1
|
Schwartz CI, Abell NS, Li A, Aradhana, Tycko J, Truong A, Montgomery SB, Hess GT. Towards optimizing diversifying base editors for high-throughput studies of single- nucleotide variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.621003. [PMID: 39605325 PMCID: PMC11601328 DOI: 10.1101/2024.11.18.621003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Determining the phenotypic effects of single nucleotide variants is critical for understanding the genome and interpreting clinical sequencing results. Base editors, including diversifying base editors that create C>N mutations, are potent tools for installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing. To address this knowledge gap, the effect of various design features, such as deaminase recruitment and delivery method (electroporation or lentiviral transduction), on editing was assessed across ∼200 synthetic target sites. The direct fusion of a hyperactive variant of activation-induced cytidine deaminase to the N-terminus of dCas9 (DivA-BE) produced the highest editing efficiency, ∼4-fold better than the previous CRISPR-X method. Additionally, DivA-BE mutagenized the DNA strand that anneals to the targeting sgRNA to create G>N mutations, which were absent when the deaminase was fused to the C-terminus of dCas9. The DivA-BE editors efficiently diversified their target sites, an ideal characteristic for discovering functional variants. These and other findings provide a comprehensive analysis of how design features influence the activity of several popular base editors.
Collapse
|
2
|
Tang C, Krantsevich A, MacCarthy T. Deep learning model of somatic hypermutation reveals importance of sequence context beyond hotspot targeting. iScience 2022; 25:103668. [PMID: 35036866 PMCID: PMC8749460 DOI: 10.1016/j.isci.2021.103668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
B cells undergo somatic hypermutation (SHM) of the Immunoglobulin (Ig) variable region to generate high-affinity antibodies. SHM relies on the activity of activation-induced deaminase (AID), which mutates C>U preferentially targeting WRC (W=A/T, R=A/G) hotspots. Downstream mutations at WA Polymerase η hotspots contribute further mutations. Computational models of SHM can describe the probability of mutations essential for vaccine responses. Previous studies using short subsequences (k-mers) failed to explain divergent mutability for the same k-mer. We developed the DeepSHM (Deep learning on SHM) model using k-mers of size 5-21, improving accuracy over previous models. Interpretation of DeepSHM identified an extended WWRCT motif with particularly high mutability. Increased mutability was further associated with lower surrounding G content. Our model also discovered a conserved AGYCTGGGGG (Y=C/T) motif within FW1 of IGHV3 family genes with unusually high T>G substitution rates. Thus, a wider sequence context increases predictive power and identifies features that drive mutational targeting.
Collapse
Affiliation(s)
- Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Artem Krantsevich
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Zhou JQ, Kleinstein SH. Position-Dependent Differential Targeting of Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 2020; 205:3468-3479. [PMID: 33188076 DOI: 10.4049/jimmunol.2000496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/04/2020] [Indexed: 01/28/2023]
Abstract
Somatic hypermutation (SHM) generates much of the Ab diversity necessary for affinity maturation and effective humoral immunity. The activation-induced cytidine deaminase-induced DNA lesions and error-prone repair that underlie SHM are known to exhibit intrinsic biases when targeting the Ig sequences. Computational models for SHM targeting often model the targeting probability of a nucleotide in a motif-based fashion, assuming that the same DNA motif is equally likely to be targeted regardless of its position along the Ig sequence. The validity of this assumption, however, has not been rigorously studied in vivo. In this study, by analyzing a large collection of 956,157 human Ig sequences while controlling for the confounding influence of selection, we show that the likelihood of a DNA 5-mer motif being targeted by SHM is not the same at different positions in the same Ig sequence. We found position-dependent differential SHM targeting for about three quarters of the 38 and 269 unique motifs from more than half of the 292 and 1912 motif-allele pairs analyzed using productive and nonproductive Ig sequences, respectively. The direction of the differential SHM targeting was largely conserved across individuals with no allele-specific effect within an IgH variable gene family, but was not consistent with general decay of SHM targeting with increasing distance from the transcription start site. However, SHM targeting did correlate positively with the mutability of the wider sequence neighborhood surrounding the motif. These findings provide insights and future directions for computational efforts toward modeling SHM.
Collapse
Affiliation(s)
- Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511; and
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511; and .,Department of Pathology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
4
|
Jaiswal A, Singh AK, Tamrakar A, Kodgire P. Unfolding the Role of Splicing Factors and RNA Debranching in AID Mediated Antibody Diversification. Int Rev Immunol 2020; 40:289-306. [PMID: 32924658 DOI: 10.1080/08830185.2020.1815725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Activated B-cells diversify their antibody repertoire via somatic hypermutation (SHM) and class switch recombination (CSR). SHM is restricted to the variable region, whereas, CSR is confined to the constant region of immunoglobulin (Ig) genes. Activation-induced cytidine deaminase (AID) is a crucial player in the diversification of antibodies in the activated B-cell. AID catalyzes the deamination of cytidine (C) into uracil (U) at Ig genes. Subsequently, low fidelity repair of U:G mismatches may lead to mutations. Transcription is essential for the AID action, as it provides a transient single-strand DNA substrate. Since splicing is a co-transcriptional event, various splicing factors or regulators influence the transcription. Numerous splicing factors are known to regulate the AID targeting, function, Ig transcription, and AID splicing, which eventually influence antibody diversification processes. Splicing regulator SRSF1-3, a splicing isoform of serine arginine-rich splicing factor (SRSF1), and CTNNBL1, a spliceosome interacting factor, interact with AID and play a critical role in SHM. Likewise, a splicing regulator polypyrimidine tract binding protein-2 (PTBP2) and the debranching enzyme (DBR1) debranches primary switch transcripts which later forms G-quadruplex structures, and the S region guide RNAs direct AID to S region DNA. Moreover, AID shows several alternate splicing isoforms, like AID devoid of exon-4 (AIDΔE4) that is expressed in various pathological conditions. Interestingly, RBM5, a splicing regulator, is responsible for the skipping of AID exon 4. In this review, we discuss the role and significance of splicing factors in the AID mediated antibody diversification.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Amit Kumar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Anubhav Tamrakar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
5
|
Tang C, Bagnara D, Chiorazzi N, Scharff MD, MacCarthy T. AID Overlapping and Polη Hotspots Are Key Features of Evolutionary Variation Within the Human Antibody Heavy Chain (IGHV) Genes. Front Immunol 2020; 11:788. [PMID: 32425948 PMCID: PMC7204545 DOI: 10.3389/fimmu.2020.00788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Somatic hypermutation (SHM) of the immunoglobulin variable (IgV) loci is a key process in antibody affinity maturation. The enzyme activation-induced deaminase (AID), initiates SHM by creating C → U mismatches on single-stranded DNA (ssDNA). AID has preferential hotspot motif targets in the context of WRC/GYW (W = A/T, R = A/G, Y = C/T) and particularly at WGCW overlapping hotspots where hotspots appear opposite each other on both strands. Subsequent recruitment of the low-fidelity DNA repair enzyme, Polymerase eta (Polη), during mismatch repair, creates additional mutations at WA/TW sites. Although there are more than 50 functional immunoglobulin heavy chain variable (IGHV) segments in humans, the fundamental differences between these genes and their ability to respond to all possible foreign antigens is still poorly understood. To better understand this, we generated profiles of WGCW hotspots in each of the human IGHV genes and found the expected high frequency in complementarity determining regions (CDRs) that encode the antigen binding sites but also an unexpectedly high frequency of WGCW in certain framework (FW) sub-regions. Principal Components Analysis (PCA) of these overlapping AID hotspot profiles revealed that one major difference between IGHV families is the presence or absence of WGCW in a sub-region of FW3 sometimes referred to as “CDR4.” Further differences between members of each family (e.g., IGHV1) are primarily determined by their WGCW densities in CDR1. We previously suggested that the co-localization of AID overlapping and Polη hotspots was associated with high mutability of certain IGHV sub-regions, such as the CDRs. To evaluate the importance of this feature, we extended the WGCW profiles, combining them with local densities of Polη (WA) hotspots, thus describing the co-localization of both types of hotspots across all IGHV genes. We also verified that co-localization is associated with higher mutability. PCA of the co-localization profiles showed CDR1 and CDR2 as being the main contributors to variance among IGHV genes, consistent with the importance of these sub-regions in antigen binding. Our results suggest that AID overlapping (WGCW) hotspots alone or in conjunction with Polη (WA/TW) hotspots are key features of evolutionary variation between IGHV genes.
Collapse
Affiliation(s)
- Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Davide Bagnara
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
6
|
Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med 2019; 17:319. [PMID: 31547885 PMCID: PMC6757416 DOI: 10.1186/s12967-019-2071-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional modifications have been recently expanded with the addition of RNA editing, which is predominantly mediated by adenosine and cytidine deaminases acting on DNA and RNA. Here, we review the full spectrum of physiological processes in which these modifiers are implicated, among different organisms. Adenosine to inosine (A-to-I) editors, members of the ADAR and ADAT protein families are important regulators of alternative splicing and transcriptional control. On the other hand, cytidine to uridine (C-to-U) editors, members of the AID/APOBEC family, are heavily implicated in innate and adaptive immunity with important roles in antibody diversification and antiviral response. Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they modify various RNA molecules, including miRNAs, tRNAs apart from mRNAs, whereas DNA editing is also possible by some of them. The expansion of next generation sequencing technologies provided a wealth of data regarding such modifications. RNA editing has been implicated in various disorders including cancer, and neurological diseases of the brain or the central nervous system. It is also related to cancer heterogeneity and the onset of carcinogenesis. Response to treatment can also be affected by the RNA editing status where drug efficacy is significantly compromised. Studying RNA editing events can pave the way to the identification of new disease biomarkers, and provide a more personalised therapy to various diseases.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.
| |
Collapse
|
7
|
Mak CH, Pham P, Goodman MF. Random Walk Enzymes: Information Theory, Quantum Isomorphism, and Entropy Dispersion. J Phys Chem A 2019; 123:3030-3037. [PMID: 30848911 DOI: 10.1021/acs.jpca.9b00910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activation-induced deoxycytidine deaminase (AID) is a key enzyme in the human immune system. AID binds to and catalyzes random point mutations on the immunoglobulin (Ig) gene, leading to diversification of the Ig gene sequence by random walk motions, scanning for cytidines and turning them to uracils. The mutation patterns deposited by AID on its substrate DNA sequences can be interpreted as random binary words, and the information content of this stochastically generated library of mutated DNA sequences can be measured by its entropy. In this paper, we derive an analytical formula for this entropy and show that the stochastic scanning + catalytic dynamics of AID is controlled by a characteristic length that depends on the diffusion coefficient of AID and the catalytic rate. Experiments showed that the deamination rates have a sequence context dependence, where mutations are generated at higher intensities on DNA sequences with higher densities of mutable sites. We derive an isomorphism between this classical system and a quantum mechanical model and use this isomorphism to explain why AID appears to focus its scanning on regions with higher concentrations of deaminable sites. Using path integral Monte Carlo simulations of the quantum isomorphic system, we demonstrate how AID's scanning indeed depends on the context of the DNA sequence and how this affects the entropy of the library of generated mutant clones. Examining detailed features in the entropy of the experimentally generated clone library, we provide clear evidence that the random walk of AID on its substrate DNA is focused near hot spots. The model calculations applied to the experimental data show that the observed per-site mutation frequencies display similar contextual dependences as observed in the experiments, in which hot motifs are located adjacent to several different types of hot and cold motifs.
Collapse
|
8
|
Schramm CA, Douek DC. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design. Front Immunol 2018; 9:1876. [PMID: 30154794 PMCID: PMC6102386 DOI: 10.3389/fimmu.2018.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These "substitution profiles," whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
Collapse
Affiliation(s)
- Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Sheng Z, Schramm CA, Kong R, Mullikin JC, Mascola JR, Kwong PD, Shapiro L. Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation. Front Immunol 2017; 8:537. [PMID: 28539926 PMCID: PMC5424261 DOI: 10.3389/fimmu.2017.00537] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022] Open
Abstract
Somatic hypermutation (SHM) plays a critical role in the maturation of antibodies, optimizing recognition initiated by recombination of V(D)J genes. Previous studies have shown that the propensity to mutate is modulated by the context of surrounding nucleotides and that SHM machinery generates biased substitutions. To investigate the intrinsic mutation frequency and substitution bias of SHMs at the amino acid level, we analyzed functional human antibody repertoires and developed mGSSP (method for gene-specific substitution profile), a method to construct amino acid substitution profiles from next-generation sequencing-determined B cell transcripts. We demonstrated that these gene-specific substitution profiles (GSSPs) are unique to each V gene and highly consistent between donors. We also showed that the GSSPs constructed from functional antibody repertoires are highly similar to those constructed from antibody sequences amplified from non-productively rearranged passenger alleles, which do not undergo functional selection. This suggests the types and frequencies, or mutational space, of a majority of amino acid changes sampled by the SHM machinery to be well captured by GSSPs. We further observed the rates of mutational exchange between some amino acids to be both asymmetric and context dependent and to correlate weakly with their biochemical properties. GSSPs provide an improved, position-dependent alternative to standard substitution matrices, and can be utilized to developing software for accurately modeling the SHM process. GSSPs can also be used for predicting the amino acid mutational space available for antigen-driven selection and for understanding factors modulating the maturation pathways of antibody lineages in a gene-specific context. The mGSSP method can be used to build, compare, and plot GSSPs1; we report the GSSPs constructed for 69 common human V genes (DOI: 10.6084/m9.figshare.3511083) and provide high-resolution logo plots for each (DOI: 10.6084/m9.figshare.3511085).
Collapse
Affiliation(s)
- Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Detanico T, Phillips M, Wysocki LJ. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes. Front Immunol 2016; 7:525. [PMID: 27920779 PMCID: PMC5118421 DOI: 10.3389/fimmu.2016.00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/10/2016] [Indexed: 11/13/2022] Open
Abstract
In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been driven by their exceptional functional versatility, despite potential autoreactive consequences.
Collapse
Affiliation(s)
- Thiago Detanico
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA
| | - Matthew Phillips
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA
| | - Lawrence J Wysocki
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA; Department of Immunology University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
11
|
Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair (Amst) 2016; 45:1-24. [DOI: 10.1016/j.dnarep.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
|
12
|
Goodman MF. Better living with hyper-mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:421-34. [PMID: 27273795 PMCID: PMC4945469 DOI: 10.1002/em.22023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 05/12/2023]
Abstract
The simplest forms of mutations, base substitutions, typically have negative consequences, aside from their existential role in evolution and fitness. Hypermutations, mutations on steroids, occurring at frequencies of 10(-2) -10(-4) per base pair, straddle a domain between fitness and death, depending on the presence or absence of regulatory constraints. Two facets of hypermutation, one in Escherichia coli involving DNA polymerase V (pol V), the other in humans, involving activation-induced deoxycytidine deaminase (AID) are portrayed. Pol V is induced as part of the DNA-damage-induced SOS regulon, and is responsible for generating the lion's share of mutations when catalyzing translesion DNA synthesis (TLS). Four regulatory mechanisms, temporal, internal, conformational, and spatial, activate pol V to copy damaged DNA and then deactivate it. On the flip side of the coin, SOS-induced pols V, IV, and II mutate undamaged DNA, thus providing genetic diversity heightening long-term survival and evolutionary fitness. Fitness in humans is principally the domain of a remarkably versatile immune system marked by somatic hypermutations (SHM) in immunoglobulin variable (IgV) regions that ensure antibody (Ab) diversity. AID initiates SHM by deaminating C → U, favoring hot WRC (W = A/T, R = A/G) motifs. Since there are large numbers of trinucleotide motif targets throughout IgV, AID must exercise considerable catalytic restraint to avoid attacking such sites repeatedly, which would otherwise compromise diversity. Processive, random, and inefficient AID-catalyzed dC deamination simulates salient features of SHM, yet generates B-cell lymphomas when working at the wrong time in the wrong place. Environ. Mol. Mutagen. 57:421-434, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myron F. Goodman
- Correspondence to Myron F. Goodman, Department of Biological Sciences, Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910, USA,
| |
Collapse
|
13
|
Pham P, Afif SA, Shimoda M, Maeda K, Sakaguchi N, Pedersen LC, Goodman MF. Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. DNA Repair (Amst) 2016; 43:48-56. [PMID: 27258794 DOI: 10.1016/j.dnarep.2016.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Activation-induced deoxycytidine deaminase (AID) initiates somatic hypermutation (SHM) and class-switch recombination (CSR) by deaminating C→U during transcription of Ig-variable (V) and Ig-switch (S) region DNA, which is essential to produce high-affinity antibodies. Here we report the crystal structure of a soluble human AID variant at 2.8Å resolution that favors targeting WRC motifs (W=A/T, R=A/G) in vitro, and executes Ig V SHM in Ramos B-cells. A specificity loop extending away from the active site to accommodate two purine bases next to C, differs significantly in sequence, length, and conformation from APOBEC proteins Apo3A and Apo3G, which strongly favor pyrimidines at -1 and -2 positions. Individual amino acid contributions to specificity and processivity were measured in relation to a proposed ssDNA binding cleft. This study provides a structural basis for residue contributions to DNA scanning properties unique to AID, and for disease mutations in human HIGM-2 syndrome.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Samir A Afif
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Laboratory of Host Defence, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan; World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory of Host Defence, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan; World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan
| | - Nobuo Sakaguchi
- World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan; Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
14
|
Hoehn KB, Fowler A, Lunter G, Pybus OG. The Diversity and Molecular Evolution of B-Cell Receptors during Infection. Mol Biol Evol 2016; 33:1147-57. [PMID: 26802217 PMCID: PMC4839220 DOI: 10.1093/molbev/msw015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anna Fowler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gerton Lunter
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Bikos V, Karypidou M, Stalika E, Baliakas P, Xochelli A, Sutton LA, Papadopoulos G, Agathangelidis A, Papadopoulou E, Davis Z, Algara P, Kanellis G, Traverse-Glehen A, Mollejo M, Anagnostopoulos A, Ponzoni M, Gonzalez D, Pospisilova S, Matutes E, Piris MA, Papadaki T, Ghia P, Rosenquist R, Oscier D, Darzentas N, Tzovaras D, Belessi C, Hadzidimitriou A, Stamatopoulos K. An Immunogenetic Signature of Ongoing Antigen Interactions in Splenic Marginal Zone Lymphoma Expressing IGHV1-2*04 Receptors. Clin Cancer Res 2015; 22:2032-40. [PMID: 26647217 DOI: 10.1158/1078-0432.ccr-15-1170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Prompted by the extensive biases in the immunoglobulin (IG) gene repertoire of splenic marginal-zone lymphoma (SMZL), supporting antigen selection in SMZL ontogeny, we sought to investigate whether antigen involvement is also relevant post-transformation. EXPERIMENTAL DESIGN We conducted a large-scale subcloning study of the IG rearrangements of 40 SMZL cases aimed at assessing intraclonal diversification (ID) due to ongoing somatic hypermutation (SHM). RESULTS ID was identified in 17 of 21 (81%) rearrangements using the immunoglobulin heavy variable (IGHV)1-2*04 gene versus 8 of 19 (40%) rearrangements utilizing other IGHV genes (P= 0.001). ID was also evident in most analyzed IG light chain gene rearrangements, albeit was more limited compared with IG heavy chains. Identical sequence changes were shared by subclones from different patients utilizing the IGHV1-2*04 gene, confirming restricted ongoing SHM profiles. Non-IGHV1-2*04 cases displayed both a lower number of ongoing SHMs and a lack of shared mutations (per group of cases utilizing the same IGHV gene). CONCLUSIONS These findings support ongoing antigen involvement in a sizable portion of SMZL and further argue that IGHV1-2*04 SMZL may represent a distinct molecular subtype of the disease.
Collapse
Affiliation(s)
- Vasilis Bikos
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Maria Karypidou
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | | | - Panagiotis Baliakas
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aliki Xochelli
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Andreas Agathangelidis
- Division of Experimental Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele and Istituto Scientifico San Raffaele, Milan, Italy
| | | | - Zadie Davis
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Patricia Algara
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | - George Kanellis
- Hematopathology Department, Evangelismos Hospital, Athens, Greece
| | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | | | | | - David Gonzalez
- Section of Haemato-Oncology, Institute of Cancer Research, London, United Kingdom
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Estella Matutes
- Section of Haemato-Oncology, Institute of Cancer Research, London, United Kingdom
| | - Miguel Angel Piris
- Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
| | | | - Paolo Ghia
- Division of Experimental Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele and Istituto Scientifico San Raffaele, Milan, Italy
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Nikos Darzentas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | - Anastasia Hadzidimitriou
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kostas Stamatopoulos
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Saini J, Hershberg U. B cell variable genes have evolved their codon usage to focus the targeted patterns of somatic mutation on the complementarity determining regions. Mol Immunol 2015; 65:157-67. [PMID: 25660968 PMCID: PMC4352345 DOI: 10.1016/j.molimm.2015.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/29/2014] [Accepted: 01/02/2015] [Indexed: 01/19/2023]
Abstract
The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire toward the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased toward focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased toward using only highly skewed V genes at all stages of their response.
Collapse
Affiliation(s)
- Jasmine Saini
- School of Biomedical Engineering Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Uri Hershberg
- School of Biomedical Engineering Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, United States; Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
17
|
Overlapping hotspots in CDRs are critical sites for V region diversification. Proc Natl Acad Sci U S A 2015; 112:E728-37. [PMID: 25646473 DOI: 10.1073/pnas.1500788112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation-induced deaminase (AID) mediates the somatic hypermutation (SHM) of Ig variable (V) regions that is required for the affinity maturation of the antibody response. An intensive analysis of a published database of somatic hypermutations that arose in the IGHV3-23*01 human V region expressed in vivo by human memory B cells revealed that the focus of mutations in complementary determining region (CDR)1 and CDR2 coincided with a combination of overlapping AGCT hotspots, the absence of AID cold spots, and an abundance of polymerase eta hotspots. If the overlapping hotspots in the CDR1 or CDR2 did not undergo mutation, the frequency of mutations throughout the V region was reduced. To model this result, we examined the mutation of the human IGHV3-23*01 biochemically and in the endogenous heavy chain locus of Ramos B cells. Deep sequencing revealed that IGHV3-23*01 in Ramos cells accumulates AID-induced mutations primarily in the AGCT in CDR2, which was also the most frequent site of mutation in vivo. Replacing the overlapping hotspots in CDR1 and CDR2 with neutral or cold motifs resulted in a reduction in mutations within the modified motifs and, to some degree, throughout the V region. In addition, some of the overlapping hotspots in the CDRs were at sites in which replacement mutations could change the structure of the CDR loops. Our analysis suggests that the local sequence environment of the V region, and especially of the CDR1 and CDR2, is highly evolved to recruit mutations to key residues in the CDRs of the IgV region.
Collapse
|
18
|
Detanico T, Guo W, Wysocki LJ. Predominant role for activation-induced cytidine deaminase in generating IgG anti-nucleosomal antibodies of murine SLE. J Autoimmun 2015; 58:67-77. [PMID: 25634361 DOI: 10.1016/j.jaut.2015.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Serum IgG anti-nuclear antibodies (ANA) directed to complexes of DNA and histones are a hallmark of systemic lupus erythematosus (SLE) and reflect a failure in lymphocyte self-tolerance. A prior study utilizing spontaneously autoimmune B6.Nba2 mice deficient in terminal deoxynucleotidyl transferase (TdT) and with heterozygous deficiencies in Jh and Igk loci underscored the importance of somatic hypermutation (SHM) as a major generator of SLE-associated ANA. This interpretation had to be qualified because of severely limited opportunities for receptor editing and restricted VHCDR3 diversity. Therefore, we performed the converse study using mice that carried functional Tdt genes and wild type Jh and Igk loci but that could not undergo SHM. Analyses of ANA and ANA-producing hybridomas from B6.Nba2 Aicda(-/-) mice revealed that few animals produced high titers of the prototypical ANA directed to complexes of histones and DNA, that this response was delayed and that those cells that did produce such antibody exhibited limited clonal expansion, unusual Jk use and only infrequent dual receptor expression. This, together with the additional finding of an intrinsic propensity for SHM to generate Arg codons selectively in CDRs, reinforce the view that most IgG autoimmune clones producing prototypical anti-nucleosome antibodies in wild type mice are created by SHM.
Collapse
Affiliation(s)
- Thiago Detanico
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Wenzhong Guo
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Lawrence J Wysocki
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
19
|
Kepler TB, Munshaw S, Wiehe K, Zhang R, Yu JS, Woods CW, Denny TN, Tomaras GD, Alam SM, Moody MA, Kelsoe G, Liao HX, Haynes BF. Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Front Immunol 2014; 5:170. [PMID: 24795717 PMCID: PMC4001017 DOI: 10.3389/fimmu.2014.00170] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/30/2014] [Indexed: 11/13/2022] Open
Abstract
Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic hypermutation at any position within an Ig gene is known to depend strongly on the local DNA sequence, and Ig genes have region-specific codon biases that influence the local mutation rate within the gene resulting in increased differential mutability in the regions that encode the antigen-binding domains. We have isolated a set of clonally related natural Ig heavy chain-light chain pairs from an experimentally infected influenza patient, inferred the unmutated ancestral rearrangements and the maturation intermediates, and synthesized all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolutionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the observed antibodies. Furthermore, analysis of selection reveals that selection and mutation bias were concordant even at the level of maturation to a single antigen. Substantial improvement in affinity to HA occurred along mutationally preferred paths in sequence space and was thus strongly facilitated by the underlying local codon biases.
Collapse
Affiliation(s)
- Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine , Boston, MA , USA ; Department of Mathematics and Statistics, Boston University , Boston, MA , USA
| | - Supriya Munshaw
- Center for Viral Hepatitis Research, Johns Hopkins University , Baltimore, MD , USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA
| | - Jae-Sung Yu
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Christopher W Woods
- Department of Medicine, Duke University Medical Center , Durham, NC , USA ; Department of Pathology, Duke University Medical Center , Durham, NC , USA ; Hubert-Yeargan Center for Global Health, Duke University Medical Center , Durham, NC , USA ; Department of Pediatrics, Duke University Medical Center , Durham, NC , USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - M Anthony Moody
- Center for Viral Hepatitis Research, Johns Hopkins University , Baltimore, MD , USA ; Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
20
|
Hershberg U, Meng W, Zhang B, Haff N, St Clair EW, Cohen PL, McNair PD, Li L, Levesque MC, Luning Prak ET. Persistence and selection of an expanded B-cell clone in the setting of rituximab therapy for Sjögren's syndrome. Arthritis Res Ther 2014; 16:R51. [PMID: 24517398 PMCID: PMC3978607 DOI: 10.1186/ar4481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Subjects with primary Sjögren’s syndrome (SjS) have an increased risk of developing B-cell lymphoma and may harbor monoclonal B-cell expansions in the peripheral blood. Expanded B-cell clones could be pathogenic, and their persistence could exacerbate disease or predispose toward the development of lymphoma. Therapy with anti-CD20 (rituximab) has the potential to eliminate expanded B-cell clones and thereby potentially ameliorate disease. This study was undertaken to identify and track expanded B-cell clones in the blood of subjects with primary SjS who were treated with rituximab. Methods To determine whether circulating B-cell clones in subjects with primary SjS emerge or remain after B cell-depleting therapy with rituximab, we studied the antibody heavy-chain repertoire. We performed single-memory B-cell and plasmablast sorting and antibody heavy-chain sequencing in six rituximab-treated SjS subjects over the course of a 1-year follow-up period. Results Expanded B-cell clones were identified in four out of the six rituximab-treated SjS subjects, based upon the independent amplification of sequences with identical or highly similar VH, DH, and JH gene segments. We identified one SjS subject with a large expanded B-cell clone that was present prior to therapy and persisted after therapy. Somatic mutations in the clone were numerous but did not increase in frequency over the course of the 1-year follow-up, suggesting that the clone had been present for a long period of time. Intriguingly, a majority of the somatic mutations in the clone were silent, suggesting that the clone was under chronic negative selection. Conclusions For some subjects with primary SjS, these data show that (a) expanded B-cell clones are readily identified in the peripheral blood, (b) some clones are not eliminated by rituximab, and (c) persistent clones may be under chronic negative selection or may not be antigen-driven. The analysis of sequence variation among members of an expanded clone may provide a novel means of measuring the chronicity and selection of expanded B-cell populations in humans.
Collapse
|
21
|
Abstract
In this review, I discuss the currently available experimental evidence concerning the molecular interactions of the activation-induced cytidine deaminase (AID) with transcription of its target genes. The basic question that underlies the transcription relationship is how the process of somatic hypermutation of Ig genes can be restricted to their variable (V) regions. This hallmark of SHM assures that high affinity antibodies can be created while the biological functions of their constant (C) region are undisturbed. I present a revised model of AID function in somatic hypermutation (SHM): In a B cell that produces AID protein and undergoes mutation of the V regions of the expressed Ig heavy and light chain genes, only some of the transcription complexes initiating at the active V-region promoters are associated with AID. When AID travels with the elongating RNA polymerase (pol), it attracts proteins that cause the pausing/stalling of pol and termination of transcription, followed by termination of SHM. This differential AID loading model would allow the mutating B cell to continue producing full-length Ig proteins that are required to avoid apoptosis by permitting the cell to assemble functional B cell receptors.
Collapse
Affiliation(s)
- Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
22
|
Duke JL, Liu M, Yaari G, Khalil AM, Tomayko MM, Shlomchik MJ, Schatz DG, Kleinstein SH. Multiple transcription factor binding sites predict AID targeting in non-Ig genes. THE JOURNAL OF IMMUNOLOGY 2013; 190:3878-88. [PMID: 23514741 DOI: 10.4049/jimmunol.1202547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aberrant targeting of the enzyme activation-induced cytidine deaminase (AID) results in the accumulation of somatic mutations in ≈ 25% of expressed genes in germinal center B cells. Observations in Ung(-/-) Msh2(-/-) mice suggest that many other genes efficiently repair AID-induced lesions, so that up to 45% of genes may actually be targeted by AID. It is important to understand the mechanisms that recruit AID to certain genes, because this mistargeting represents an important risk for genome instability. We hypothesize that several mechanisms combine to target AID to each locus. To resolve which mechanisms affect AID targeting, we analyzed 7.3 Mb of sequence data, along with the regulatory context, from 83 genes in Ung(-/-) Msh2(-/-) mice to identify common properties of AID targets. This analysis identifies three transcription factor binding sites (E-box motifs, along with YY1 and C/EBP-β binding sites) that may work together to recruit AID. Based on previous knowledge and these newly discovered features, a classification tree model was built to predict genome-wide AID targeting. Using this predictive model, we were able to identify a set of 101 high-interest genes that are likely targets of AID.
Collapse
Affiliation(s)
- Jamie L Duke
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sebastián E, Alcoceba M, Balanzategui A, Marín L, Montes-Moreno S, Flores T, González D, Sarasquete ME, Chillón MC, Puig N, Corral R, Pardal E, Martín A, González-Barca E, Caballero MD, San Miguel JF, García-Sanz R, González M. Molecular characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma: antigen-driven origin and IGHV4-34 as a particular subgroup of the non-GCB subtype. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1879-88. [PMID: 22982190 DOI: 10.1016/j.ajpath.2012.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 01/05/2023]
Abstract
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Amino Acids/genetics
- Antigens, Neoplasm/immunology
- Clone Cells
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Female
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Germinal Center/immunology
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Mutation/genetics
- Somatic Hypermutation, Immunoglobulin/genetics
- Somatic Hypermutation, Immunoglobulin/immunology
- V(D)J Recombination/genetics
- V(D)J Recombination/immunology
- Young Adult
Collapse
Affiliation(s)
- Elena Sebastián
- Department of Hematology, University Hospital of Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mu Y, Prochnow C, Pham P, Chen XS, Goodman MF. A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem 2012; 287:28007-16. [PMID: 22715099 DOI: 10.1074/jbc.m112.370189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III). Each mutant was expressed and purified from insect cells and compared biochemically to wild type (WT) AID. Four point mutants retained catalytic activity at 1/3rd to 1/200th the level of WT AID. These "active" point mutants mimic the behavior of WT AID for motif recognition specificity, deamination spectra, and high deamination processivity. We constructed a series of C-terminal deletion mutants (class IV) that retain catalytic activity and processivity for deletions ≤18 amino acids, with ΔC(10) and ΔC(15) having 2-3-fold higher specific activities than WT AID. Deleting 19 C-terminal amino acids inactivates AID. WT AID and active and inactive point mutants bind cooperatively to single-stranded DNA (Hill coefficients ∼1.7-3.2) with microscopic dissociation constant values (K(A)) ranging between 10 and 250 nm. Active C-terminal deletion mutants bind single-stranded DNA noncooperatively with K(A) values similar to wild type AID. A structural analysis is presented that shows how localized defects in different regions of AID can contribute to loss of catalytic function.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | |
Collapse
|
25
|
Duvvuri B, Duvvuri VR, Wu J, Wu GE. Stabilised DNA secondary structures with increasing transcription localise hypermutable bases for somatic hypermutation in IGHV3-23. Immunogenetics 2012; 64:481-96. [PMID: 22391874 DOI: 10.1007/s00251-012-0607-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 12/22/2022]
Abstract
Somatic hypermutation (SHM) mediated by activation-induced cytidine deaminase (AID) is a transcription-coupled mechanism most responsible for generating high affinity antibodies. An issue remaining enigmatic in SHM is how AID is preferentially targeted during transcription to hypermutable bases in its substrates (WRC motifs) on both DNA strands. AID targets only single stranded DNA. By modelling the dynamical behaviour of IGHV3-23 DNA, a commonly used human variable gene segment, we observed that hypermutable bases on the non-transcribed strand are paired whereas those on transcribed strand are mostly unpaired. Hypermutable bases (both paired and unpaired) are made accessible to AID in stabilised secondary structures formed with increasing transcription levels. This observation provides a rationale for the hypermutable bases on both the strands of DNA being targeted to a similar extent despite having differences in unpairedness. We propose that increasing transcription and RNAP II stalling resulting in the formation and stabilisation of stem-loop structures with AID hotspots in negatively supercoiled region can localise the hypermutable bases of both strands of DNA, to AID-mediated SHM.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- School of Kinesiology & Health Science, Faculty of Health, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | | | | | | |
Collapse
|
26
|
Weiser AA, Wittenbrink N, Zhang L, Schmelzer AI, Valai A, Or-Guil M. Affinity maturation of B cells involves not only a few but a whole spectrum of relevant mutations. Int Immunol 2012; 23:345-56. [PMID: 21521882 DOI: 10.1093/intimm/dxr018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Affinity maturation of B lymphocytes within germinal centers involves both diversification of their B-cell receptors (BCRs) by somatic hypermutation (SHM) and a crucial receptor-mediated selection step. However, in contrast to recent advances in revealing the molecular mechanism of SHM, the fundamentals of the selection process are still poorly understood, i.e. it is often not clear how and how many mutations contribute to improving a BCR during the response against a given antigen. A general drawback in assessing the mutations relevant to the selection process is the difficult task of rating the relative contributions of selection and intrinsic biases to the experimentally observed mutation patterns of BCRs. The approach proposed here is premised on statistical comparison of the frequency distributions of nucleotide substitutions as observed in datasets of hypermutated BCRs against their frequency distribution expected under the null hypothesis of no selection. Thereby, we show that the spectrum of mutations relevant to maturation of canonical anti-(4-hydroxy-3-nitrophenyl)acetyl BCRs is much broader than previously acknowledged, going beyond the scope of single key mutations. Moreover, our results suggest that maturation not only involves selection by means of affinity but likewise expression and stabilization of BCRs.
Collapse
Affiliation(s)
- Armin A Weiser
- Systems Immunology Lab, Department of Biology, Institute for Theoretical Biology, Humboldt University, Invalidenstrasse 43, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Han L, Masani S, Yu K. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc Natl Acad Sci U S A 2011; 108:11584-9. [PMID: 21709240 PMCID: PMC3136278 DOI: 10.1073/pnas.1018726108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation.
Collapse
Affiliation(s)
- Li Han
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Shahnaz Masani
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
28
|
MacDonald CM, Boursier L, D'Cruz DP, Dunn-Walters DK, Spencer J. Mathematical analysis of antigen selection in somatically mutated immunoglobulin genes associated with autoimmunity. Lupus 2010; 19:1161-70. [PMID: 20501523 DOI: 10.1177/0961203310367657] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Affinity maturation is a process by which low-affinity antibodies are transformed into highly specific antibodies in germinal centres. This process occurs by hypermutation of immunoglobulin heavy chain variable (IgH V) region genes followed by selection for high-affinity variants. It has been proposed that statistical tests can identify affinity maturation and antigen selection by analysing the frequency of replacement and silent mutations in the complementarity determining regions (CDRs) that contact antigen and the framework regions (FRs) that encode structural integrity. In this study three different methods that have been proposed for detecting selection: the binomial test, the multinomial test and the focused binomial test, have been assessed for their reliability and ability to detect selection in human IgH V genes. We observe first that no statistical test is able to identify selection in the CDR antigen-binding sites, second that tests can reliably detect selection in the FR and third that antibodies from nasal biopsies from patients with Wegener's granulomatosis and pathogenic antibodies from systemic lupus erythematosus do not appear to be as stringently selected for structural integrity as other groups of functional sequences.
Collapse
Affiliation(s)
- C M MacDonald
- Department of Mathematics, Kings College London, The Strand, London, UK
| | | | | | | | | |
Collapse
|
29
|
Guo W, Smith D, Aviszus K, Detanico T, Heiser RA, Wysocki LJ. Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity. ACTA ACUST UNITED AC 2010; 207:2225-37. [PMID: 20805563 PMCID: PMC2947070 DOI: 10.1084/jem.20092712] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-avidity IgG antinuclear antibodies (ANAs) that are almost certainly products of T cell–dependent immune responses. Whether critical amino acids in the third complementarity-determining region (CDR3) of the ANA originate from V(D)J recombination or somatic hypermutation (SHM) is not known. We studied a mouse model of SLE in which all somatic mutations within ANA V regions, including those in CDR3, could be unequivocally identified. Mutation reversion analyses revealed that ANA arose predominantly from nonautoreactive B cells that diversified immunoglobulin genes via SHM. The resolution afforded by this model allowed us to demonstrate that one ANA clone was generated by SHM after a VH gene replacement event. Mutations producing arginine substitutions were frequent and arose largely (66%) from base changes in just two codons: AGC and AGT. These codons are abundant in the repertoires of mouse and human V genes. Our findings reveal the predominant role of SHM in the development of ANA and underscore the importance of self-tolerance checkpoints at the postmutational stage of B cell differentiation.
Collapse
Affiliation(s)
- Wenzhong Guo
- Integrated Department of Immunology, National Jewish Health and 2 University of Colorado, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
30
|
V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad Sci U S A 2009; 106:8629-34. [PMID: 19443686 DOI: 10.1073/pnas.0903803106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The somatic hypermutation of Ig variable regions requires the activity of activation-induced cytidine deaminase (AID) which has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) motif hot spots in in vivo and in vitro assays. We compared mutation profiles of in vitro assays for the 3' flanking intron of VhJ558-Jh4 region to previously reported in vivo profiles for the same region in the Msh2(-/-)Ung(-/-) mice that lack base excision and mismatch repair. We found that the in vitro and in vivo mutation profiles were highly correlated for the top (nontranscribed) strand, while for the bottom (transcribed) strand the correlation is far lower. We used an in silico model of AID activity to elucidate the relative importance of motif targeting in vivo. We found that the mutation process entails substantial complexity beyond motif targeting, a large part of which is captured in vitro. To elucidate the contribution of the sequence environment to the observed differences between the top and bottom strands, we analyzed intermutational distances. The bottom strand shows an approximately exponential distribution of distances in vivo and in vitro, as expected from a null model. However, the top strand deviates strongly from this distribution in that mutations approximately 50 nucleotides apart are greatly reduced, again both in vivo and in vitro, illustrating an important strand asymmetry. While we have confirmed that AID targeting of hot and cold spots is a key part of the mutation process, our results suggest that the sequence environment plays an equally important role.
Collapse
|
31
|
Pham P, Smolka MB, Calabrese P, Landolph A, Zhang K, Zhou H, Goodman MF. Impact of phosphorylation and phosphorylation-null mutants on the activity and deamination specificity of activation-induced cytidine deaminase. J Biol Chem 2008; 283:17428-39. [PMID: 18417471 PMCID: PMC2427360 DOI: 10.1074/jbc.m802121200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Indexed: 11/06/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination in B cells by deaminating C --> U on transcribed DNA. Here we analyze the role of phosphorylation and phosphorylation-null mutants on the biochemical behavior of AID, including enzyme specific activity, processivity, deamination spectra, deamination motif specificity, and transcription-dependent deamination in the presence and absence of RPA. We show that a small fraction of recombinant human AID expressed in Sf9 insect cells is phosphorylated at previously identified residues Ser(38) and Thr(27) and also at Ser(41) and Ser(43). S43P AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. Ser-substituted phosphorylation-null mutants (S38A, S41A, S43A, and S43P) exhibit wild type (WT) activity on single-stranded DNA. Deamination of transcribed double-stranded DNA is similar for WT and mutant AID and occurs with or without RPA. Although WT and AID mutants catalyze processive deamination favoring canonical WRC hot spot motifs (where W represents A/T and R is A/G), their deamination spectra differ significantly. The differences between the WT and AID mutants appear to be caused by the replacement of Ser as opposed to an absence of phosphorylation. The spectral differences reflect a marked change in deamination efficiencies in two motifs, GGC and AGC, which are preferred by mutant AID but disfavored by WT AID. Both motifs occur with exceptionally high frequency in human switch regions, suggesting a possible relationship between AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hershberg U, Uduman M, Shlomchik MJ, Kleinstein SH. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol 2008; 20:683-94. [PMID: 18397909 DOI: 10.1093/intimm/dxn026] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Statistical methods based on the relative frequency of replacement mutations in B lymphocyte Ig V region sequences have been widely used to detect the forces of selection that shape the B cell repertoire. However, current methods produce an unexpectedly high frequency of false positives and are sensitive to intrinsic biases of somatic hypermutation that can give the appearance of selection. The new statistical test proposed here provides a better trade-off between sensitivity and specificity compared with previous approaches. The low specificity of existing methods was shown in silico to result from an interaction between the effects of positive and negative selection. False detection of positive selection was confirmed in vivo through a re-analysis of published sequence data from diffuse large B cell lymphomas, highlighting the need for re-analysis of some existing studies. The sensitivity of the proposed method to detect selection was validated using new Ig transgenic mouse models in which positive selection was expected to be a significant force, as well as with a simulation-based approach. Previous concerns that intrinsic biases of somatic hypermutation could give the appearance of selection were addressed by extending the current mutation models to more fully account for the impact of microsequence on relative mutability and to include transition bias. High specificity was confirmed using a large set of non-productively rearranged Ig sequences. These results show that selection can be detected in vivo with high specificity using the new method proposed here, allowing greater insight into the existence and direction of antigen-driven selection.
Collapse
Affiliation(s)
- Uri Hershberg
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Somatic hypermutation (SHM) is a major means by which diversity is achieved in antibody genes, and it is initiated by the deamination of cytosines to uracils in DNA by activation-induced deaminase (AID). However, the process that leads from these initiating deamination events to mutations at other residues remains poorly understood. We demonstrate that a single cytosine on the top (nontemplate) strand is sufficient to recruit AID and lead to mutations of upstream and downstream A/T residues. In contrast, the targeting of cytosines on the bottom strand by AID does not lead to substantial mutation of neighboring residues. This strand asymmetry is eliminated in mice deficient in mismatch repair, indicating that the error-prone mismatch repair machinery preferentially targets top-strand uracils in a way that promotes SHM during the antibody response.
Collapse
Affiliation(s)
- Shyam Unniraman
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|
34
|
Souza TA, Stollar BD, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Influence of EBV on the Peripheral Blood Memory B Cell Compartment. THE JOURNAL OF IMMUNOLOGY 2007; 179:3153-60. [PMID: 17709530 DOI: 10.4049/jimmunol.179.5.3153] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral blood memory B cells latently infected with EBV bear somatic mutations and are typically isotype switched consistent with being classical Ag-selected memory B cells. In this work, we performed a comparative analysis of the expressed Ig genes between large sets of EBV-infected and uninfected peripheral blood B cells, isolated from the same infectious mononucleosis patients, to determine whether differences exist that could reveal the influence of EBV on the production and maintenance of these cells. We observed that EBV(+) cells on average accumulated more somatic hypermutations than EBV(-) cells. In addition, they had more replacement mutations and a higher replacement-silent ratio of mutations in their CDRs. We also found that EBV occupies a skewed niche within the memory compartment, due to its exclusion from the CD27(+)IgD(+)IgM(+) subset, but this skewing does not affect the overall structure of the compartment. These results indicate that EBV impacts the mutation and selection process of infected cells but that once they enter memory they cannot be distinguished from uninfected cells by host homeostasis mechanisms.
Collapse
Affiliation(s)
- Tatyana A Souza
- Department of Pathology, Jaharis Building, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates within the variable (V) and switch regions (SR) of the immunoglobulin (Ig) genes that are responsible for binding to and neutralizing foreign antigens throughout the body. These mutations are truly purposeful. This chapter is centered on activation-induced cytidine deaminase (AID). AID is required for initiating somatic hypermutation (SHM) in the V regions and class switch recombination (CSR) in the SR portions of Ig genes. By converting C --> U, while transcription takes place, AID instigates a cascade of mutational events involving error-prone DNA polymerases, base excision and mismatch repair enzymes, and recombination pathways. Together, these processes culminate in highly mutated antibody genes and the B cells expressing antibodies that have achieved optimal antigenic binding undergo positive selection in germinal centers. We will discuss the biological role of AID in this complex process, primarily in terms of its biochemical properties in relation to SHM in vivo. The chapter also discusses recent advances in experimental methods to characterize antibody dynamics as a function of SHM to help elucidate the role that the AID-induced mutations play in tailoring molecular recognition. The emerging experimental techniques help to address long-standing conundrums concerning evolution-imposed constraints on antibody structure and function.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
36
|
Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, Martin A. AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner. Mol Cell Biol 2006; 27:20-30. [PMID: 17060445 PMCID: PMC1800660 DOI: 10.1128/mcb.00824-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates secondary antibody diversification processes by deaminating cytidines on single-stranded DNA. AID preferentially mutates cytidines preceded by W(A/T)R(A/G) dinucleotides, a sequence specificity that is evolutionarily conserved from bony fish to humans. To uncover the biochemical mechanism of AID, we compared the catalytic and binding kinetics of AID on WRC (a hot-spot motif, where W equals A or T and R equals A or G) and non-WRC motifs. We show that although purified AID preferentially deaminates WRC over non-WRC motifs to the same degree observed in vivo, it exhibits similar binding affinities to either motif, indicating that its sequence specificity is not due to preferential binding of WRC motifs. AID preferentially deaminates bubble substrates of five to seven nucleotides rather than larger bubbles and preferentially binds to bubble-type rather than to single-stranded DNA substrates, suggesting that the natural targets of AID are either transcription bubbles or stem-loop structures. Importantly, AID displays remarkably high affinity for single-stranded DNA as indicated by the low dissociation constants and long half-life of complex dissociation that are typical of transcription factors and single-stranded DNA binding protein. These findings suggest that AID may persist on immunoglobulin and other target sequences after deamination, possibly acting as a scaffolding protein to recruit other factors.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
37
|
Belessi CJ, Davi FB, Stamatopoulos KE, Degano M, Andreou TM, Moreno C, Merle-Béral H, Crespo M, Laoutaris NP, Montserrat E, Caligaris-Cappio F, Anagnostopoulos AZ, Ghia P. IGHV gene insertions and deletions in chronic lymphocytic leukemia: "CLL-biased" deletions in a subset of cases with stereotyped receptors. Eur J Immunol 2006; 36:1963-74. [PMID: 16783849 DOI: 10.1002/eji.200535751] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nucleotide insertions/duplications or deletions in immunoglobulin heavy chain genes have been found in 24/760 patients (3.15%) with chronic lymphocytic leukemia (CLL). In 21/24 cases, the inserted/duplicated or lost nucleotides occurred in multiples of 3; therefore, the original reading frame was maintained and a potentially intact receptor was coded. The pattern and location of insertions/duplications or deletions in CLL and their restriction to mutated IGHV rearranged genes strongly suggests that they resulted from somatic hypermutation. Their incidence in CLL is consistent with previous reports in normal, auto-reactive and neoplastic human B cells, thus seemingly indicating that these modifications generally arise without any particular disease-specific associations. A striking exception to this rule was identified in CLL IGHV3-21-expressing cases: one amino acid was deleted from the CDR2 region in 16/63 (25.4%) mutated CLL IGHV3-21 sequences (including public database-derived IGHV3-21 CLL cases + the present series) vs. only 2/257 (0.78%) public database-derived mutated non-CLL IGHV3-21 sequences; 15/16 CLL IGHV3-21 sequences carrying this deletion belonged to a subset with unique, shared HCDR3 and light chain CDR3 motifs. This finding further supports the idea of selective antigenic pressures playing a pathogenetic role in some CLL cases.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Complementarity Determining Regions/genetics
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/genetics
- Somatic Hypermutation, Immunoglobulin
Collapse
|
38
|
Yang F, Waldbieser GC, Lobb CJ. The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. THE JOURNAL OF IMMUNOLOGY 2006; 176:1655-67. [PMID: 16424195 DOI: 10.4049/jimmunol.176.3.1655] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sequence analysis of H chain cDNA derived from the spleen of an individual catfish has shown that somatic mutation occurs within both the VH- and JH-encoded regions. Somatic mutation preferentially targets G and C nucleotides with approximately balanced frequencies, resulting in the predominant accumulation of G-to-A and C-to-T substitutions that parallel the activation-induced cytidine deaminase nucleotide exchanges known in mammals. The overall mutation rate of A nucleotides is not significantly different from that expected by sequence-insensitive mutations, and a significant bias exists against mutations occurring in T. Targeting of mutations is dependent upon the sequence of neighboring nucleotides, allowing statistically significant hotspot motifs to be identified. Dinucleotide, trinucleotide, and RGYW analyses showed that mutational targets in catfish are restricted when compared with the spectrum of targets known in mammals. The preferential targets for G and C mutation are the central GC positions in both AGCT and AGCA. The WA motif, recognized as a mammalian hotspot for A mutations, was not a significant target for catfish mutations. The only significant target for A mutations was the terminal position in AGCA. Lastly, comparisons of mutations located in framework region and CDR codons coupled with multinomial distribution studies found no substantial evidence in either independent or clonally related VDJ rearrangements to indicate that somatic mutation coevolved with mechanisms that select B cells based upon nonsynonymous mutations within CDR-encoded regions. These results suggest that the principal role of somatic mutation early in phylogeny was to diversify the repertoire by targeting hotspot motifs preferentially located within CDR-encoded regions.
Collapse
Affiliation(s)
- Feixue Yang
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | |
Collapse
|
39
|
Bose B, Sinha S. Problems in using statistical analysis of replacement and silent mutations in antibody genes for determining antigen-driven affinity selection. Immunology 2005; 116:172-83. [PMID: 16162266 PMCID: PMC1817819 DOI: 10.1111/j.1365-2567.2005.02208.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The analysis of molecular signatures of antigen-driven affinity selection of B cells is of immense use in studies on normal and abnormal B cell development. Most of the published literature compares the expected and observed frequencies of replacement (R) and silent (S) mutations in the complementarity-determining regions (CDRs) and the framework regions (FRs) of antibody genes to identify the signature of antigenic selection. The basic assumption of this statistical method is that antigenic selection creates a bias for R mutations in the CDRs and for S mutations in the FRs. However, it has been argued that the differences in intrinsic mutability among different regions of an antibody gene can generate a statistically significant bias even in the absence of any antigenic selection. We have modified the existing statistical method to include the effects of intrinsic mutability of different regions of an antibody gene. We used this method to analyse sequences of several B cell-derived monoclonals against T-dependent antigens, T-independent antigens, clones derived from lymphoma and amyloidogenic clones. Our sequence analysis indicates that even after correcting for the intrinsic mutability of antibody genes, statistical parameters fail to reflect the role of antigen-driven affinity selection in maturation of many clones. We suggest that, contrary to the basic assumption of such statistical methods, selection can act both for and against R mutations in the CDR as well as in the FR regions. In addition we have identified different methodological difficulties in the current uses of such statistical analysis of antibody genes.
Collapse
Affiliation(s)
- Biplab Bose
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
40
|
Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. ACTA ACUST UNITED AC 2005; 202:561-8. [PMID: 16103411 PMCID: PMC2212854 DOI: 10.1084/jem.20050872] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cμ) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the uracils is proposed to lead to DNA breaks required for recombination. Uracil DNA glycosylase (UNG) is required for most CSR activity although its role is disputed. Here we use ligation-mediated PCR to detect DSBs in S regions in splenic B cells undergoing CSR. We find that the kinetics of DSB induction corresponds with AID expression, and that DSBs are AID- and UNG-dependent and occur preferentially at G:C basepairs in WRC/GYW AID hotspots. Our results indicate that AID attacks cytosines on both DNA strands, and staggered breaks are processed to blunt DSBs at the initiating ss break sites. We propose a model to explain the types of end-processing events observed.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
41
|
Pham P, Bransteitter R, Goodman MF. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry 2005; 44:2703-15. [PMID: 15723516 DOI: 10.1021/bi047481+] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzymatic deamination of cytosine to uracil, using the free base C, its nucleosides, and nucleotides as substrates, is an essential feature of nucleotide metabolism. However, the deamination of C and, especially, 5 methyl C on DNA is typically detrimental, causing mutations leading to serious human disease. Recently, a family of enzymes has been discovered that catalyzes the conversion of C to U on DNA and RNA, generating favorable mutations that are essential for human survival. Members of the Apobec family of nucleic acid-dependent cytidine deaminases include activation-induced cytidine deaminase (AID) and Apobec3G. AID is required for B cells to undergo somatic hypermutation (SHM) and class switch recombination (CSR), two processes that are needed to produce high-affinity antibodies of all isotypes. Apobec3G is responsible for protection against HIV infection. Recent advances in the biochemical and structural analyses of nucleic acid cytidine deaminases will be discussed in relation to their programmed roles in ensuring antibody diversification and in imposing innate resistance against retroviral infection. The serious negative consequences of expressing Apobec deaminases in the wrong place at the wrong time to catalyze aberrant deamination in "at risk" sequences will be discussed in terms of causing genomic instability and disease.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | |
Collapse
|
42
|
Larijani M, Frieder D, Basit W, Martin A. The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung?/?msh2?/? mice. Immunogenetics 2005; 56:840-5. [PMID: 15650878 DOI: 10.1007/s00251-004-0748-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 10/28/2004] [Indexed: 11/29/2022]
Abstract
Somatic hypermutation and class switch recombination are initiated by the enzyme activation-induced cytidine deaminase (AID). Although other models exist for AID function, one model suggests that AID initiates these processes by deaminating cytidines within DNA, thereby initiating mutagenic repair pathways that involve either UNG or Msh2. Recent work shows that GST-hAID prefers to mutate WRC motifs, a motif frequently mutated in vivo. Because this is a strong argument in favor of the DNA deamination model, we sought to extend this analysis by examining the activity of purified AID with a small polyhistidine tag (His-hAID) on all 16 trinucleotide combinations (i.e., NNC). Here we show that purified His-hAID preferentially mutated cytidines within WRC (i.e., A/T, A/G, C) motifs, but poorly mutated cytidines within GYC (G, C/T, C) motifs. We next compared this mutability preference with those in hypermutating Ramos cells and in msh2(-/-)ung(-/-) mice, since both are reduced or deficient in UNG- and/or Msh2-induced mutations and are thus likely to reflect the sequence specificity of the mutator in vivo. Indeed, the mutation spectrums of purified His-hAID and GST-hAID matched the trinucleotide mutability indexes in Ramos cells and in msh2(-/-)ung(-/-) mice. Thus, the activity of AID on single-stranded DNA produces the same mutation pattern as double-stranded DNA in hypermutating cells. These data lend support to the DNA deamination model and indicate that AID does not require co-factors for its WRC specificity.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, Medical Sciences Bldg. 5265, University of Toronto, Toronto, M5S 1A8, Canada.
| | | | | | | |
Collapse
|
43
|
Bransteitter R, Pham P, Calabrese P, Goodman MF. Biochemical Analysis of Hypermutational Targeting by Wild Type and Mutant Activation-induced Cytidine Deaminase. J Biol Chem 2004; 279:51612-21. [PMID: 15371439 DOI: 10.1074/jbc.m408135200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of high affinity antibodies requires activation-induced cytidine deaminase (AID) to initiate somatic hypermutation and class-switch recombination. Here we investigate AID-catalyzed deamination of C --> U on single-stranded DNA and on actively transcribed closed circular double-stranded DNA. Mutations are initially favored at canonical WRC (W = A or T, R = A or G) somatic hypermutation hot spot motifs, but over time mutations at neighboring non-hot spot sites increase creating random clusters of mutated regions in a seemingly processive manner. N-terminal AID mutants R35E and R35E/R36D appear less processive and have altered mutational specificity compared with wild type AID. In contrast, a C-terminal deletion mutant defective in CSR in vivo closely resembles wild type AID. A mutational spectrum generated during transcription of closed circular double-stranded DNA indicates that wild type AID retains its specificity for WRC hot spot motifs within the confines of a moving transcription bubble while introducing clusters of multiple deaminations predominantly on the nontranscribed strand.
Collapse
Affiliation(s)
- Ronda Bransteitter
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | | | |
Collapse
|
44
|
Mao C, Jiang L, Melo-Jorge M, Puthenveetil M, Zhang X, Carroll MC, Imanishi-Kari T. T cell-independent somatic hypermutation in murine B cells with an immature phenotype. Immunity 2004; 20:133-44. [PMID: 14975236 DOI: 10.1016/s1074-7613(04)00019-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/15/2003] [Accepted: 12/17/2003] [Indexed: 11/18/2022]
Abstract
Somatic hypermutation contributes to the generation of antibody diversity and is strongly associated with the maturation of antigen-specific immune responses. We asked whether somatic hypermutation also plays a role in the generation of the murine immunoglobulin repertoire during B cell development. To facilitate identification of somatic mutations, we examined mouse systems in which only antibodies expressing lambda1, lambda2, and lambdax light chains can be generated. Somatic mutations were found in cells, which, by surface markers, RAG expression, and rapid turnover, had the phenotype of immature B cells. In addition, expression of AID was detected in these cells. The mutations were limited to V regions and were localized in known hotspots. Mutation frequency was not diminished in the absence of T cells. Our results support the idea that somatic hypermutation can occur in murine immature B cells and may represent a mechanism for enlarging the V gene repertoire.
Collapse
Affiliation(s)
- Changchuin Mao
- Department of Pathology and Program in Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Messmer BT, Albesiano E, Messmer D, Chiorazzi N. The pattern and distribution of immunoglobulin VH gene mutations in chronic lymphocytic leukemia B cells are consistent with the canonical somatic hypermutation process. Blood 2003; 103:3490-5. [PMID: 14695232 DOI: 10.1182/blood-2003-10-3407] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The overexpanded clone in most B-cell-type chronic lymphocytic leukemia (BCLL) patients expresses an immunoglobulin (Ig) heavy chain variable (V(H)) region gene with some level of mutation. While it is presumed that these mutations were introduced in the progenitor cell of the leukemic clone by the canonical somatic hypermutation (SHM) process, direct evidence of such is lacking. Nucleotide sequences of the Ig V(H) genes from 172 B-CLL patients were analyzed. Previously described V(H) gene usage biases were noted. As with canonical SHM, mutations found in B-CLL were more frequent in RGYW hot spots (mutations in an RGYW motif = 44.1%; germ line frequency of RGYW motifs = 25.6%) and favored transitions over transversions (transition-transversion ratio = 1.29). Significantly, transition preference was also noted when only mutations in the wobble position of degenerate codons were considered. Wobble positions are inherently unselected since regardless of change an identical amino acid is encoded; therefore, they represent a window into the nucleotide bias of the mutational mechanism. B-CLL V(H) mutations concentrated in complementarity-determining region 1 (CDR1) and CDR2, which exhibited higher replacement-to-silent ratios (CDR R/S, 4.60; framework region [FR] R/S, 1.72). These results are consistent with the notion that V(H) mutations in B-CLL cells result from canonical SHM and select for altered, structurally sound antigen receptors.
Collapse
MESH Headings
- Amino Acid Motifs
- Complementarity Determining Regions/genetics
- Gene Frequency
- Genes, Immunoglobulin/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Models, Genetic
- Molecular Epidemiology
- Mutation
- Somatic Hypermutation, Immunoglobulin
Collapse
Affiliation(s)
- Bradley T Messmer
- North Shore-Long Island Jewish Research Institute, 350 Community Dr, Manhasset, NY 11030, USA.
| | | | | | | |
Collapse
|
46
|
Yu K, Huang FT, Lieber MR. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J Biol Chem 2003; 279:6496-500. [PMID: 14645244 DOI: 10.1074/jbc.m311616200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation-induced deaminase (AID) is required for both immunoglobulin class switch recombination and somatic hypermutation. AID is known to deaminate cytidines in single-stranded DNA, but the relationship of this step to the class switch or somatic hypermutation processes is not entirely clear. We have studied the activity of a recombinant form of the mouse AID protein that was purified from a baculovirus expression system. We find that the length of the single-stranded DNA target is critical to the action of AID at the Cs positioned anywhere along the length of the DNA. The DNA sequence surrounding a given C influences AID deamination efficiency. AID preferentially deaminates Cs in the WRC motif, and additionally has a small but consistent preference for purine at the position after the WRC, thereby favoring WRCr (the lowercase r corresponds to the smaller impact on activity).
Collapse
Affiliation(s)
- Kefei Yu
- University of Southern California Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
47
|
Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic response. Pharmacol Ther 2003; 100:157-70. [PMID: 14609718 DOI: 10.1016/j.pharmthera.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunoglobulin repertoire arises as a consequence of combinatorial diversity, junctional diversity, and the process of somatic point mutation. Each of these processes involves biases that limit and shape the available immunoglobulin repertoire. The expressed repertoire is further shaped by selection, to the extent that biased gene usage can become apparent in many disease states. The study of rearranged immunoglobulin genes therefore may not only provide insights into the molecular processes involved in the generation of antibody diversity but also inform us of pathogenic processes and perhaps identify particular lymphocyte clones as therapeutic targets. Partly as a consequence of the low numbers of circulating IgE-committed B-cells, studies of rearranged IgE genes in allergic individuals have commenced relatively recently. In this review, recent advances in our understanding of the processes of immunoglobulin gene rearrangement and somatic point mutation are described, and biases inherent to these processes are discussed. The evidence that some diseases may be associated with particular gene rearrangements is then considered, with a particular focus on allergic disease. Reviewed data suggest that an important contribution to the IgE response may come from cells that use relatively rare heavy chain V (V(H)) segment genes, which display little somatic point mutation. Some IgE antibodies also seem to display polyreactive binding. In other contexts, these 3 characteristics have been associated with antibodies of the B-1 B-cell subset, and the possibility that B-1 B-cells contribute to the allergic response is therefore considered.
Collapse
Affiliation(s)
- A M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
48
|
Horvath MM, Fondon JW, Garner HR. Low hanging fruit: a subset of human cSNPs is both highly non-uniform and predictable. Gene 2003; 312:197-206. [PMID: 12909356 DOI: 10.1016/s0378-1119(03)00628-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present a point mutation classification method that contrasts SNP databases and has the potential to illuminate the relative mutational load of genes caused by codon bias. We group point variation gleaned from public databases by their wild-type and mutant codons, e.g. codon mutation classes (CMCs, 576 possible such as ACG-->ATG), whose frequencies in a database are assembled into a BLOSUM-style matrix describing the likelihood of observing all possible single base codon changes as tuned by the intertwined effects of mutation rate and selection. The rankings of the CMCs in any database are reshuffled according to the population stratification of the typical genotyping experiment producing that resource's data. Analysis of four independent databases reveals that a considerable fraction of mutation in functional genes can be described by a few CMCs regardless of gene identity or population stratification in the genotyping experiment. For example, the top 5% (29/576) of CMCs account for 27.4% of the observed variants in dbSNP while the bottom 5% account for only 0.02%. For non-synonymous disease-causing mutation, 40.8% are described by the top 5% of all possible non-silent CMCs (22/438). Overall, the most observed polymorphism is a G-->A transition at CpG dinucleotides causing ACG, TCG, GCG, and CCG to frequently undergo silent mutation in any gene due to the putative lack of impact on the protein product. In order to assess how well CMC spectrums estimate the aggregate non-synonymous mutational trends of a single gene, a CMC matrix was applied to seven unrelated genes to compute the most likely point mutations. In excess of 87% of these mutation predictions are historically known to play an important role in a disease state according to published literature. CMC-based mutation prediction may aid design and execution of direct association genotyping studies.
Collapse
Affiliation(s)
- Monica M Horvath
- McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8591, USA.
| | | | | |
Collapse
|
49
|
Pham P, Bransteitter R, Petruska J, Goodman MF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 2003; 424:103-7. [PMID: 12819663 DOI: 10.1038/nature01760] [Citation(s) in RCA: 521] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 05/28/2003] [Indexed: 12/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a protein required for B cells to undergo class switch recombination and somatic hypermutation (SHM)--two processes essential for producing high-affinity antibodies. Purified AID catalyses the deamination of C to U on single-stranded (ss)DNA. Here, we show in vitro that AID-catalysed C deaminations occur preferentially on 5' WRC sequences in accord with SHM spectra observed in vivo. Although about 98% of DNA clones suffer no mutations, most of the remaining mutated clones have 10-70 C to T transitions per clone. Therefore, AID carries out multiple C deaminations on individual DNA strands, rather than jumping from one strand to another. The avid binding of AID to ssDNA could result from its large net positive charge (+11) at pH 7.0, owing to a basic amino-terminal domain enriched in arginine and lysine. Furthermore, AID exhibits a 15-fold preference for C deamination on the non-transcribed DNA strand exposed by RNA polymerase than the transcribed strand protected as a RNA-DNA hybrid. These deamination results on ssDNA bear relevance to three characteristic features of SHM: preferential mutation at C sites within WRC hotspot sequences, the broad clonal mutagenic heterogeneity of antibody variable regions targeted for mutation, and the requirement for active transcription to obtain mutagenesis.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, University Park, Los Angeles, California 90089-1340, USA
| | | | | | | |
Collapse
|
50
|
Wu X, Feng J, Komori A, Kim EC, Zan H, Casali P. Immunoglobulin somatic hypermutation: double-strand DNA breaks, AID and error-prone DNA repair. J Clin Immunol 2003; 23:235-46. [PMID: 12959216 PMCID: PMC4624321 DOI: 10.1023/a:1024571714867] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Somatic hypermutation (SHM) is critical for antibody affinity maturation and the generation of memory B cells. Somatic mutations consist mainly of single nucleotide changes with rare insertions and deletions. Such changes would be introduced during error-prone repair of lesions involving single-strand DNA breaks (SSBs) or, more likely, double-strand DNA breaks (DSBs), as DSBs occur exclusively in genes that have the potentials to undergo SHM. In the human, such genes include Ig V, BCL6, and c-MYC. In these germline genes, DSBs are blunt. In rearranged Ig V, BCL6, and translocated c-MYC genes, blunt DSBs are processed to yield resected DNA ends. This process is dependent on the expression of activation-induced cytidine deaminase (AID), which is selectively expressed upon CD40-signaling in hypermutating B cells. CD40-induced and AID-dependent free 5'- and 3'-staggered DNA ends critically channel the repair of DSBs through the homologous recombination (HR) repair pathway. During HR, the modulation of critical translesion DNA polymerases, as signaled by cross-linking of the B cell receptor (BCR) for antigen, leads to the insertions of mismatches, i.e., mutations. The nature of DSBs, the possible roles of AID in the modification of DSBs and that of the translesion DNA polymerases zeta and iota in the subsequent repair process that lead to the insertions of mutations are discussed here within the context of an integrated model of SHM.
Collapse
Affiliation(s)
- Xiaoping Wu
- Division of Molecular Immunology, Joan and Sanford I. Weill Medical College and Graduate School of Medical Sciences, Cornell University, New York, USA
| | | | | | | | | | | |
Collapse
|