1
|
Muraduzzaman AKM, Illing PT, Mifsud NA, Purcell AW. Understanding the Role of HLA Class I Molecules in the Immune Response to Influenza Infection and Rational Design of a Peptide-Based Vaccine. Viruses 2022; 14:2578. [PMID: 36423187 PMCID: PMC9695287 DOI: 10.3390/v14112578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus is a respiratory pathogen that is responsible for regular epidemics and occasional pandemics that result in substantial damage to life and the economy. The yearly reformulation of trivalent or quadrivalent flu vaccines encompassing surface glycoproteins derived from the current circulating strains of the virus does not provide sufficient cross-protection against mismatched strains. Unlike the current vaccines that elicit a predominant humoral response, vaccines that induce CD8+ T cells have demonstrated a capacity to provide cross-protection against different influenza strains, including novel influenza viruses. Immunopeptidomics, the mass spectrometric identification of human-leukocyte-antigen (HLA)-bound peptides isolated from infected cells, has recently provided key insights into viral peptides that can serve as potential T cell epitopes. The critical elements required for a strong and long-living CD8+ T cell response are related to both HLA restriction and the immunogenicity of the viral peptide. This review examines the importance of HLA and the viral immunopeptidome for the design of a universal influenza T-cell-based vaccine.
Collapse
Affiliation(s)
| | | | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Bigot J, Lalanne AI, Lucibello F, Gueguen P, Houy A, Dayot S, Ganier O, Gilet J, Tosello J, Nemati F, Pierron G, Waterfall JJ, Barnhill R, Gardrat S, Piperno-Neumann S, Popova T, Masson V, Loew D, Mariani P, Cassoux N, Amigorena S, Rodrigues M, Alsafadi S, Stern MH, Lantz O. Splicing Patterns in SF3B1-Mutated Uveal Melanoma Generate Shared Immunogenic Tumor-Specific Neoepitopes. Cancer Discov 2021; 11:1938-1951. [PMID: 33811047 DOI: 10.1158/2159-8290.cd-20-0555] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Disruption of splicing patterns due to mutations of genes coding splicing factors in tumors represents a potential source of tumor neoantigens, which would be both public (shared between patients) and tumor-specific (not expressed in normal tissues). In this study, we show that mutations of the splicing factor SF3B1 in uveal melanoma generate such immunogenic neoantigens. Memory CD8+ T cells specific for these neoantigens are preferentially found in 20% of patients with uveal melanoma bearing SF3B1-mutated tumors. Single-cell analyses of neoepitope-specific T cells from the blood identified large clonal T-cell expansions, with distinct effector transcription patterns. Some of these expanded T-cell receptors are also present in the corresponding tumors. CD8+ T-cell clones specific for the neoepitopes specifically recognize and kill SF3B1-mutated tumor cells, supporting the use of this new family of neoantigens as therapeutic targets. SIGNIFICANCE: Mutations of the splicing factor SF3B1 in uveal melanoma generate shared neoantigens that are uniquely expressed by tumor cells, leading to recognition and killing by specific CD8 T cells. Mutations in splicing factors can be sources of new therapeutic strategies applicable to diverse tumors.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Jeremy Bigot
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Ana I Lalanne
- Laboratoire d'immunologie clinique, Institut Curie, Paris, France.,Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, France
| | | | - Paul Gueguen
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Alexandre Houy
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Stephane Dayot
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Olivier Ganier
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Jules Gilet
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Jimena Tosello
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Fariba Nemati
- Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, France.,Laboratory of Preclinical Investigation, Translational Research Department, PSL Research University, Institut Curie, Paris, France
| | | | - Joshua J Waterfall
- INSERM U830, PSL University, Institut Curie, Paris, France, and Department of Translational Research, PSL University, Institut Curie, Paris, France
| | - Raymond Barnhill
- Departments of Pathology and Translational Research, Institut Curie, Paris, France
| | - Sophie Gardrat
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France.,Departments of Pathology and Translational Research, Institut Curie, Paris, France
| | | | - Tatiana Popova
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Vanessa Masson
- Laboratoire de Spectrométrie de Masse Protéomique, PSL University, Institut Curie, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, PSL University, Institut Curie, Paris, France
| | - Pascale Mariani
- Department of Surgical Oncology, University of Paris, Institut Curie, Paris, France
| | - Nathalie Cassoux
- Department of Surgical Oncology, University of Paris, Institut Curie, Paris, France
| | | | - Manuel Rodrigues
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Samar Alsafadi
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France.,Laboratory of Uveal Biology, Translational Research Department, Institut Curie, Paris, France
| | - Marc-Henri Stern
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France. .,Laboratoire d'immunologie clinique, Institut Curie, Paris, France.,Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
3
|
Sng XYX, Li J, Zareie P, Assmus LM, Lee JKC, Jones CM, Turner SJ, Daley SR, Quinn KM, La Gruta NL. The Impact of MHC Class I Dose on Development and Maintenance of the Polyclonal Naive CD8+ T Cell Repertoire. THE JOURNAL OF IMMUNOLOGY 2020; 204:3108-3116. [DOI: 10.4049/jimmunol.2000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
|
4
|
Immunological MHC supertypes and allelic expression: how low is the functional MHC diversity in free-ranging Namibian cheetahs? CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01143-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
6
|
Nayak JL, Sant AJ. Loss in CD4 T-cell responses to multiple epitopes in influenza due to expression of one additional MHC class II molecule in the host. Immunology 2012; 136:425-36. [PMID: 22747522 DOI: 10.1111/j.1365-2567.2012.03599.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An understanding of factors controlling CD4 T-cell immunodominance is needed to pursue CD4 T-cell epitope-driven vaccine design, yet our understanding of this in humans is limited by the complexity of potential MHC class II molecule expression. In the studies described here, we took advantage of genetically restricted, well-defined mouse strains to better understand the effect of increasing MHC class II molecule diversity on the CD4 T-cell repertoire and the resulting anti-influenza immunodominance hierarchy. Interferon-γ ELISPOT assays were implemented to directly quantify CD4 T-cell responses to I-A(b) and I-A(s) restricted peptide epitopes following primary influenza virus infection in parental and F(1) hybrid strains. We found striking and asymmetric declines in the magnitude of many peptide-specific responses in F(1) animals. These declines could not be accounted for by the lower surface density of MHC class II on the cell or by antigen-presenting cells failing to stimulate T cells with lower avidity T-cell receptors. Given the large diversity of MHC class II expressed in humans, these findings have important implications for the rational design of peptide-based vaccines that are based on the premise that CD4 T-cell epitope specificity can be predicted by a simple cataloguing of an individual's MHC class II genotype.
Collapse
Affiliation(s)
- Jennifer L Nayak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
7
|
Ex vivo SIV-specific CD8 T cell responses in heterozygous animals are primarily directed against peptides presented by a single MHC haplotype. PLoS One 2012; 7:e43690. [PMID: 22928016 PMCID: PMC3425510 DOI: 10.1371/journal.pone.0043690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/24/2012] [Indexed: 01/18/2023] Open
Abstract
The presence of certain MHC class I alleles is correlated with remarkable control of HIV and SIV, indicating that specific CD8 T cell responses can effectively reduce viral replication. It remains unclear whether epitopic breadth is an important feature of this control. Previous studies have suggested that individuals heterozygous at the MHC class I loci survive longer and/or progress more slowly than those who are homozygous at these loci, perhaps due to increased breadth of the CD8 T cell response. We used Mauritian cynomolgus macaques with defined MHC haplotypes and viral inhibition assays to directly compare CD8 T cell efficacy in MHC-heterozygous and homozygous individuals. Surprisingly, we found that cells from heterozygotes suppress viral replication most effectively on target cells from animals homozygous for only one of two potential haplotypes. The same heterozygous effector cells did not effectively inhibit viral replication as effectively on the target cells homozygous for the other haplotype. These results indicate that the greater potential breadth of CD8 T cell responses present in heterozygous animals does not necessarily lead to greater antiviral efficacy and suggest that SIV-specific CD8 T cell responses in heterozygous animals have a skewed focus toward epitopes restricted by a single haplotype.
Collapse
|
8
|
Reiser M, Wieland A, Plachter B, Mertens T, Greiner J, Schirmbeck R. The Immunodominant CD8 T Cell Response to the Human Cytomegalovirus Tegument Phosphoprotein pp65495–503Epitope Critically Depends on CD4 T Cell Help in Vaccinated HLA-A*0201 Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:2172-80. [DOI: 10.4049/jimmunol.1002512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Kotsiou E, Brzostek J, Gould KG. Properties and applications of single-chain major histocompatibility complex class I molecules. Antioxid Redox Signal 2011; 15:645-55. [PMID: 21126187 PMCID: PMC3125553 DOI: 10.1089/ars.2010.3694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/02/2010] [Indexed: 11/13/2022]
Abstract
Stable major histocompatibility complex (MHC) class I molecules at the cell surface consist of three separate, noncovalently associated components: the class I heavy chain, the β(2)-microglobulin light chain, and a presented peptide. These three components are assembled inside cells via complex pathways involving many other proteins that have been studied extensively. Correct formation of disulfide bonds in the endoplasmic reticulum is central to this process of MHC class I assembly. For a single specific peptide to be presented at the cell surface for possible immune recognition, between hundreds and thousands of peptide-containing precursor polypeptides are required, so the overall process is relatively inefficient. To increase the efficiency of antigen presentation by MHC class I molecules, and for possible therapeutic purposes, single-chain molecules have been developed in which the three, normally separate components have been joined together via flexible linker sequences in a single polypeptide chain. Remarkably, these single-chain MHC class I molecules fold up correctly, as judged by functional recognition by cells of the immune system, and more recently by X-ray crystallographic structural data. This review focuses on the interesting properties and potential of this new type of engineered MHC class I molecule.
Collapse
Affiliation(s)
- Eleni Kotsiou
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, England
- Section of Immunobiology, Hammersmith Hospital, Imperial College London, London, England
| | - Joanna Brzostek
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, England
| | - Keith G. Gould
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, England
| |
Collapse
|
10
|
Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, Wolinsky SM, Hildebrand WH, O'Connor DH. Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 2011; 12:39. [PMID: 21762519 PMCID: PMC3155488 DOI: 10.1186/1471-2172-12-39] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022] Open
Abstract
Background MHC class I proteins are partly responsible for shaping the magnitude and focus of the adaptive cellular immune response. In humans, conventional wisdom suggests that the HLA-A, -B, and -C alleles are equally expressed on the majority of cell types. While we currently have a thorough understanding of how total MHC class I expression varies in different tissues, it has been difficult to examine expression of single MHC class I alleles due to the homogeneity of MHC class I sequences. It is unclear how cDNA species are expressed in distinct cell subsets in humans and particularly in macaques which transcribe upwards of 20 distinct MHC class I alleles at variable levels. Results We examined MHC gene expression in human and macaque leukocyte subsets. In humans, while we detected overall differences in locus transcription, we found that transcription of MHC class I genes was consistent across the leukocyte subsets we studied with only small differences detected. In contrast, transcription of certain MHC cDNA species in macaques varied dramatically by up to 45% between different subsets. Although the Mafa-B*134:02 RNA is virtually undetectable in CD4+ T cells, it represents over 45% of class I transcripts in CD14+ monocytes. We observed parallel MHC transcription differences in rhesus macaques. Finally, we analyzed expression of select MHC proteins at the cell surface using fluorescent peptides. This technique confirmed results from the transcriptional analysis and demonstrated that other MHC proteins, known to restrict SIV-specific responses, are also differentially expressed among distinct leukocyte subsets. Conclusions We assessed MHC class I transcription and expression in human and macaque leukocyte subsets. Until now, it has been difficult to examine MHC class I allele expression due to the similarity of MHC class I sequences. Using two novel techniques we showed that expression varies among distinct leukocyte subsets of macaques but does not vary dramatically in the human cell subsets we examined. These findings suggest pathogen tropism may have a profound impact on the shape and focus of the MHC class I restricted CD8+ T cell response in macaques.
Collapse
Affiliation(s)
- Justin M Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, 53706 Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Day EB, Charlton KL, La Gruta NL, Doherty PC, Turner SJ. Effect of MHC class I diversification on influenza epitope-specific CD8+ T cell precursor frequency and subsequent effector function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6319-28. [PMID: 21536802 PMCID: PMC3103778 DOI: 10.4049/jimmunol.1000883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Earlier studies of influenza-specific CD8(+) T cell immunodominance hierarchies indicated that expression of the H2K(k) MHC class I allele greatly diminishes responses to the H2D(b)-restriced D(b)PA(224) epitope (acid polymerase, residues 224-233 complexed with H2D(b)). The results suggested that the presence of H2K(k) during thymic differentiation led to the deletion of a prominent Vβ7(+) subset of D(b)PA(224)-specific TCRs. The more recent definition of D(b)PA(224)-specific TCR CDR3β repertoires in H2(b) mice provides a new baseline for looking again at this possible H2K(k) effect on D(b)PA(224)-specific TCR selection. We found that immune responses to several H2D(b)- and H2K(b)-restricted influenza epitopes were indeed diminished in H2(bxk) F(1) versus homozygous mice. In the case of D(b)PA(224), lower numbers of naive precursors were part of the explanation, though a similar decrease in those specific for the D(b)NP(366) epitope did not affect response magnitude. Changes in precursor frequency were not associated with any major loss of TCR diversity and could not fully account for the diminished D(b)PA(224)-specific response. Further functional and phenotypic characterization of influenza-specific CD8(+) T cells suggested that the expansion and differentiation of the D(b)PA(224)-specific set is impaired in the H2(bxk) F(1) environment. Thus, the D(b)PA(224) response in H2(bxk) F(1) mice is modulated by factors that affect the generation of naive epitope-specific precursors and the expansion and differentiation of these T cells during infection, rather than clonal deletion of a prominent Vβ7(+) subset. Such findings illustrate the difficulties of predicting and defining the effects of MHC class I diversification on epitope-specific responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Epitopes, T-Lymphocyte/immunology
- Female
- H-2 Antigens/immunology
- Influenza A virus/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Kinetics
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- E Bridie Day
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
12
|
Wieland A, Riedl P, Reimann J, Schirmbeck R. Silencing an immunodominant epitope of hepatitis B surface antigen reveals an alternative repertoire of CD8 T cell epitopes of this viral antigen. Vaccine 2009; 28:114-9. [DOI: 10.1016/j.vaccine.2009.09.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/28/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
13
|
Flesch IEA, Woo WP, Wang Y, Panchanathan V, Wong YC, La Gruta NL, Cukalac T, Tscharke DC. Altered CD8(+) T cell immunodominance after vaccinia virus infection and the naive repertoire in inbred and F(1) mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:45-55. [PMID: 19949110 DOI: 10.4049/jimmunol.0900999] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies of CD8(+) T cell immunodominance after primary virus infection of F(1) mice compared with their inbred parents have generally concluded that no dramatic changes occur. In this study, we revisit this issue using vaccinia virus (VACV), which has a large genome, a recently defined immunodominance hierarchy in mice, and is a candidate vector for vaccines. We found that immunogenicity of VACV peptides defined using inbred mice was highly variable in F(1) progeny: some peptides were equally immunogenic in F(1) and inbred, whereas others elicited responses that were reduced by >90% in F(1) mice. Furthermore, the dominance of a peptide in the relevant inbred parent did not predict whether it would be poorly immunogenic in F(1) mice. This result held using F(1) hybrids of MHC-congenic mice, suggesting that MHC differences alone were responsible. It was also extended to foreign epitopes expressed by an rVACV vaccine. F(1) mice were less able to mount responses to the poorly immunogenic peptides when used as a sole immunogen, ruling out immunodomination. In addition, conserved TCR Vbeta usage between inbred and F(1) mice did not always correlate with strong responses in F(1) mice. However, direct estimation of naive precursor numbers showed that these were reduced in F(1) compared with inbred mice for specificities that were poorly immunogenic in the hybrids. These data have implications for our understanding of the extent to which MHC diversity alters the range of epitopes that are immunogenic in outbred populations.
Collapse
Affiliation(s)
- Inge E A Flesch
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Riedl P, Wieland A, Lamberth K, Buus S, Lemonnier F, Reifenberg K, Reimann J, Schirmbeck R. Elimination of Immunodominant Epitopes from Multispecific DNA-Based Vaccines Allows Induction of CD8 T Cells That Have a Striking Antiviral Potential. THE JOURNAL OF IMMUNOLOGY 2009; 183:370-80. [DOI: 10.4049/jimmunol.0900505] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Biochemical Features of HLA-B27 and Antigen Processing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:210-6. [DOI: 10.1007/978-1-4419-0298-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Rutigliano JA, Ruckwardt TJ, Martin JE, Graham BS. Relative dominance of epitope-specific CD8+ T cell responses in an F1 hybrid mouse model of respiratory syncytial virus infection. Virology 2007; 362:314-9. [PMID: 17275872 PMCID: PMC1950131 DOI: 10.1016/j.virol.2006.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/17/2006] [Accepted: 12/07/2006] [Indexed: 11/21/2022]
Abstract
CD8+ cytotoxic T lymphocytes are key effectors of adaptive immunity for the control of virus infections. Epitope-specific responses are hierarchical and the rules for dominance are not well defined. Here we show that the H2-Kd-restricted RSV M2(82-90) (KdM2(82-90)) epitope dominates the H2-Db-restricted RSV M187-195 (DbM187-195) epitope and influences epitope-specific effector function in the acute and memory phases of the immune response to primary RSV infection in H-2b/d hybrid mice. The hybrid mouse model provides a system to define rules of epitope hierarchy and better understand how antigen presentation and epitope competition affect the phenotype of effector and memory T cells.
Collapse
Affiliation(s)
| | | | - Julie E. Martin
- Vaccine Research Center/National Institutes of Health, Bldg. 40, Room 2502, 40 Convent Dr., Bethesda, MD, 20892–3017
| | - Barney S. Graham
- Vaccine Research Center/National Institutes of Health, Bldg. 40, Room 2502, 40 Convent Dr., Bethesda, MD, 20892–3017
| |
Collapse
|
17
|
Zhang Y, Li S, Shan M, Pan X, Zhuang K, He L, Gould K, Tien P. Hepatitis B virus core antigen epitopes presented by HLA-A2 single-chain trimers induce functional epitope-specific CD8+ T-cell responses in HLA-A2.1/Kb transgenic mice. Immunology 2007; 121:105-12. [PMID: 17244158 PMCID: PMC2265916 DOI: 10.1111/j.1365-2567.2007.02543.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 12/12/2022] Open
Abstract
The potency of CD8+ cytotoxic T lymphocyte (CTL) responses toward core antigen has been shown to affect the outcomes of hepatitis B virus (HBV) infection. Since single-chain trimers (SCT) composed of peptide epitope beta2-microglobulin (beta2m) and major histocompatibility complex (MHC) class I heavy chain covalently linked together in a single molecule have been shown to stimulate efficient CTL responses, we investigated the properties of human leucocyte antigen (HLA)-A2 SCTs encoding the HBV core antigen (HBcAg) epitopes C(18-27) and C(107-115). Transfection of NIH-3T3 cells with pcDNA3.0-SCT-C(18-27) and SCT-C(107-115) leads to stable presentation of HBcAg epitopes at the cell surface. HLA-A2.1/Kb transgenic mice vaccinated with the SCT constructs, either as a DNA vaccine alone or followed by a boost with recombinant vaccinia virus, were shown to generate HBcAg-specific CTL responses by enzyme-linked immunospot assay (ELISPOT) and in vitro interferon-gamma release experiments. HBcAg-specific CTLs from vaccinated HLA-A2.1/Kb transgenic mice were able to inhibit HBV surface and e antigen expression as indicated by HepG2.2.15 cells. Our data indicate that a DNA vaccine encoding a human HLA-A2 SCT with HBV epitopes can lead to stable, enhanced HBV core antigen presentation, and may be useful for the control of HBV infection in HLA-A2-positive HBV carriers.
Collapse
Affiliation(s)
- Yuxia Zhang
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wiseman RW, Wojcechowskyj JA, Greene JM, Blasky AJ, Gopon T, Soma T, Friedrich TC, O'Connor SL, O'Connor DH. Simian immunodeficiency virus SIVmac239 infection of major histocompatibility complex-identical cynomolgus macaques from Mauritius. J Virol 2007; 81:349-61. [PMID: 17035320 PMCID: PMC1797269 DOI: 10.1128/jvi.01841-06] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primates are widely used to study correlates of protective immunity in AIDS research. Successful cellular immune responses have been difficult to identify because heterogeneity within macaque major histocompatibility complex (MHC) genes results in quantitative and qualitative differences in immune responses. Here we use microsatellite analysis to show that simian immunodeficiency virus (SIV)-susceptible cynomolgus macaques (Macaca fascicularis) from the Indian Ocean island of Mauritius have extremely simple MHC genetics, with six common haplotypes accounting for two-thirds of the MHC haplotypes in feral animals. Remarkably, 39% of Mauritian cynomolgus macaques carry at least one complete copy of the most frequent MHC haplotype, and 8% of these animals are homozygous. In stark contrast, entire MHC haplotypes are rarely conserved in unrelated Indian rhesus macaques. After intrarectal infection with highly pathogenic SIVmac239 virus, a pair of MHC-identical Mauritian cynomolgus macaques mounted concordant cellular immune responses comparable to those previously reported for a pair of monozygotic twins infected with the same strain of human immunodeficiency virus. Our identification of relatively abundant SIV-susceptible, MHC-identical macaques will facilitate research into protective cellular immunity.
Collapse
Affiliation(s)
- Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wojcechowskyj JA, Yant LJ, Wiseman RW, O'Connor SL, O'Connor DH. Control of simian immunodeficiency virus SIVmac239 is not predicted by inheritance of Mamu-B*17-containing haplotypes. J Virol 2006; 81:406-10. [PMID: 17079280 PMCID: PMC1797263 DOI: 10.1128/jvi.01636-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome.
Collapse
Affiliation(s)
- Jason A Wojcechowskyj
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Dr., Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
20
|
Scherer A, Salathé M, Bonhoeffer S. High epitope expression levels increase competition between T cells. PLoS Comput Biol 2006; 2:e109. [PMID: 16933984 PMCID: PMC1550274 DOI: 10.1371/journal.pcbi.0020109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/11/2006] [Indexed: 01/07/2023] Open
Abstract
Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs) or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response. Pathogens are masters of disguise, and frequently escape recognition by the immune response. Therefore, broad immune responses, directed at many epitopes of the pathogen, are thought to improve control of infection. There is evidence that competition between immune cells of different epitope specificity reduces the breadth of the immune response. It has been suggested that the resource that T cells compete for is access to antigen-presenting cells (APCs). However, the experimental data regarding competition for access to APCs is controversial. In this study, Scherer, Salathé, and Bonhoeffer have used an individual-based model to investigate the mechanisms of T cell competition. They find that T cells only compete for access to APCs when epitopes are expressed abundantly on APCs. In contrast, when epitope expression is limiting, competition is for the specific epitope rather than for access to APCs. The distinction between competition for epitope and for access to APCs is relevant because the model predicts qualitatively different outcomes for either case. When competition is for the specific epitope, different epitope-specific T cell responses coexist readily and hence the immune response is broad. However, when T cells compete for access to APCs, immunodominant T cell responses can outcompete subdominant ones, which leads to narrow immune responses.
Collapse
Affiliation(s)
- Almut Scherer
- Theoretical Biology, Institute of Integrative Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Marcel Salathé
- Theoretical Biology, Institute of Integrative Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Sebastian Bonhoeffer
- Theoretical Biology, Institute of Integrative Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Chen W, McCluskey J. Immunodominance and Immunodomination: Critical Factors in Developing Effective CD8+ T‐Cell–Based Cancer Vaccines. Adv Cancer Res 2006; 95:203-47. [PMID: 16860659 DOI: 10.1016/s0065-230x(06)95006-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The focusing of cellular immunity toward one, or just a few, antigenic determinant, even during immune responses to complex microorganisms or antigens, is known as immunodominance. Although described in many systems, the mechanisms of determinant immunodominance are only just beginning to be appreciated, especially in relation to the interplay between T cells of differing specificities and the interactions between T cells and the antigen-presenting cells (APCs). The outcome of these cellular interactions can lead to a form of immune suppression of one specificity by another-described as "immunodomination". The specific and detailed mechanisms involved in this process are now partly defined. A full understanding of all the factors that control immunodominance and influence immunodomination will help us to develop better viral and cancer vaccines.
Collapse
Affiliation(s)
- Weisan Chen
- T Cell Laboratory, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, VIC 3084, Australia
| | | |
Collapse
|
22
|
Tourdot S, Nejmeddine M, Powis SJ, Gould KG. Different MHC class I heavy chains compete with each other for folding independently of beta 2-microglobulin and peptide. THE JOURNAL OF IMMUNOLOGY 2005; 174:925-33. [PMID: 15634915 DOI: 10.4049/jimmunol.174.2.925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We reported previously that different MHC class I molecules can compete with each other for cell surface expression in F(1) hybrid and MHC class I transgenic mice. In this study, we show that the competition also occurs in transfected cell lines, and investigate the mechanism. Cell surface expression of an endogenous class I molecule in Chinese hamster ovary (CHO) cells was strongly down-regulated when the mouse K(d) class I H chain was introduced by transfection. The competition occurred only after K(d) protein translation, not at the level of RNA, and localization studies of a CHO class I-GFP fusion showed that the presence of K(d) caused retention of the hamster class I molecule in the endoplasmic reticulum. The competition was not for beta(2)-microglobulin, because a single chain version of K(d) that included mouse beta(2)-microglobulin also had a similar effect. The competition was not for association with TAP and loading with peptide, because a mutant form of the K(d) class I H chain, not able to associate with TAP, caused the same down-regulation of hamster class I expression. Moreover, K(d) expression led to a similar level of competition in TAP2-negative CHO cells. Competition for cell surface expression was also found between different mouse class I H chains in transfected mouse cells, and this competition prevented association of the H chain with beta(2)-microglobulin. These unexpected new findings show that different class I H chains compete with each other at an early stage of the intracellular assembly pathway, independently of beta(2)-microglobulin and peptide.
Collapse
Affiliation(s)
- Sophie Tourdot
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
23
|
Boon ACM, De Mutsert G, Fouchier RAM, Sintnicolaas K, Osterhaus ADME, Rimmelzwaan GF. Preferential HLA usage in the influenza virus-specific CTL response. THE JOURNAL OF IMMUNOLOGY 2004; 172:4435-43. [PMID: 15034059 DOI: 10.4049/jimmunol.172.7.4435] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.
Collapse
Affiliation(s)
- Adrianus C M Boon
- Department of Virology and World Health Organization National Influenza Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Koelle DM, Liu Z, McClurkan CL, Cevallos RC, Vieira J, Hosken NA, Meseda CA, Snow DC, Wald A, Corey L. Immunodominance among herpes simplex virus-specific CD8 T cells expressing a tissue-specific homing receptor. Proc Natl Acad Sci U S A 2003; 100:12899-904. [PMID: 14566059 PMCID: PMC240716 DOI: 10.1073/pnas.2131705100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study of immunodominance within microbe-specific CD8 T cell responses has been challenging. We used a previously undescribed approach to create unbiased panels of CD8 cytotoxic T lymphocyte clones specific for herpes simplex virus type 2, a pathogen with a complex genome encoding at least 85 polypeptides. Circulating herpes simplex virus type 2-specific cells were enriched and cloned after sorting for expression of the skin homing-associated receptor, cutaneous lymphocyte-associated antigen, bypassing restimulation with antigen. The specificity of the resultant cytotoxic clones was determined. Clonal frequencies were compared with each other and with the total number of cytotoxic clones. For each subject within the homing receptor-positive compartment, the CD8 cytotoxic response was dominated by T cells specific for only a few peptides. Previously undescribed antigens and epitopes in viral tegument, capsid, or scaffold proteins were immunodominant in some subjects. Clone enumeration analyses were confirmed in some subjects with dominance studies by using herpes simplex mutants, vaccinia recombinants, and/or enzyme-linked immune spots. We conclude that among circulating cells expressing a homing-associated receptor, during chronic herpes type 2 infection, the CD8 T cell response becomes quite focused despite the presence of many potential antigenic peptides.
Collapse
Affiliation(s)
- David M Koelle
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The mucosal surfaces of the lungs pose tremendous problems for an immune system charged with maintaining a sterile pulmonary environment. Despite these problems, the immune system is effective at controlling most pulmonary infections. Over the past few years significant progress has been made in our understanding of how adaptive (humoral and cellular) immunity is able to control infections in the respiratory tract. Recent advances include the identification of effector memory T-cell populations in the lungs and an appreciation for the role of cytokines in regulating memory T-cell pools.
Collapse
|