition of RSK activity protected DP thymocytes from antigen-induced cell death. We propose that RSK phosphorylation constitutes a mechanism by which DP thymocytes generate a stepwise and binary signal in response to exposure to TCR ligands with a graded affinity.
Collapse
Affiliation(s)
- Shintaro Funasaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Daisuke Koga
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Osamu Sugahara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaya Baba
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Mélique S, Yang C, Lesourne R. Negative times negative equals positive, THEMIS sets the rule on thymic selection and peripheral T cell responses. Biomed J 2022; 45:334-346. [PMID: 35346866 PMCID: PMC9250082 DOI: 10.1016/j.bj.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
The activity of T cells is finely controlled by a set of negative regulators of T-cell antigen receptor (TCR)-mediated signaling. However, how those negative regulators are themselves controlled to prevent ineffective TCR-mediated responses remain poorly understood. Thymocyte-expressed molecule involved in selection (THEMIS) has been characterized over a decade ago as an important player of T cell development. Although the molecular function of THEMIS has long remained puzzling and subject to controversies, latest investigations suggest that THEMIS stimulates TCR-mediated signaling by repressing the tyrosine phosphatases SHP-1 and SHP-2 which exert regulatory function on T cell activation. Recent evidences also point to a role for THEMIS in peripheral T cells beyond its role on thymic selection. Here, we present an overview of the past research on THEMIS in the context of T cell development and peripheral T cell function and discuss the possible implication of THEMIS-based mechanisms on TCR-dependent and independent signaling outcomes.
Collapse
Affiliation(s)
- Suzanne Mélique
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Cui Yang
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Renaud Lesourne
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France.
| |
Collapse
|
4
|
Modeling the Dynamics of T-Cell Development in the Thymus. ENTROPY 2021; 23:e23040437. [PMID: 33918050 PMCID: PMC8069328 DOI: 10.3390/e23040437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.
Collapse
|
5
|
Engin A. Protein Kinase-Mediated Decision Between the Life and Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:1-33. [PMID: 33539010 DOI: 10.1007/978-3-030-49844-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinases are intracellular signaling enzymes that catalyze the phosphorylation of specific residues in their target substrate proteins. They play important role for regulation of life and death decisions. The complexity of the relationship between death receptors and protein kinases' cell death decision-making mechanisms create many difficulties in the treatment of various diseases. The most of fifteen different cell death pathways, which are reported by Nomenclature Committee on Cell Death (NCCD) are protein kinase signal transduction-mediated negative or positive selections. Tumor necrosis factor (TNF) as a main player of death pathways is a dual-functioning molecule in that it can promote both cell survival or cell death. All apoptotic and necrotic signal transductions are conveyed through death domain-containing death receptors, which are expressed on the surface of nearly all human cells. In humans, eight members of the death receptor family have been identified. While the interaction of TNF with TNF Receptor 1 (TNFR1) activates various signal transduction pathways, different death receptors activate three main signal transduction pathways: nuclear factor kappa B (NF-ĸB)-mediated differentiation or pro-inflammatory cytokine synthesis, mitogen-activated protein kinase (MAPK)-mediated stress response and caspase-mediated apoptosis. The link between the NF-ĸB and the c-Jun NH2-terminal kinase (JNK) pathways comprise another check-point to regulate cell death. TNF-α also promotes the "receptor-interacting serine/threonine protein kinase 1" (RIPK1)/RIPK3/ mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necrosis. Thus, necrosome is mainly comprised of MLKL, RIPK3 and, in some cases, RIPK1. In fact, RIPK1 is at the crossroad between life and death, downstream of various receptors as a regulator of endoplasmic reticulum stress-induced death. TNFR1 signaling complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of transforming growth factor β-activated kinase 1 (TAK1), inhibitor of nuclear transcription factor κB (IκB) kinase (IKK) α/IKKβ, IκBα, and NF-κB. IKKs affect cell-survival pathways in NF-κB-independent manner. Toll-like receptor (TLR) stimulation triggers various signaling pathways dependent on myeloid differentiation factor-88 (MyD88), Interleukin-1 receptor (IL-1R)-associated kinase (IRAK1), IRAK2 and IRAK4, lead to post-translational activation of nucleotide and oligomerization domain (NLRP3). Thereby, cell fate decisions following TLR signaling is parallel with death receptor signaling. Inhibition of IKKα/IKKβ or its upstream activators sensitize cells to death by inducing RIPK1-dependent apoptosis or necroptosis. During apoptosis, several kinases of the NF-κB pathway, including IKK1 and NF-κB essential modulator (NEMO), are cleaved by cellular caspases. This event can terminate the NF-κB-derived survival signals. In both canonical and non-canonical pathways, IKK is key to NF-κB activation. Whereas, the activation process of IKK, the functions of NEMO ubiquitination, IKK-related non-canonical pathway and the nuclear transportation of NEMO and functions of IKKα are still debated in cell death. In addition, cluster of differentiation 95 (CD95)-mediated non-apoptotic signaling and CD95- death-inducing signaling complex (DISC) interactions are waiting for clarification.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey.
| |
Collapse
|
6
|
MicroRNA miR-181-A Rheostat for TCR Signaling in Thymic Selection and Peripheral T-Cell Function. Int J Mol Sci 2020; 21:ijms21176200. [PMID: 32867301 PMCID: PMC7503384 DOI: 10.3390/ijms21176200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
The selection of T cells during intra-thymic d evelopment is crucial to obtain a functional and simultaneously not self-reactive peripheral T cell repertoire. However, selection is a complex process dependent on T cell receptor (TCR) thresholds that remain incompletely understood. In peripheral T cells, activation, clonal expansion, and contraction of the active T cell pool, as well as other processes depend on TCR signal strength. Members of the microRNA (miRNA) miR-181 family have been shown to be dynamically regulated during T cell development as well as dependent on the activation stage of T cells. Indeed, it has been shown that expression of miR-181a leads to the downregulation of multiple phosphatases, implicating miR-181a as ‘‘rheostat’’ of TCR signaling. Consistently, genetic models have revealed an essential role of miR-181a/b-1 for the generation of unconventional T cells as well as a function in tuning TCR sensitivity in peripheral T cells during aging. Here, we review these broad roles of miR-181 family members in T cell function via modulating TCR signal strength.
Collapse
|
7
|
Xie D, Zhang S, Chen P, Deng W, Pan Y, Xie J, Wang J, Liao B, Sleasman JW, Zhong XP. Negative control of diacylglycerol kinase ζ-mediated inhibition of T cell receptor signaling by nuclear sequestration in mice. Eur J Immunol 2020; 50:1729-1745. [PMID: 32525220 DOI: 10.1002/eji.201948442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Diacylglycerol kinases (DGKs) play important roles in restraining diacylglycerol (DAG)-mediated signaling. Within the DGK family, the ζ isoform appears to be the most important isoform in T cells for controlling their development and function. DGKζ has been demonstrated to regulate T cell maturation, activation, anergy, effector/memory differentiation, defense against microbial infection, and antitumor immunity. Given its critical functions, DGKζ function should be tightly regulated to ensure proper signal transduction; however, mechanisms that control DGKζ function are still poorly understood. We report here that DGKζ dynamically translocates from the cytosol into the nuclei in T cells after TCR stimulation. In mice, DGKζ mutant defective in nuclear localization displayed enhanced ability to inhibit TCR-induced DAG-mediated signaling in primary T cells, maturation of conventional αβT and iNKT cells, and activation of peripheral T cells compared with WT DGKζ. Our study reveals for the first time nuclear sequestration of DGKζ as a negative control mechanism to spatially restrain it from terminating DAG mediated signaling in T cells. Our data suggest that manipulation of DGKζ nucleus-cytosol shuttling as a novel strategy to modulate DGKζ activity and immune responses for treatment of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Danli Xie
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Shimeng Zhang
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Pengcheng Chen
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Wenhai Deng
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Yun Pan
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jinhai Xie
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jinli Wang
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Bryce Liao
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - John W Sleasman
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
|
9
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Alivernini S, Tolusso B, Petricca L, Bui L, Di Mario C, Gigante MR, Di Sante G, Benvenuto R, Fedele AL, Federico F, Ferraccioli G, Gremese E. Synovial Predictors of Differentiation to Definite Arthritis in Patients With Seronegative Undifferentiated Peripheral Inflammatory Arthritis: microRNA Signature, Histological, and Ultrasound Features. Front Med (Lausanne) 2018; 5:186. [PMID: 30018954 PMCID: PMC6037719 DOI: 10.3389/fmed.2018.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Objectives: To examine synovial tissue (ST) predictors of clinical differentiation in patients with seronegative undifferentiated peripheral inflammatory arthritis (UPIA). Methods: Fourty-two patients with IgA/IgM-Rheumatoid Factor and anti-citrullinated peptide antibodies negative UPIA, naive to Disease-Modifying Anti-Rheumatic Drugs, underwent Gray Scale (GSUS) and power Doppler (PDUS) evaluation and Ultrasound (US) guided ST biopsy. CD68, CD3, CD21, CD20, and CD31 synovial expression was evaluated by immunohistochemistry. Whole ST microRNA expression was assessed using miScript miRNA PCR Array. Peripheral blood (PB) and synovial fluid (SF) IL-6, VEGF-A, and VEGF-D levels were measured by ELISA and ST TNF expression was assessed by RT-PCR. Each patient was prospectively monitored and classified at baseline and within 1 year as UPIA, Rheumatoid Arthritis (RA), Spondyloarthritis (SpA) or Psoriatic Arthritis (PsA), respectively. Results: At baseline, CD68+ cells were the most common cells within the lining layer (p < 0.001) in seronegative UPIA, directly correlating with GSUS (R = 0.36; p = 0.02) and PDUS (R = 0.55; p < 0.001). Synovial CD31+ vessels count directly correlated with GSUS (R = 0.41; p = 0.01) and PDUS (R = 0.52; p < 0.001). During the follow-up, 6 (14.3%) UPIA reached a definite diagnosis (2 RA, 2 SpA and 2 PsA, respectively). At baseline, UPIA who differentiated had higher GSUS (p = 0.01), PDUS scores (p = 0.02) and higher histological scores for CD68+ (p = 0.005 and p = 0.04 for lining and sublining respectively), sublining CD3+ cells (p = 0.002), CD31+ vessels count (p < 0.001) and higher IL-6 PB levels (p = 0.01) than patients who remained as UPIA. MiRNA PCR Array showed that among the 86 tested miRNA species, at baseline, miR-346 and miR-214 were significantly down-regulated (p = 0.02 for both) in ST of UPIA who differentiated than in patients who remained as UPIA, inversely correlating with the lining CD68+ cells IHC score (R = −0.641; p = 0.048) and CD31+ vessels count (R = −0.665; p = 0.036) and with higher baseline ST expression of TNF (p = 0.014). Finally, logistic regression analysis demonstrated that baseline GSUS and PDUS scores ≥1.5 [OR:22.93 (95%CI:0.98–534.30)] and CD31+ vessels count ≥24.3 [OR:23.66 (95%CI:1.50–373.02)] were independent factors associated with the development of definite arthritis. Conclusions: MiRNA signature, histological and US features of ST may help in the identification of seronegative UPIA with high likelihood of clinical differentiation toward definite seronegative arthritis.
Collapse
Affiliation(s)
- Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Laura Bui
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria R Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele Di Sante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Benvenuto
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna L Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Federico
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
11
|
Abstract
Thymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| |
Collapse
|
12
|
Lai NS, Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. The role of aberrant expression of T cell miRNAs affected by TNF-α in the immunopathogenesis of rheumatoid arthritis. Arthritis Res Ther 2017; 19:261. [PMID: 29191214 PMCID: PMC5709919 DOI: 10.1186/s13075-017-1465-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background Tumor necrosis factor-alpha (TNF-α) can cause diverse T cell dysfunctions in patients with rheumatoid arthritis (RA). It is involved in the regulation of microRNAs (miRNAs) expression in different cell types. We hypothesized that the expression of T cell miRNAs would be affected by TNF-α, and these miRNAs could participate in the immunopathogenesis of RA. Methods Expression profiles of 270 human miRNAs in Jurkat cells, cultured in the presence or absence of TNF-α for 7 days were analyzed by real-time polymerase chain reaction. Potentially aberrantly expressed miRNAs were validated using T cell samples from 35 patients with RA and 15 controls. Transfection studies were conducted to search for gene expression and biological functions regulated by specific miRNAs. Results Initial analysis revealed 12 miRNAs were significantly lower, whereas the expression level of miR-146a was significantly higher in Jurkat cells after being cultured with TNF-α for 7 days. Decreased expression of miR-139-3p, miR-204, miR-760, miR-524-5p, miR-136, miR-548d-3p, miR-214, miR-383, and miR-887 were noted in RA T cells. Expression levels of miR-139-3p, miR-204, miR-214, and miR-760 were correlated with the use of biologic agents. The transfection of miR-214 mimic suppressed TNF-α-mediated apoptosis of Jurkat cells. Increased phosphorylation of extracellular regulating kinase (ERK) and c-Jun N-terminal kinase (JNK) was noted in RA T cells and Jurkat cells after TNF-α exposure. Transfection of Jurkat cells with miR-214 mimic suppressed both the basal and TNF-α-mediated ERK and JNK phosphoryation. Conclusions Among T cell miRNAs affected by TNF-α, the expression levels of nine miRNAs were decreased in T cells from patients with RA. The expression levels of miR-139-3p, miR-204, miR-214, and miR-760 increased in RA patients receiving biologic agents. The transfection of miR-214 reversed the TNF-α-mediated cells apoptosis and inhibited the phosphorylation of ERK and JNK in Jurkat cells. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1465-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Minxiong, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan. .,School of Medicine, Tzu Chi University, Hualien City, Taiwan.
| |
Collapse
|
13
|
Presotto D, Erdes E, Duong MN, Allard M, Regamey PO, Quadroni M, Doucey MA, Rufer N, Hebeisen M. Fine-Tuning of Optimal TCR Signaling in Tumor-Redirected CD8 T Cells by Distinct TCR Affinity-Mediated Mechanisms. Front Immunol 2017; 8:1564. [PMID: 29187853 PMCID: PMC5694758 DOI: 10.3389/fimmu.2017.01564] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022] Open
Abstract
Redirecting CD8 T cell immunity with self/tumor-specific affinity-matured T cell receptors (TCRs) is a promising approach for clinical adoptive T cell therapy, with the aim to improve treatment efficacy. Despite numerous functional-based studies, little is known about the characteristics of TCR signaling (i.e., intensity, duration, and amplification) and the regulatory mechanisms underlying optimal therapeutic T cell responses. Using a panel of human SUP-T1 and primary CD8 T cells engineered with incremental affinity TCRs against the cancer-testis antigen NY-ESO-1, we found that upon activation, T cells with optimal-affinity TCRs generated intense and sustained proximal (CD3ζ, LCK) signals associated with distal (ERK1/2) amplification-gain and increased function. In contrast, in T cells with very high affinity TCRs, signal initiation was rapid and strong yet only transient, resulting in poor MAPK activation and low proliferation potential even at high antigen stimulation dose. Under resting conditions, the levels of surface TCR/CD3ε, CD8β, and CD28 expression and of CD3ζ phosphorylation were significantly reduced in those hyporesponsive cells, suggesting the presence of TCR affinity-related activation thresholds. We also show that SHP phosphatases were involved along the TCR affinity gradient, but displayed spatially distinct regulatory roles. While PTPN6/SHP-1 phosphatase activity controlled TCR signaling initiation and subsequent amplification by counteracting CD3ζ and ERK1/2 phosphorylation, PTPN11/SHP-2 augmented MAPK activation without affecting proximal TCR signaling. Together, our findings indicate that optimal TCR signaling can be finely tuned by TCR affinity-dependent SHP-1 and SHP-2 activity, and this may readily be determined at the TCR/CD3 complex level. We propose that these TCR affinity-associated regulations represent potential protective mechanisms preventing high affinity TCR-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Danilo Presotto
- Department of Oncology, Lausanne University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Efe Erdes
- Department of Oncology, Lausanne University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Minh Ngoc Duong
- Department of Oncology, Lausanne University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Pierre-Olivier Regamey
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marie-Agnès Doucey
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Garreau A, Blaize G, Argenty J, Rouquié N, Tourdès A, Wood SA, Saoudi A, Lesourne R. Grb2-Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2758-2766. [PMID: 28877990 DOI: 10.4049/jimmunol.1700566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
Themis is a new component of the TCR signaling machinery that plays a critical role during T cell development. The positive selection of immature CD4+CD8+ double-positive thymocytes and their commitment to the CD4+CD8- single-positive stage are impaired in Themis-/- mice, suggesting that Themis might be important to sustain TCR signals during these key developmental processes. However, the analysis of Themis mRNA levels revealed that Themis gene expression is rapidly extinguished during positive selection. We show in this article that Themis protein expression is increased in double-positive thymocytes undergoing positive selection and is sustained in immature single-positive thymocytes, despite the strong decrease in Themis mRNA levels in these subsets. We found that Themis stability is controlled by the ubiquitin-specific protease USP9X, which removes ubiquitin K48-linked chains on Themis following TCR engagement. Biochemical analyses indicate that USP9X binds directly to the N-terminal CABIT domain of Themis and indirectly to the adaptor protein Grb2, with the latter interaction enabling recruitment of Themis/USP9X complexes to LAT, thereby sustaining Themis expression following positive selection. Together, these data suggest that TCR-mediated signals enhance Themis stability upon T cell development and identify USP9X as a key regulator of Themis protein turnover.
Collapse
Affiliation(s)
- Anne Garreau
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Gaëtan Blaize
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Nelly Rouquié
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Audrey Tourdès
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| |
Collapse
|
15
|
Golec DP, Hoeppli RE, Henao Caviedes LM, McCann J, Levings MK, Baldwin TA. Thymic progenitors of TCRαβ + CD8αα intestinal intraepithelial lymphocytes require RasGRP1 for development. J Exp Med 2017; 214:2421-2435. [PMID: 28652304 PMCID: PMC5551581 DOI: 10.1084/jem.20170844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022] Open
Abstract
Golec et al. show that RasGRP1, a critical Ras activator in thymocytes, is required for TCRαβ+CD8αα IEL development by regulating the survival of a heterogeneous population of thymic progenitors that receive a strong TCR signal. Therefore, RasGRP1 is necessary for thymic selection events stemming from strong or weak TCR signals. Strong T cell receptor (TCR) signaling largely induces cell death during thymocyte development, whereas weak TCR signals induce positive selection. However, some T cell lineages require strong TCR signals for differentiation through a process termed agonist selection. The signaling relationships that underlie these three fates are unknown. RasGRP1 is a Ras activator required to transmit weak TCR signals leading to positive selection. Here, we report that, despite being dispensable for thymocyte clonal deletion, RasGRP1 is critical for agonist selection of TCRαβ+CD8αα intraepithelial lymphocyte (IEL) progenitors (IELps), even though both outcomes require strong TCR signaling. Bim deficiency rescued IELp development in RasGRP1−/− mice, suggesting that RasGRP1 functions to promote survival during IELp generation. Additionally, expression of CD122 and the adhesion molecules α4β7 and CD103 define distinct IELp subsets with differing abilities to generate TCRαβ+CD8αα IEL in vivo. These findings demonstrate that RasGRP1-dependent signaling underpins thymic selection processes induced by both weak and strong TCR signals and is differentially required for fate decisions derived from a strong TCR stimulus.
Collapse
Affiliation(s)
- Dominic P Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Henao Caviedes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Jillian McCann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Martinez RJ, Evavold BD. Lower Affinity T Cells are Critical Components and Active Participants of the Immune Response. Front Immunol 2015; 6:468. [PMID: 26441973 PMCID: PMC4564719 DOI: 10.3389/fimmu.2015.00468] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Abstract
Kinetic and biophysical parameters of T cell receptor (TCR) and peptide:MHC (pMHC) interaction define intrinsic factors required for T cell activation and differentiation. Although receptor ligand kinetics are somewhat cumbersome to assess experimentally, TCR:pMHC affinity has been shown to predict peripheral T cell functionality and potential for forming memory. Multimeric forms of pMHC monomers have often been used to provide an indirect readout of higher affinity T cells due to their availability and ease of use while allowing simultaneous definition of other functional and phenotypic characteristics. However, multimeric pMHC reagents have introduced a bias that underestimates the lower affinity components contained in the highly diverse TCR repertoires of all polyclonal T cell responses. Advances in the identification of lower affinity cells have led to the examination of these cells and their contribution to the immune response. In this review, we discuss the identification of high- vs. low-affinity T cells as well as their attributed signaling and functional differences. Lastly, mechanisms are discussed that maintain a diverse range of low- and high-affinity T cells.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Webb JT, Behar M. Topology, dynamics, and heterogeneity in immune signaling. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:285-300. [DOI: 10.1002/wsbm.1306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
Affiliation(s)
- J. Taylor Webb
- Department of Biomedical Engineering; The University of Texas at Austin; Austin TX USA
| | - Marcelo Behar
- Department of Biomedical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
18
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
20
|
Fu Y, Lim S, Urano D, Tunc-Ozdemir M, Phan NG, Elston TC, Jones AM. Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell 2014; 156:1084-95. [PMID: 24581502 DOI: 10.1016/j.cell.2014.01.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/22/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Cells continuously adjust their behavior in response to changing environmental conditions. Both intensity and duration of external signals are critical factors in determining what response is initiated. To understand how intracellular signaling networks process such multidimensional information, we studied the AtRGS1-mediated glucose response system of Arabidopsis. By combining experiments with mathematical modeling, we discovered a reciprocal dose and duration response relying on the orchestrated action of three kinases (AtWNK1, AtWNK8, and AtWNK10) acting on distinct timescales and activation thresholds. Specifically, we find that high concentrations of D-glucose rapidly signal through AtWNK8 and AtWNK10, whereas low, sustained sugar concentration slowly activate the pathway through AtWNK1, allowing the cells to respond similarly to transient, high-intensity signals and sustained, low-intensity signals. This "dose-duration reciprocity" allows encoding of both the intensity and persistence of glucose as an important energy resource and signaling molecule.
Collapse
Affiliation(s)
- Yan Fu
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sungmin Lim
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nguyen G Phan
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Perley JP, Mikolajczak J, Harrison ML, Buzzard GT, Rundell AE. Multiple model-informed open-loop control of uncertain intracellular signaling dynamics. PLoS Comput Biol 2014; 10:e1003546. [PMID: 24722333 PMCID: PMC3983080 DOI: 10.1371/journal.pcbi.1003546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 02/07/2014] [Indexed: 01/08/2023] Open
Abstract
Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model. For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells. In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the single-model controllers. This study provides an experimentally-corroborated control methodology that utilizes the knowledge encoded within multiple mathematical models of intracellular signaling to design control inputs that effectively direct cell behavior in open-loop.
Collapse
Affiliation(s)
- Jeffrey P. Perley
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Judith Mikolajczak
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Marietta L. Harrison
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Gregery T. Buzzard
- Department of Mathematics, Purdue University, West Lafayette, Indiana, United States of America
| | - Ann E. Rundell
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, Hoerter JAH, Paster W, Acuto O, Cheroutre H, Sauer K, Gascoigne NRJ. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 2013; 504:441-5. [PMID: 24226767 PMCID: PMC3977001 DOI: 10.1038/nature12718] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8αβ-expressing 'single-positive' thymocytes from CD4(+)CD8αβ(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Javier Casas
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Stephanie Rigaud
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | - Vasily Rybakin
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Florence Lambolez
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Joanna Brzostek
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - John A H Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hilde Cheroutre
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Karsten Sauer
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nicholas R J Gascoigne
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
23
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
24
|
SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells. Immunol Res 2013; 55:116-24. [PMID: 22956467 DOI: 10.1007/s12026-012-8354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
How T cell receptor (TCR) avidity influences CD8(+) T cell development and repertoire selection is not yet fully understood. To fill this gap, we utilized Src-like adaptor protein (SLAP)-deficient mice as a tool to increase TCR avidity on double positive (DP) thymocytes. We generated SLAP(-/-) mice with the transgenic MHC class I-restricted TCR (OT-1) and SLAP(-/-) Vβ5 mice, expressing only the β-chain of the TCR OT-1 transgene, to examine the effects of increased TCR surface levels on CD8(+) T cell development and repertoire selection. In comparing SLAP(-/-) OT-1 and Vβ5 mice with wild-type controls, we performed compositional analysis and assessed thymocyte signaling by measuring CD5 levels. In addition, we performed tetramer and compositional staining to measure affinity for the cognate antigen, ovalbumin (OVA) peptide, presented by MHC. Furthermore, we quantified differences in α-chain repertoire in SLAP(-/-) Vβ5 mice. We have found that SLAP(-/-) OT-1 mice have fewer CD8(+) thymocytes but have increased CD5 expression. SLAP(-/-) OT-1 mice have fewer DP thymocytes expressing Vα2, signifying increased endogenous α-chain rearrangement, and more non-OVA-specific CD8(+) splenocytes upon tetramer staining. Our data demonstrate that SLAP(-/-) Vβ5 mice also have fewer OVA-specific cells and increased Vα2 usage in the peripheral Vβ5 CD8(+) T cells that were non-OVA-specific, demonstrating differences in α-chain repertoire. These studies provide direct evidence that increased TCR avidity in DP thymocytes enhances CD8(+) T cell negative selection deleting thymocytes with specificity for cognate antigen, an antigen the mature T cells may never encounter. Collectively, these studies provide new insights into how TCR avidity during CD8(+) T cell development influences repertoire selection.
Collapse
|
25
|
Joshi RP, Koretzky GA. Diacylglycerol kinases: regulated controllers of T cell activation, function, and development. Int J Mol Sci 2013; 14:6649-73. [PMID: 23531532 PMCID: PMC3645659 DOI: 10.3390/ijms14046649] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG), a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA). Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes.
Collapse
Affiliation(s)
- Rohan P. Joshi
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Gary A. Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-215-746-5522; Fax: +1-215-746-5525
| |
Collapse
|
26
|
Deswal S, Meyer A, Fiala GJ, Eisenhardt AE, Schmitt LC, Salek M, Brummer T, Acuto O, Schamel WWA. Kidins220/ARMS Associates with B-Raf and the TCR, Promoting Sustained Erk Signaling in T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:1927-35. [DOI: 10.4049/jimmunol.1200653] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Dillon TJ, Takahashi M, Li Y, Tavisala S, Murray SE, Moran AE, Parker DC, Stork PJS. B-Raf is required for positive selection and survival of DP cells, but not for negative selection of SP cells. Int Immunol 2013; 25:259-69. [PMID: 23334952 DOI: 10.1093/intimm/dxs104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The duration of signaling through the MAP kinase (or ERK pathway) cascade has been implicated in thymic development, particularly positive and negative selection. In T cells, two isoforms of the MAP kinase kinase kinase Raf function to transmit signals from the T-cell receptor to ERK: C-Raf and B-Raf. In this study, we conditionally ablated B-Raf expression within thymocytes to assess the effects on ERK activation and thymocyte development. The complete loss of B-Raf is accompanied by a dramatic loss of ERK activation in both the double positive (DP) and single positive (SP) thymocytes, as well as peripheral splenocytes. There was a significant decrease in the cellularity of KO thymi, largely due to a loss of pre-selected DP cells, a decrease in DP cells undergoing positive selection, and a defect in SP maturation. B-Raf plays significant roles in survival of DP thymocytes and function of SP cells in the periphery. Surprisingly, we saw no effect of B-Raf deficiency on negative selection of autoreactive SP thymocytes, despite the greatly reduced ERK activation in these cells.
Collapse
Affiliation(s)
- Tara J Dillon
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol 2013; 373:49-67. [PMID: 23612987 DOI: 10.1007/82_2013_319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.
Collapse
|
29
|
A voltage-gated sodium channel is essential for the positive selection of CD4(+) T cells. Nat Immunol 2012; 13:880-7. [PMID: 22842345 PMCID: PMC3426661 DOI: 10.1038/ni.2379] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/26/2012] [Indexed: 12/15/2022]
Abstract
Sustained Ca2+ entry into CD4+CD8+ double-positive thymocytes is required for positive selection. We identified a voltage-gated Na+ channel (VGSC), essential for positive selection of CD4+ T cells. Pharmacological inhibition of VGSC activity inhibitedsustained Ca2+ influx induced by positive-selecting ligands and in vitro positive selection of CD4+ but not CD8+ T cells. In vivo shRNA knockdown of Scn5a specifically inhibited positive selection of CD4+ T cells. Ectopic expression of VGSC in peripheral AND CD4+ T cells bestowed the ability to respond to a positively selecting ligand, directly demonstrating VGSC expression was responsible for increased sensitivity. Thus active VGSCs in thymocytes provide a mechanism by which a weak positive selecting signal can induce sustained Ca2+ signals required for CD4+ T cell development.
Collapse
|
30
|
Lesourne R, Zvezdova E, Song KD, El-Khoury D, Uehara S, Barr VA, Samelson LE, Love PE. Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function. THE JOURNAL OF IMMUNOLOGY 2012; 189:1154-61. [PMID: 22732588 DOI: 10.4049/jimmunol.1200123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Themis1, a recently identified T cell protein, has a critical function in the generation of mature CD4(+)CD8(-) and CD4(-)CD8(+) (CD4 and CD8 single-positive [SP]) thymocytes and T cells. Although Themis1 has been shown to bind to the adaptor proteins LAT and Grb2, previous studies have yielded conflicting results regarding whether thymocytes from Themis1(-/-) mice exhibit TCR-mediated signaling defects. In this study, we demonstrate that, in the absence of Themis1, TCR-mediated signaling is selectively impaired in CD4 SP and CD8 SP thymocytes but is not affected in CD4(+)CD8(+) double-positive thymocytes despite high expression of Themis1 in double-positive thymocytes. Like Themis1, Themis2, a related member of the Themis family, which is expressed in B cells and macrophages, contains two conserved cysteine-based domains, a proline-rich region, and a nuclear localization signal. To determine whether Themis1 and Themis2 can perform similar functions in vivo, we analyzed T cell development and TCR-mediated signaling in Themis1(-/-) mice reconstituted with either Themis1 or Themis2 transgenes. Notably, Themis1 and Themis2 exhibited the same potential to restore T cell development and TCR-mediated signaling in Themis1(-/-) mice. Both proteins were tyrosine phosphorylated and were recruited within Grb2 signaling complexes to LAT following TCR engagement. These results suggest that conserved molecular features of the Themis1 and Themis2 proteins are important for their biological activity and predict that Themis1 and Themis2 may perform similar functions in T and B cells, respectively.
Collapse
Affiliation(s)
- Renaud Lesourne
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012; 13:121-8. [PMID: 22261968 DOI: 10.1038/ni.2190] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell repertoire is generated during thymic development in preparation for the response to antigens from pathogens. The T cell repertoire is shaped by positive selection, which requires recognition by the T cell antigen receptor (TCR) of complexes of self peptide and major histocompatibility complex proteins (self-pMHC) with low affinity, and negative selection, which eliminates T cells with TCRs that recognize self-pMHC with high affinity. This generates a repertoire with low affinity for self-pMHC but high affinity for foreign antigens. The TCR must successfully engage both of these ligands for development, homeostasis and immune responses. This review discusses mechanisms underlying the interaction of the TCR with peptide-major histocompatibility complex ligands of varying affinity and highlights signaling mechanisms that enable the TCR to generate different responses to very distinct ligands.
Collapse
|
32
|
Gascoigne NRJ, Palmer E. Signaling in thymic selection. Curr Opin Immunol 2011; 23:207-12. [PMID: 21242076 DOI: 10.1016/j.coi.2010.12.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 01/22/2023]
Abstract
T cell receptor signaling allows the developing thymocyte to undergo positive or negative selection, which is required for the formation of a useful mature T cell repertoire. Recent developments include the finding that much of the Lck kinase (required to initiate T cell signaling) is already in an active configuration before signaling. The analog strength of antigen binding to the T cell receptor binding may be translated into a digital signal by the amount of time the TCR is paired with a co-receptor carrying Lck. Downstream, the cellular localization of MAP kinase signaling is determined by the strength of the signal and in turn predicts positive or negative selection. A novel protein, Themis, is important in crossing the positive selection developmental checkpoint, but its mode of action is still uncertain. Commitment to the CD4 or CD8 lineage is influenced by the amount of ZAP-70 signaling and also by closely regulated responsiveness to intrathymic cytokines such as IL7.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
33
|
Filbert EL, Nguyen A, Markiewicz MA, Fowlkes BJ, Huang YH, Shaw AS. Kinase suppressor of Ras 1 is required for full ERK activation in thymocytes but not for thymocyte selection. Eur J Immunol 2010; 40:3226-34. [PMID: 20865788 DOI: 10.1002/eji.201040349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 11/06/2022]
Abstract
The scaffold protein kinase suppressor of Ras 1 (KSR1) is critical for efficient activation of ERK in a number of cell types. Consistent with this, we observed a defect in ERK activation in thymocytes that lack KSR1. Interestingly, we found that the defect was much greater after PMA stimulation than by CD3 activation. Since ERK activation is believed to be important for thymocyte development, we analyzed thymocyte selection in KSR1-deficient (KSR1(-/-) ) mice. We found that positive selection in two different TCR transgenic models, HY and AND, was normal. On the other hand, negative selection in the HY model was slightly impaired in KSR1(-/-) mice. However, a defect in negative selection was not apparent in the AND TCR model system or in an endogenous superantigen-mediated model of negative selection. These results suggest that, despite a requirement for KSR1 for full ERK activation in thymocytes, full and efficient ERK activation is not essential for the majority of thymocyte selection events.
Collapse
Affiliation(s)
- Erin L Filbert
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lee SY, Stadanlick J, Kappes DJ, Wiest DL. Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 2010; 22:237-46. [PMID: 20471282 PMCID: PMC2906684 DOI: 10.1016/j.smim.2010.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
While insights into the molecular processes that specify adoption of the alphabeta and gammadelta fates are beginning to emerge, the basis for control of specification remains highly controversial. This review highlights the current models attempting to explain T lineage commitment. Recent observations support the hypothesis that the T cell receptor (TCR) provides instructive cues through differences in TCR signaling intensity and/or longevity. Accordingly, we review evidence addressing the importance of differences in signal strength/longevity, how signals differing in intensity/longevity may be generated, and finally how such signals modulate the activity of downstream effectors to promote the opposing developmental fates.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Humans
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sang-Yun Lee
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jason Stadanlick
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Dietmar J. Kappes
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L. Wiest
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
35
|
Finetti F, Savino MT, Baldari CT. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters. Immunol Rev 2010; 232:115-34. [PMID: 19909360 DOI: 10.1111/j.1600-065x.2009.00826.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | | | |
Collapse
|
36
|
Gruber T, Pfeifhofer-Obermair C, Baier G. PKCtheta is necessary for efficient activation of NFkappaB, NFAT, and AP-1 during positive selection of thymocytes. Immunol Lett 2010; 132:6-11. [PMID: 20433868 PMCID: PMC2937209 DOI: 10.1016/j.imlet.2010.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 01/25/2023]
Abstract
While it has been shown in several publications that the serine-threonine kinase PKCθ is required for efficient activation of mature T lymphocytes, the role of PKCθ in T cell development in the thymus is somewhat controversial. In this study, using knockout mice, we show that PKCθ is important in positive selection. The thymus of PKCθ−/− animals contains significantly less mature single positive T cells compared to wild-type controls. Biochemically, PKCθ deficient thymocytes show defective activation of the transcription factors AP-1, NFAT and NFκB as well as impaired phosphorylation of the MAP kinase ERK after T cell receptor stimulation in vitro. Together, these results reveal a crucial role of PKCθ in positive selection of thymocytes in a pathway leading to the activation of ERK, AP-1, NFAT, and NFκB.
Collapse
Affiliation(s)
- Thomas Gruber
- Department of Medical Genetics, Clinical and Molecular Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
37
|
Hu Q, Sader A, Parkman JC, Baldwin TA. Bim-mediated apoptosis is not necessary for thymic negative selection to ubiquitous self-antigens. THE JOURNAL OF IMMUNOLOGY 2010; 183:7761-7. [PMID: 19933852 DOI: 10.4049/jimmunol.0902181] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
T cell education in the thymus is critical for establishing a functional, yet self-tolerant, T cell repertoire. Negative selection is a key process in enforcing self-tolerance. There are many questions that surround the mechanism of negative selection, but it is currently held that apoptosis initiated by Bim and/or Nur77 is critical for negative selection. Recent studies, however, have questioned the necessity of Bim in maintaining both central and peripheral T cell tolerance. To reconcile these apparently contradictory findings, we examined the role of Bim in negative selection in the well-characterized, physiological HY(cd4) mouse model. We found that while Bim expression was required for CD4(+)CD8(+) double-positive thymocyte apoptosis, it was not required for negative selection. Furthermore, Bim deficiency did not alter the frequency or affinity of male reactive cells that escape negative selection in an oligoclonal repertoire. Collectively, these studies indicate that negative selection occurs efficiently in the absence of apoptosis and suggest that the current paradigm of negative selection requiring apoptosis be revisited.
Collapse
Affiliation(s)
- Qian Hu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
38
|
|
39
|
McGargill MA, Ch'en IL, Katayama CD, Pagès G, Pouysségur J, Hedrick SM. Cutting edge: Extracellular signal-related kinase is not required for negative selection of developing T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:4838-42. [PMID: 19801509 PMCID: PMC2847885 DOI: 10.4049/jimmunol.0902208] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signals initiated through the TCR during development can result in either survival and differentiation or cell death. High affinity signals that induce death elicit a robust yet transient activation of signaling pathways, including Erk, whereas low affinity ligands, which promote survival, generate a gradual and weaker activation of the same pathways. It was recently demonstrated that Erk localizes to distinct cellular locations in response to high and low affinity ligands. Although a requirement for Erk in positive selection is well established, its role in negative selection is controversial and, thus, the importance of Erk relocalization during development is not understood. In this study, we examined the role of Erk in negative selection using mice that are genetically deficient in both Erk1 and Erk2 in T cells. Results from three different models reveal that thymocyte deletion remains intact in the absence of Erk.
Collapse
Affiliation(s)
- Maureen A. McGargill
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Irene L. Ch'en
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Carol D. Katayama
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Gilles Pagès
- University of Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer Research, UMR Centre National de la Recherche Scientifique 6543, Centre Antoine Lacassagne, Nice, France
| | - Jacques Pouysségur
- University of Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer Research, UMR Centre National de la Recherche Scientifique 6543, Centre Antoine Lacassagne, Nice, France
| | - Stephen M. Hedrick
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
40
|
Kovalovsky D, Yu Y, Dose M, Emmanouilidou A, Konstantinou T, Germar K, Aghajani K, Guo Z, Mandal M, Gounari F. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:3873-84. [PMID: 19717519 DOI: 10.4049/jimmunol.0901369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thymic maturation of T cells depends on the intracellular interpretation of alphabetaTCR signals by processes that are poorly understood. In this study, we report that beta-catenin/Tcf signaling was activated in double-positive thymocytes in response to alphabetaTCR engagement and impacted thymocyte selection. TCR engagement combined with activation of beta-catenin signaled thymocyte deletion, whereas Tcf-1 deficiency rescued from negative selection. Survival/apoptotis mediators including Bim, Bcl-2, and Bcl-x(L) were alternatively influenced by stabilization of beta-catenin or ablation of Tcf-1, and Bim-mediated beta-catenin induced thymocyte deletion. TCR activation in double-positive cells with stabilized beta-catenin triggered signaling associated with negative selection, including sustained overactivation of Lat and Jnk and a transient activation of Erk. These observations are consistent with beta-catenin/Tcf signaling acting as a switch that determines the outcome of thymic selection downstream the alphabetaTCR cascade.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Molecular Oncology Research Institute, Tufts New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang A, Rud J, Olson CM, Anguita J, Osborne BA. Phosphorylation of Nur77 by the MEK-ERK-RSK Cascade Induces Mitochondrial Translocation and Apoptosis in T Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:3268-77. [DOI: 10.4049/jimmunol.0900894] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Fu G, Vallée S, Rybakin V, McGuire MV, Ampudia J, Brockmeyer C, Salek M, Fallen PR, Hoerter JA, Munshi A, Huang YH, Hu J, Fox HS, Sauer K, Acuto O, Gascoigne NR. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat Immunol 2009; 10:848-56. [PMID: 19597499 PMCID: PMC2757056 DOI: 10.1038/ni.1766] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/08/2009] [Indexed: 11/17/2022]
Abstract
Themis (thymocyte-expressed molecule involved in selection), a member of a family of proteins with unknown functions, is highly conserved among vertebrates. Here we found that Themis had high expression in thymocytes between the pre-T cell antigen receptor (pre-TCR) and positive-selection checkpoints and low expression in mature T cells. Themis-deficient thymocytes showed defective positive selection, which resulted in fewer mature thymocytes. Negative selection was also impaired in Themis-deficient mice. A greater percentage of Themis-deficient T cells had CD4(+)CD25(+)Foxp3(+) regulatory and CD62L(lo)CD44(hi) memory phenotypes than did wild-type T cells. In support of the idea that Themis is involved in TCR signaling, this protein was phosphorylated quickly after TCR stimulation and was needed for optimal TCR-driven calcium mobilization and activation of the kinase Erk.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sébastien Vallée
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Vasily Rybakin
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marielena V. McGuire
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeanette Ampudia
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Claudia Brockmeyer
- T cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Mogjiborahman Salek
- T cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul R. Fallen
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John A.H. Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anil Munshi
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yina H. Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jianfang Hu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Howard S. Fox
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Oreste Acuto
- T cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nicholas R.J. Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
43
|
Ha S, Redmond L. ERK mediates activity dependent neuronal complexity via sustained activity and CREB-mediated signaling. Dev Neurobiol 2009; 68:1565-79. [PMID: 18837011 DOI: 10.1002/dneu.20682] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A major question in the process of dendrite development and complexity is not whether neuronal activity plays a role, but how it contributes to specific components of the mature dendrite pattern. Neurons interpret activity into the influx of calcium ions leading to activation of signaling pathways. The dynamics of calcium-activated signaling pathways after neuronal activity and the contribution to formation of dendrite complexity remain unclear. Here, we show that one calcium activated signaling pathway, extracellular signal-regulated kinase (ERK), showed differential activity in cortical neurons. In response to depolarizing stimuli, ERK was active for less than an hour in most neurons, whereas in others ERK remained active for several hours. Further, neurons in which ERK activity was sustained, displayed greater dendrite complexity than neurons that did not display sustained ERK activity. Interestingly, this difference in dendrite complexity was detected in some, but not all, morphological parameters. Pharmacological inhibition of sustained ERK activity inhibited calcium-activated dendrite complexity. Increasing the duration and degree of ERK phosphorylation, and thus activity, with dominant negative MAP kinase phosphatase-1 accentuated dendrite complexity. Neurons in which ERK activity was sustained activated downstream nuclear targets including RSK, MSK, cAMP response element binding protein (CREB), CRE-mediated gene transcription, and stabilized c-Fos. Further, the increase in dendrite complexity mediated by sustained ERK activity was inhibited by expression of a dominant negative CREB. These data indicate that ERK-mediated activity induced dendrite complexity via sustained signaling and CREB-mediated signaling.
Collapse
Affiliation(s)
- Seungshin Ha
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
44
|
Morley SC, Weber KS, Kao H, Allen PM. Protein kinase C-theta is required for efficient positive selection. THE JOURNAL OF IMMUNOLOGY 2008; 181:4696-708. [PMID: 18802072 DOI: 10.4049/jimmunol.181.7.4696] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C-theta (PKCtheta) is critical for TCR-initiated signaling in mature T cells, but initial reports found no requirement for PKCtheta in thymocyte development. Thymocytes and peripheral T cells utilize many of the same signaling components and, given the significant role of PKCtheta in peripheral T cells, it was surprising that it was not involved at all in TCR signaling in thymocytes. We decided to re-evaluate the role of PKCtheta in thymocyte development using the well-characterized class II-restricted n3.L2 TCR-transgenic TCR model. Analysis of n3.L2 PKCtheta(-/-) mice revealed a defect in thymocyte-positive selection, resulting in a 50% reduction in the generation of n3.L2 CD4 single-positive thymocytes and n3.L2 CD4 mature T cells. Competition between n3.L2 WT and n3.L2 PKCtheta(-/-) thymocytes in bone marrow chimeras revealed a more dramatic defect, with a >80% reduction in generation of n3.L2 CD4 single-positive thymocytes derived from PKCtheta(-/-) mice. Inefficient positive selection of n3.L2 PKCtheta(-/-) CD4 single-positive cells resulted from "weaker" signaling through the TCR and correlated with diminished ERK activation. The defect in positive selection was not complete in the PKCtheta(-/-) mice, most likely accounted for by compensation by other PKC isoforms not evident in peripheral cells. Similar decreased positive selection of both CD4 and CD8 single-positive thymocytes was also seen in nontransgenic PKCtheta(-/-) mice. These findings now place PKCtheta as a key signaling molecule in the positive selection of thymocytes as well as in the activation of mature T cells.
Collapse
Affiliation(s)
- Sharon Celeste Morley
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
45
|
Wong NKY, Lai JCY, Birkenhead D, Shaw AS, Johnson P. CD45 down-regulates Lck-mediated CD44 signaling and modulates actin rearrangement in T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7033-43. [PMID: 18981123 DOI: 10.4049/jimmunol.181.10.7033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tyrosine phosphatase CD45 dephosphorylates the negative regulatory tyrosine of the Src family kinase Lck and plays a positive role in TCR signaling. In this study we demonstrate a negative regulatory role for CD45 in CD44 signaling leading to actin rearrangement and cell spreading in activated thymocytes and T cells. In BW5147 T cells, CD44 ligation led to CD44 and Lck clustering, which generated a reduced tyrosine phosphorylation signal in CD45(+) T cells and a more sustained, robust tyrosine phosphorylation signal in CD45(-) T cells. This signal resulted in F-actin ring formation and round spreading in the CD45(+) cells and polarized, elongated cell spreading in CD45(-) cells. The enhanced signal in the CD45(-) cells was consistent with enhanced Lck Y394 phosphorylation compared with the CD45(+) cells where CD45 was recruited to the CD44 clusters. This enhanced Src family kinase-dependent activity in the CD45(-) cells led to PI3K and phospholipase C activation, both of which were required for elongated cell spreading. We conclude that CD45 induces the dephosphorylation of Lck at Y394, thereby preventing sustained Lck activation and propose that the amplitude of the Src family kinase-dependent signal regulates the outcome of CD44-mediated signaling to the actin cytoskeleton and T cell spreading.
Collapse
Affiliation(s)
- Nelson K Y Wong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
46
|
Synergistic control of T cell development and tumor suppression by diacylglycerol kinase alpha and zeta. Proc Natl Acad Sci U S A 2008; 105:11909-14. [PMID: 18689679 DOI: 10.1073/pnas.0711856105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diacylglycerol (DAG) kinases (DGKs) are a family of enzymes that convert DAG to phosphatidic acid (PA), the physiologic functions of which have been poorly defined. We report here that DGK alpha and zeta synergistically promote T cell maturation in the thymus. Absence of both DGKalpha and zeta (DGKalpha(-/-)zeta(-/-)) results in a severe decrease in the number of CD4(+)CD8(-) and CD4(-)CD8(+) single-positive thymocytes correlating with increased DAG-mediated signaling. Positive selection, but not negative selection, is impaired in DGKalpha(-/-)zeta(-/-) mice. The developmental blockage in DGKalpha(-/-)zeta(-/-) mice can be partially overcome by treatment with PA. Furthermore, decreased DGK activity also promotes thymic lymphomagenesis accompanying elevated Ras and Erk1/2 activation. Our data demonstrate a synergistic and critical role of DGK isoforms in T cell development and tumor suppression, and indicate that DGKs not only terminate DAG signaling but also initiate PA signaling in thymocytes to promote positive selection.
Collapse
|
47
|
Non-redundant function of the MEK5-ERK5 pathway in thymocyte apoptosis. EMBO J 2008; 27:1896-906. [PMID: 18548009 DOI: 10.1038/emboj.2008.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/23/2008] [Indexed: 11/09/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) ERK1/2, p38, and JNK are thought to determine survival-versus-death fate in developing thymocytes. However, this view was challenged by studies using 'MEK1-ERK1/2-specific' pharmacological inhibitors, which block both positive and negative selection. Recently, these inhibitors were also shown to affect MEK5, an upstream activator of ERK5, another class of MAPK with homology to ERK1/2. To define the contribution of the MEK5-ERK5 pathway in T-cell development, we retrovirally expressed dominant-negative or constitutively activated form of MEK5 to inhibit or activate the MEK5-ERK5 pathway. We demonstrate that MEK5 regulates apoptosis of developing thymocytes but has no function in positive selection. ERK5 activity correlates with the levels of Nur77 family members but not that of Bim, two effector pathways of thymocyte apoptosis. These results illustrate the critical involvement of the MEK5-ERK5 pathway in thymocyte development distinct from that of ERK1/2 and highlight the importance of the MAPK network in mediating differential effects pertaining to T-cell differentiation and apoptosis.
Collapse
|
48
|
Jordan MS, Smith JE, Burns JC, Austin JET, Nichols KE, Aschenbrenner AC, Koretzky GA. Complementation in trans of altered thymocyte development in mice expressing mutant forms of the adaptor molecule SLP76. Immunity 2008; 28:359-69. [PMID: 18342008 DOI: 10.1016/j.immuni.2008.01.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/28/2007] [Accepted: 01/25/2008] [Indexed: 11/16/2022]
Abstract
The adaptor protein SLP76 directs signaling downstream of the T cell receptor (TCR) and is essential for thymocyte development. SLP76 contains three N-terminal tyrosines that are critical for its function. To define the role of these residues in thymocyte development, we generated two lines of "knock-in" mice, one expressing a mutation in tyrosine 145 (Y145F) and a second harboring two point mutations at tyrosines 112 and 128 (Y112-128F). We show here that although thymocyte development requires both Y145- and Y112-128-generated signals, selection was more dependent upon Y145. Although several proximal TCR signaling events were defective in both mutant mice, phosphorylation of the guanine nucleotide exchange factor, Vav1, and activation of Itk-dependent pathways were differentially affected by mutations at Y112-128 and Y145, respectively. Analysis of mice expressing one Y145F and one Y112-128F allele revealed that these mutants could complement one another in trans, demonstrating cooperativity between two or more SLP76 molecules. Thus, the N-terminal tyrosines of SLP76 are required for thymocyte selection but can function on separate molecules to support TCR signaling.
Collapse
Affiliation(s)
- Martha S Jordan
- Cancer Biology, Abramson Family Cancer Research Institute, 427 BRBII/III, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Fujii Y, Matsuda S, Takayama G, Koyasu S. ERK5 is involved in TCR-induced apoptosis through the modification of Nur77. Genes Cells 2008; 13:411-9. [DOI: 10.1111/j.1365-2443.2008.01177.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
DGKs (diacylglycerol kinases) are members of a unique and conserved family of intracellular lipid kinases that phosphorylate DAG (diacylglycerol), catalysing its conversion into PA (phosphatidic acid). This reaction leads to attenuation of DAG levels in the cell membrane, regulating a host of intracellular signalling proteins that have evolved the ability to bind this lipid. The product of the DGK reaction, PA, is also linked to the regulation of diverse functions, including cell growth, membrane trafficking, differentiation and migration. In multicellular eukaryotes, DGKs provide a link between lipid metabolism and signalling. Genetic experiments in Caenorhabditis elegans, Drosophila melanogaster and mice have started to unveil the role of members of this protein family as modulators of receptor-dependent responses in processes such as synaptic transmission and photoreceptor transduction, as well as acquired and innate immune responses. Recent discoveries provide new insights into the complex mechanisms controlling DGK activation and their participation in receptor-regulated processes. After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.
Collapse
|