1
|
Mosaheb M, Wetzler LM. Meningococcal PorB induces a robust and diverse antigen specific T cell response as a vaccine adjuvant. Vaccine 2018; 36:7689-7699. [PMID: 30381152 DOI: 10.1016/j.vaccine.2018.10.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Vaccines formulated with adjuvant have been effective against numerous infectious diseases, almost always due to induction of functional antibodies that recognizes the pathogen of interest. There is an unmet clinical need for vaccine adjuvants that induce T cells responses to potentially enhance protection against malignancies and intracellular pathogens, where a humoral response, alone, may not be adequate for protection. In this study, we demonstrate that a TLR2 ligand-based adjuvant, meningococcal PorB, has broad immunostimulatory activity with the ability to induce a robust and diverse vaccine antigen specific T cell response. We demonstrate that a vaccine formulated with PorB admixed with ovalbumin induces a wide variety of antigen specific antibody subclasses and effector molecules (MIG, MCP-1, IP-10, MIP-1α, KC & IL-2) with known roles for inducing T cell responses, along with elevated levels of Th1 and Th2 type cytokines upon antigen stimulation. We confirmed production of these cytokines by examining the antigen-specific T cells induced by PorB in vivo. After two immunizations with vaccine formulated with PorB/OVA, antigen-specific CD4 and CD8 T cells were significantly increased in numbers and produced IL-4 or IFN-γ upon ex vivo antigen re-stimulation. Finally, in a Listeria mouse infection model, vaccine formulated with PorB significantly reduced the bacterial burden upon a low dose infection and increased survival upon a high dose infection with recombinant Listeria monocytogenes engineered to express OVA (rLmOVA), a pathogen that requires OVA-antigen specific cytotoxic CD8 T cells for clearance. In summary, PorB is able to induce antigen specific broad B and T cell responses, illustrating its potential as a potent and new vaccine adjuvant.
Collapse
Affiliation(s)
- Munir Mosaheb
- Dept. of Microbiology, Boston University School of Medicine, USA
| | - Lee M Wetzler
- Dept. of Microbiology, Boston University School of Medicine, USA; Dept. of Medicine, Sect. of Infectious Diseases, Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
2
|
Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response. Pathogens 2018; 7:pathogens7020055. [PMID: 29914156 PMCID: PMC6027175 DOI: 10.3390/pathogens7020055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.
Collapse
|
3
|
Welten SPM, Redeker A, Franken KLMC, Oduro JD, Ossendorp F, Čičin-Šain L, Melief CJM, Aichele P, Arens R. The viral context instructs the redundancy of costimulatory pathways in driving CD8(+) T cell expansion. eLife 2015; 4. [PMID: 26263500 PMCID: PMC4558566 DOI: 10.7554/elife.07486] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
Signals delivered by costimulatory molecules are implicated in driving T cell expansion. The requirements for these signals, however, vary from dispensable to essential in different infections. We examined the underlying mechanisms of this differential T cell costimulation dependence and found that the viral context determined the dependence on CD28/B7-mediated costimulation for expansion of naive and memory CD8+ T cells, indicating that the requirement for costimulatory signals is not imprinted. Notably, related to the high-level costimulatory molecule expression induced by lymphocytic choriomeningitis virus (LCMV), CD28/B7-mediated costimulation was dispensable for accumulation of LCMV-specific CD8+ T cells because of redundancy with the costimulatory pathways induced by TNF receptor family members (i.e., CD27, OX40, and 4-1BB). Type I IFN signaling in viral-specific CD8+ T cells is slightly redundant with costimulatory signals. These results highlight that pathogen-specific conditions differentially and uniquely dictate the utilization of costimulatory pathways allowing shaping of effector and memory antigen-specific CD8+ T cell responses. DOI:http://dx.doi.org/10.7554/eLife.07486.001 When the immune system detects a virus in the body it mounts a response to eliminate it. Immune cells called CD8+ T cells detect fragments of virus proteins that are presented on the surface of other immune cells. The CD8+ T cells then rapidly divide to form populations that roam the body to kill cells that are infected with the virus. Afterwards, some of the CD8+ T cells become ‘memory T cells’, which allow the immune system to respond more rapidly if the virus returns. This means that a subsequent infection of the same virus is usually stopped before it can become severe enough for an individual to feel unwell. Vaccines take advantage of the activities of CD8+ T cells to enable a person to become ‘immune’ to a virus without having to experience the disease. Vaccines contain dead or weakened viruses that can't spread in the body, but are able to activate the CD8+ T cells. However, a vaccine may not be as effective in activating the T cells as the live virus, perhaps because it fails to trigger the production of other molecules in the host that promote T cell activation. There are many of these ‘co-stimulatory molecules’ in the body, but it is not clear exactly how they work. Now, Welten et al. show that the role of co-stimulatory molecules in the activation of CD8+ T cells depends on the type of virus and how it affects cells. Mice that were genetically engineered to lack two co-stimulatory molecules called CD80 and CD86 failed to accumulate active CD8+ T cells in response to infection with a herpes-like virus. However, if these mice were infected with a different virus called LCMV—which causes swelling of the brain and spinal cord—they produced many active CD8+ T cells to fight the infection. Welten et al. found that other co-stimulatory molecules are able to compensate for the loss of CD80 and CD86 to boost the activation of T cells in response to LCMV, but not the herpes-like virus. Further experiments showed that LCMV triggers a lot more inflammation in infected cells than the other virus. This leads to the production of many different types of co-stimulatory molecules, which ensures that if one fails to boost the activation of CD8+ T cells, another molecule can do so instead. Better understanding of how these co-stimulatory molecules work could help scientists to develop more effective vaccines in future. DOI:http://dx.doi.org/10.7554/eLife.07486.002
Collapse
Affiliation(s)
- Suzanne P M Welten
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L M C Franken
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jennifer D Oduro
- Department for Vaccinology/Immune Aging and Chronic Infection, Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Luka Čičin-Šain
- Department for Vaccinology/Immune Aging and Chronic Infection, Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Aichele
- Department of Medical Microbiology and Hygiene, Institute of Immunology, University of Freiburg, Freiburg, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Gammaherpesvirus latency differentially impacts the generation of primary versus secondary memory CD8+ T cells during subsequent infection. J Virol 2014; 88:12740-51. [PMID: 25142586 DOI: 10.1128/jvi.02106-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Unlike laboratory animals, humans are infected with multiple pathogens, including the highly prevalent herpesviruses. The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. Mice were first infected with murine gammaherpesvirus 68 (MHV68), a model of Epstein-Barr virus (EBV) infection, and then after latency was established, they were challenged with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV). The initial replication of LCMV was lower in latently infected mice, and the maturation of dendritic cells was abated. Although the number of LCMV-specific effector CD8(+) T cells was not altered, they were skewed to a memory phenotype. In contrast, LCMV-specific effector CD4(+) T cells were increased in latently infected mice compared to those in mice infected solely with LCMV. When the memory phase was reached, latently infected mice had an LCMV-specific memory T cell pool that was increased relative to that found in singly infected mice. Importantly, LCMV-specific memory CD8(+) T cells had decreased CD27 and increased killer cell lectin-like receptor G1 (KLRG1) expression. Upon secondary challenge, LCMV-specific secondary effector CD8(+) T cells expanded and cleared the infection. However, the LCMV-specific secondary memory CD8(+) T cell pool was decreased in latently infected animals, abrogating the boosting effect normally observed following rechallenge. Taken together, these results demonstrate that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. IMPORTANCE CD8(+) T cells are critical for the clearance of intracellular pathogens, including viruses, certain bacteria, and tumors. However, current models for memory CD8(+) T cell differentiation are derived from pathogen-free laboratory mice challenged with a single pathogen or vaccine vector. Unlike laboratory animals, all humans are infected with multiple acute and chronic pathogens, including the highly prevalent herpesviruses Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV), and varicella-zoster virus (VZV). The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. We observed that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. These results suggest that unlike pathogen-free laboratory mice, infection or immunization of latently infected humans may result in the generation of T cells with limited potential for long-term protection.
Collapse
|
5
|
Jensen S, Steffensen MA, Jensen BAH, Schlüter D, Christensen JP, Thomsen AR. Adenovirus-Based Vaccine againstListeria monocytogenes: Extending the Concept of Invariant Chain Linkage. THE JOURNAL OF IMMUNOLOGY 2013; 191:4152-64. [DOI: 10.4049/jimmunol.1301290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 2012; 8:e1002966. [PMID: 23093937 PMCID: PMC3475680 DOI: 10.1371/journal.ppat.1002966] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023] Open
Abstract
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. Salmonella infections cause extensive morbidity and mortality worldwide. A vaccine that prevents systemic Salmonella infections is urgently needed but suitable antigens remain largely unknown. In this study we identified several antigen candidates that mediated protective immunity to Salmonella in a mouse typhoid fever model. Interestingly, all these antigens were associated with the Salmonella surface. This suggested that similar antigen properties might be relevant for CD4 T cell dependent immunity to intracellular pathogens like Salmonella, as for antibody-dependent immunity to extracellular pathogens. Detailed analysis revealed that Salmonella surface antigens were not generally more immunogenic compared to internal antigens. However, internal antigens were inaccessible for CD4 T cell recognition of a substantial number of infected host cells that contained exclusively live intact Salmonella. Together, these results might pave the way for development of an efficacious Salmonella vaccine, and provide a basis to facilitate antigen identification for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Somedutta Barat
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yvonne Willer
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
| | - Konstantin Rizos
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne K. Schemmer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dennis Kirchhoff
- Immunomodulation Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
7
|
Abstract
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H(2)O(2) on an antigen-specific CD8(+) T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8(+) T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8(+) T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8(+) T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8(+) T cell pool. During chronic viral infection, increased antigen-specific CD8(+) T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8(+) T cell expansion, secondary memory generation, and immunopathology.
Collapse
|
8
|
Signal 3 cytokines as modulators of primary immune responses during infections: the interplay of type I IFN and IL-12 in CD8 T cell responses. PLoS One 2012; 7:e40865. [PMID: 22815848 PMCID: PMC3398954 DOI: 10.1371/journal.pone.0040865] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/18/2012] [Indexed: 12/04/2022] Open
Abstract
Signal 3 cytokines, such as IL-12 or type I IFN, support expansion and differentiation of CD8 T cells in vivo. If and how these two signal 3 cytokines compensate each other in T cell activation during different infections is so far unknown. Using CD8 T cells lacking receptors for IL-12, type I IFN or both, we show that the expansion of CD8 T cells depends on type I IFN (LCMV infection), type I IFN and IL-12 (Listeria and vesicular stomatitis virus infection) or is largely independent of the two cytokines (vaccinia virus infection). Furthermore, we show that CD8 T cells lacking IL-12 and type I IFN signals are impaired in cytokine production and cytolytic activity in the context of VSV and Listeria infection. These effector CD8 T cells fail to express KLRG1, thereby exhibiting a memory-like phenotype which correlated with lower expression of the transcription factor T-bet and higher expression of Eomes. This indicates that the variable interplay of both signal 3 cytokines is mandatory for cell fate decision of CD8 T cells in the context of different infections. Furthermore our results demonstrate that the pathogen-induced overall inflammatory milieu and not the antigen load and/or the quality of antigen presentation critically determine the signal 3 dependence of CD8 T cells.
Collapse
|
9
|
Keppler SJ, Aichele P. Signal 3 requirement for memory CD8+T-cell activation is determined by the infectious pathogen. Eur J Immunol 2011; 41:3176-86. [DOI: 10.1002/eji.201141537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/22/2011] [Accepted: 08/05/2011] [Indexed: 11/12/2022]
|
10
|
Priatel JJ, Chen X, Huang YH, Chow MT, Zenewicz LA, Coughlin JJ, Shen H, Stone JC, Tan R, Teh HS. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:666-76. [PMID: 20007535 DOI: 10.4049/jimmunol.0803521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.
Collapse
Affiliation(s)
- John J Priatel
- Child and Family Research Institute, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Keppler SJ, Theil K, Vucikuja S, Aichele P. Effector T-cell differentiation during viral and bacterial infections: Role of direct IL-12 signals for cell fate decision of CD8(+) T cells. Eur J Immunol 2009; 39:1774-83. [PMID: 19548244 DOI: 10.1002/eji.200839093] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To study the role of IL-12 as a third signal for T-cell activation and differentiation in vivo, direct IL-12 signaling to CD8(+) T cells was analyzed in bacterial and viral infections using the P14 T-cell adoptive transfer model with CD8(+) T cells that lack the IL-12 receptor. Results indicate that CD8(+) T cells deficient in IL-12 signaling were impaired in clonal expansion after Listeria monocytogenes infection but not after infection with lymphocytic choriomeningitis virus, vaccinia virus or vesicular stomatitis virus. Although limited in clonal expansion after Listeria infection, CD8(+) T cells deficient in IL-12 signaling exhibited normal degranulation activity, cytolytic functions, and secretion of IFN-gamma and TNF-alpha. However, CD8(+) T cells lacking IL-12 signaling failed to up-regulate KLRG1 and to down-regulate CD127 in the context of Listeria but not viral infections. Thus, direct IL-12 signaling to CD8(+) T cells determines the cell fate decision between short-lived effector cells and memory precursor effector cells, which is dependent on pathogen-induced local cytokine milieu.
Collapse
Affiliation(s)
- Selina J Keppler
- Institute for Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
12
|
Nondividing but metabolically active gamma-irradiated Brucella melitensis is protective against virulent B. melitensis challenge in mice. Infect Immun 2009; 77:5181-9. [PMID: 19703982 DOI: 10.1128/iai.00231-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brucella spp. are gram-negative bacteria that cause the most frequent zoonotic disease worldwide, with more than 500,000 human infections yearly; however, no human vaccine is currently available. As with other intracellular organisms, cytotoxic mechanisms against infected cells are thought to have an important role in controlling infection and mediating long-term immunity. Live attenuated strains developed for use in animals elicit protection but retain unacceptable levels of virulence. Thus, the optimal design for a brucellosis vaccine requires a nonliving vaccine that confers effective immunity. Historically, inactivation methods such as chemical or heat treatment successfully impair Brucella reproductive capacity; nevertheless, metabolically inactive vaccines (subunit or killed) present very limited efficacy. Hence, we hypothesized that bacterial metabolism plays a major role in creating the proper antigenic and adjuvant properties required for efficient triggering of protective responses. Here, we demonstrate that inactivation of Brucella melitensis by gamma-irradiation inhibited its replication capability and yet retained live-Brucella protective features. Irradiated Brucella possessed metabolic and transcriptional activity, persisted in macrophages, generated antigen-specific cytotoxic T cells, and protected mice against virulent bacterial challenge, without signs of residual virulence. In conclusion, pathogen metabolic activity has a positive role in shaping protective responses, and the generation of inactivated and yet metabolically active microbes is a promising strategy for safely vaccinating against intracellular organisms such as B. melitensis.
Collapse
|
13
|
Abstract
The Gram-positive facultative intracellular bacterium Listeria monocytogenes is a model pathogen for elucidating important mechanisms of the immune response. Infection of mice with a sub-lethal dose of bacteria generates highly reproducible innate and adaptive immune responses, resulting in clearance of the bacteria and resistance to subsequent L. monocytogenes infection. Both the innate and adaptive immune systems are crucial to the recognition and elimination of this pathogen from the host.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
14
|
Abstract
The immunostimulatory characteristics and intracellular niche of Listeria monocytogenes make it uniquely suitable for use as a live bacterial vaccine vector. Preclinical results supporting this idea, and current strategies to induce beneficial cell-mediated immunity to both infectious diseases and cancer with this vector, are discussed in this review.
Collapse
Affiliation(s)
- Kevin W Bruhn
- Department of Medicine, Division of Dermatology, Los Angeles Biomedical Research Institute at Harbor/UCLA Medical Center, 1124 W. Carson St., Torrance, CA 90502, USA.
| | | | | |
Collapse
|
15
|
Bahjat KS, Liu W, Lemmens EE, Schoenberger SP, Portnoy DA, Dubensky TW, Brockstedt DG. Cytosolic entry controls CD8+-T-cell potency during bacterial infection. Infect Immun 2006; 74:6387-97. [PMID: 16954391 PMCID: PMC1695486 DOI: 10.1128/iai.01088-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interaction with host immunoreceptors during microbial infection directly impacts the magnitude of the ensuing innate immune response. How these signals affect the quality of the adaptive T-cell response remains poorly understood. Utilizing an engineered strain of the intracellular pathogen Listeria monocytogenes that infects cells but fails to escape from the phagosome, we demonstrate the induction of long-lived memory T cells that are capable of secondary expansion and effector function but are incapable of providing protective immunity. We demonstrate that microbial invasion of the cytosol is required for dendritic cell activation and integration of CD40 signaling, ultimately determining the ability of the elicited CD8+-T-cell pool to protect against lethal wild-type L. monocytogenes challenge. These results reveal a crucial role for phagosomal escape, not for delivery of antigen to the class I major histocompatibility complex pathway but for establishing the appropriate cellular context during CD8+-T-cell priming.
Collapse
Affiliation(s)
- Keith S Bahjat
- Cerus Corporation, 2411 Stanwell Drive, Concord, CA 94520, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Stevens R, Lavoy A, Nordone S, Burkhard M, Dean GA. Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine 2005; 23:1479-90. [PMID: 15670884 DOI: 10.1016/j.vaccine.2004.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 09/09/2004] [Accepted: 09/14/2004] [Indexed: 11/21/2022]
Abstract
Listeria monocytogenes is an attractive biologic vaccine vector against HIV because it induces a strong cell mediated immune response, can be delivered by mucosal routes, can be readily manipulated to express viral antigens, and is easy and inexpensive to produce. Proof of concept studies have been performed using HIV Gag expressing recombinant L. monocytogenes in the mouse. Here we report the development and validation of recombinant L. monocytogenes to be evaluated in the FIV/cat model of HIV. Using a simplified approach to introduce individual and polyprotein FIV gag genes, we show that recombinant L. monocytogenes containing the entire gag expresses the full-length Gag polyprotein in a soluble secreted form. A DNA vaccine plasmid (pND14-Lc-env) that replicates in Gram positive bacteria and contains the FIV SU (gp100) and the ectodomain of TM (gp40) in a eukaryotic expression cassette was transfected into LM-gag to create LM-gag/pND14-Lc-env. After infection of target cells with LM-gag/pND14-Lc-env in vitro, both FIV Gag and Env proteins were detected in soluble cell lysates. Whether previous exposure to L. monocytogenes affects the immunogenicity of LM-gag/pND14-Lc-env was determined in cats infected with wild-type L. monocytogenes orally and/or subcutaneously. After a single oral dose of LM-gag/pND14-Lc-env, cats with existing anti-L. monocytogenes immune responses developed anti-FIV Gag IgA titers in vaginal secretions, saliva, and feces. Similarly, FIV Gag and Env specific IFN-gamma ELISPOT responses were measurable in spleen and lymph node but at a statistically higher frequency in cats exposed to a single subcutaneous dose of wild-type L. monocytogenes versus cats exposed both subcutaneously and orally. The FIV/cat model will provide a useful challenge system to determine whether recombinant L. monocytogenes can protect against a lentivirus in its natural host after challenge by the routes common to HIV transmission.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cats
- Disease Models, Animal
- Feces
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Female
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunoglobulin A/analysis
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Saliva/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vagina/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Rosemary Stevens
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
17
|
Belz GT, Shortman K, Bevan MJ, Heath WR. CD8alpha+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:196-200. [PMID: 15972648 PMCID: PMC2778481 DOI: 10.4049/jimmunol.175.1.196] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD8alpha(+) dendritic cells (DCs) have been shown to be the principal DC subset involved in priming MHC class I-restricted CTL immunity to a variety of cytolytic viruses, including HSV type 1, influenza, and vaccinia virus. Whether priming of CTLs by CD8alpha(+) DCs is limited to cytolytic viruses, which may provide dead cellular material for this DC subset, or whether these DCs selectively present intracellular Ags, is unknown. To address this question, we examined Ag presentation to a noncytolytic virus, lymphocytic choriomeningitis virus, and to an intracellular bacterium, Listeria monocytogenes. We show that regardless of the type of intracellular infection, CD8alpha(+) DCs are the principal DC subset that initiate CD8(+) T cell immunity.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology and Cooperative Research Centre for Vaccine Technology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
18
|
Zenewicz LA, Wei Z, Goldfine H, Shen H. Phosphatidylinositol-Specific Phospholipase C ofBacillus anthracisDown-Modulates the Immune Response. THE JOURNAL OF IMMUNOLOGY 2005; 174:8011-6. [PMID: 15944308 DOI: 10.4049/jimmunol.174.12.8011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol-specific phospholipases (PI-PLCs) are virulence factors produced by many pathogenic bacteria, including Bacillus anthracis and Listeria monocytogenes. Bacillus PI-PLC differs from Listeria PI-PLC in that it has strong activity for cleaving GPI-anchored proteins. Treatment of murine DCs with Bacillus, but not Listeria, PI-PLC inhibited dendritic cell (DC) activation by TLR ligands. Infection of mice with Listeria expressing B. anthracis PI-PLC resulted in a reduced Ag-specific CD4 T cell response. These data indicate that B. anthracis PI-PLC down-modulates DC function and T cell responses, possibly by cleaving GPI-anchored proteins important for TLR-mediated DC activation.
Collapse
Affiliation(s)
- Lauren A Zenewicz
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | | | | |
Collapse
|
19
|
Tvinnereim AR, Hamilton SE, Harty JT. Neutrophil Involvement in Cross-Priming CD8+T Cell Responses to Bacterial Antigens. THE JOURNAL OF IMMUNOLOGY 2004; 173:1994-2002. [PMID: 15265934 DOI: 10.4049/jimmunol.173.3.1994] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Substantial CD8(+) T cell responses are generated after infection of mice with recombinant Listeria monocytogenes strains expressing a model epitope (lymphocytic choriomeningitis virus NP(118-126)) in secreted and nonsecreted forms. L. monocytogenes gains access to the cytosol of infected cells, where secreted Ags can be accessed by the endogenous MHC class I presentation pathway. However, the route of presentation of the nonsecreted Ag in vivo remains undefined. In this study we show that neutrophil-enriched peritoneal exudate cells from L. monocytogenes-infected mice can serve as substrates for in vitro cross-presentation of both nonsecreted and secreted Ag by dendritic cells as well as for in vivo cross-priming of CD8(+) T cells. In addition, specific neutrophil depletion in vivo by low dose treatment with either of two Ly6G-specific mAb substantially decreased the relative CD8(+) T cell response against the nonsecreted, but not the secreted, Ag compared with control Ab-treated mice. Thus, neutrophils not only provide rapid innate defense against infection, but also contribute to shaping the specificity and breadth of the CD8(+) T cell response. In addition, cross-presentation of bacterial Ags from neutrophils may explain how CD8(+) T cell responses are generated against Ags from extracellular bacterial pathogens.
Collapse
Affiliation(s)
- Amy R Tvinnereim
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|