1
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Curciarello R, Sobande T, Jones S, Giuffrida P, Di Sabatino A, Docena GH, MacDonald TT, Kok K. Human Neutrophil Elastase Proteolytic Activity in Ulcerative Colitis Favors the Loss of Function of Therapeutic Monoclonal Antibodies. J Inflamm Res 2020; 13:233-243. [PMID: 32547155 PMCID: PMC7251227 DOI: 10.2147/jir.s234710] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Proteases play an essential role in the pathophysiology of inflammatory bowel disease (IBD), contributing to the intestinal mucosal lesions through the degradation of the extracellular matrix and alteration of the barrier function. Ulcerative colitis (UC) is characterized by an extensive infiltrate of neutrophils into the mucosa and hence, increased proteolytic activity. Human neutrophil elastase (HNE) is a serine protease that has been reported to be increased in UC patients’ intestinal mucosa. Based on our previous studies, we hypothesized that HNE might induce proteolytic degradation and loss of function of therapeutic monoclonal antibodies in IBD patients. Patients and Methods Elastase expression and elastinolytic activity were determined in mucosal explants from ulcerative colitis patients (n=6) and cultured ex vivo in the presence or absence of recombinant elafin. Enzymatic digestions of therapeutic monoclonal antibodies were performed using recombinant HNE and elafin. The integrity of the therapeutic antibodies was evaluated by immunoblotting and protein G binding assay, whereas their TNF-neutralizing activity was assessed with a reporter cell line. Results We found that HNE and its elastinolytic activity were increased in the gut mucosa of UC patients. We also demonstrated that HNE cleaved biological drugs, impairing the TNF-α neutralizing capacity of anti-TNF monoclonal antibodies. This proteolytic degradation was inhibited by the addition of the specific inhibitor, elafin. Conclusion Our results suggest that the high level of proteolytic degradation by mucosal neutrophil elastase, along with a potential imbalance with elafin, contributes to the loss of function of biologic agents, which are currently used in patients with IBD. These findings might explain the non-responsiveness of UC patients to therapeutic monoclonal antibodies and suggest the potential beneficial concomitant use of elafin in this treatment.
Collapse
Affiliation(s)
- Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos IIFP-CONICET, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.,Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Toni Sobande
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Samantha Jones
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Paolo Giuffrida
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK.,First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos IIFP-CONICET, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Thomas T MacDonald
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London, UK.,Barts Health NHS Trust, Royal London Hospital, London, UK
| |
Collapse
|
4
|
Aravilli RK, Vikram SL, Kohila V. Phytochemicals as potential antidotes for targeting NF-κB in rheumatoid arthritis. 3 Biotech 2017; 7:253. [PMID: 28721679 DOI: 10.1007/s13205-017-0888-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune destructive arthropathy prevalent among people in the age group of 40-70 years. RA induces severe pain, swelling and stiffness of joints resulting in bone damage. RA leads to reduced life expectancy when left untreated. RA is characterized by synovial hyperplasia, infiltration of inflammatory cells resulting in formation of pannus. Synovial hyperplasia is mediated by proinflammatory cytokines, notably IL-1 and TNF-α. NF-κB is a predominant transcription factor in amplifying the inflammatory response. The translocation of activated NF-κB into the nucleus triggers the transcription of several genes that induce proinflammatory cytokine production. The inhibition of NF-κB translocation aids blocking the activation of proinflammatory cascades. The quest for more effective and side-effect free treatment for RA unveiled phytochemicals as efficacious and promising. Phytochemicals have been a source of therapeutic substances for many ailments from ancient times. Their therapeutic ability helps in developing potent and safe drugs targeting immune inflammatory diseases driven by NF-κB including RA. This review highlights the importance of NF-κB inflammatory cascade in RA so as to elucidate the crucial role of phytochemicals that inhibit the activity of NF-κB.
Collapse
Affiliation(s)
- R Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - S Laveen Vikram
- Department of Computer Science and Engineering, Alagappa University, Karaikudi, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India.
| |
Collapse
|
5
|
Hwang HS, Park IY, Kim DW, Choi SY, Jung YO, Kim HA. PEP-1-FK506BP12 inhibits matrix metalloproteinase expression in human articular chondrocytes and in a mouse carrageenan-induced arthritis model. BMB Rep 2016; 48:407-12. [PMID: 25887750 PMCID: PMC4577291 DOI: 10.5483/bmbrep.2015.48.7.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/28/2022] Open
Abstract
The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1β (IL-1β)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression. [BMB Reports 2015; 48(7): 407-412]
Collapse
Affiliation(s)
- Hyun Sook Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 431-060; Institute for Skeletal Aging, Hallym University, Chuncheon 200-702, Korea
| | - In Young Park
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 431-060; Institute for Skeletal Aging, Hallym University, Chuncheon 200-702, Korea
| | - Dae Won Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Young Ok Jung
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul 150-950, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 431-060; Institute for Skeletal Aging, Hallym University, Chuncheon 200-702, Korea
| |
Collapse
|
6
|
Biancheri P, Brezski RJ, Di Sabatino A, Greenplate AR, Soring KL, Corazza GR, Kok KB, Rovedatti L, Vossenkämper A, Ahmad N, Snoek SA, Vermeire S, Rutgeerts P, Jordan RE, MacDonald TT. Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology 2015; 149:1564-1574.e3. [PMID: 26170138 DOI: 10.1053/j.gastro.2015.07.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Many patients with inflammatory bowel disease (IBD) fail to respond to anti-tumor necrosis factor (TNF) agents such as infliximab and adalimumab, and etanercept is not effective for treatment of Crohn's disease. Activated matrix metalloproteinase 3 (MMP3) and MMP12, which are increased in inflamed mucosa of patients with IBD, have a wide range of substrates, including IgG1. TNF-neutralizing agents act in inflamed tissues; we investigated the effects of MMP3, MMP12, and mucosal proteins from IBD patients on these drugs. METHODS Biopsy specimens from inflamed colon of 8 patients with Crohn's disease and 8 patients with ulcerative colitis, and from normal colon of 8 healthy individuals (controls), were analyzed histologically, or homogenized and proteins were extracted. We also analyzed sera from 29 patients with active Crohn's disease and 33 patients with active ulcerative colitis who were candidates to receive infliximab treatment. Infliximab, adalimumab, and etanercept were incubated with mucosal homogenates from patients with IBD or activated recombinant human MMP3 or MMP12 and analyzed on immunoblots or in luciferase reporter assays designed to measure TNF activity. IgG cleaved by MMP3 or MMP12 and antihinge autoantibodies against neo-epitopes on cleaved IgG were measured in sera from IBD patients who subsequently responded (clinical remission and complete mucosal healing) or did not respond to infliximab. RESULTS MMP3 and MMP12 cleaved infliximab, adalimumab, and etanercept, releasing a 32-kilodalton Fc monomer. After MMP degradation, infliximab and adalimumab functioned as F(ab')2 fragments, whereas cleaved etanercept lost its ability to neutralize TNF. Proteins from the mucosa of patients with IBD reduced the integrity and function of infliximab, adalimumab, and etanercept. TNF-neutralizing function was restored after incubation of the drugs with MMP inhibitors. Serum levels of endogenous IgG cleaved by MMP3 and MMP12, and antihinge autoantibodies against neo-epitopes of cleaved IgG, were higher in patients who did not respond to treatment vs responders. CONCLUSIONS Proteolytic degradation may contribute to the nonresponsiveness of patients with IBD to anti-TNF agents.
Collapse
Affiliation(s)
- Paolo Biancheri
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Randall J Brezski
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Antonio Di Sabatino
- Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Allison R Greenplate
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Keri L Soring
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Gino R Corazza
- Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Klaartje B Kok
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Laura Rovedatti
- Department of Internal Medicine, S. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Anna Vossenkämper
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Nadja Ahmad
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Susanne A Snoek
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Severine Vermeire
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Paul Rutgeerts
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Robert E Jordan
- Biologics Research, Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Thomas T MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| |
Collapse
|
7
|
Makino A, Fujino K, Parrish NF, Honda T, Tomonaga K. Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene. Sci Rep 2015; 5:8696. [PMID: 25733193 PMCID: PMC4649702 DOI: 10.1038/srep08696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-stranded RNA genome and causes persistent infection in many animal species. Previous study has shown that the activation of the IκB kinase (IKK)/NF-κB pathway is reduced by BDV infection even in cells expressing constitutively active mutant IKK. This result suggests that BDV directly interferes with the IKK/NF-κB pathway. To elucidate the mechanism for the inhibition of NF-κB activation by BDV infection, we evaluated the cross-talk between BDV infection and the NF-κB pathway. Using Multiple EM for Motif Elicitation analysis, we found that the nucleoproteins of BDV (BDV-N) and NF-κB1 share a common ankyrin-like motif. When THP1-CD14 cells were pre-treated with the identified peptide, NF-κB activation by Toll-like receptor ligands was suppressed. The 20S proteasome assay showed that BDV-N and BDV-N-derived peptide inhibited the processing of NF-κB1 p105 into p50. Furthermore, immunoprecipitation assays showed that BDV-N interacted with NF-κB1 but not with NF-κB2, which shares no common motif with BDV-N. These results suggest BDV-N inhibits NF-κB1 processing by the 20S proteasome through its ankyrin-like peptide sequence, resulting in the suppression of IKK/NF-κB pathway activation. This inhibitory effect of BDV on the induction of the host innate immunity might provide benefits against persistent BDV infection.
Collapse
Affiliation(s)
- Akiko Makino
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan
| | | | - Tomoyuki Honda
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3] Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Koutsokeras A, Purkayastha N, Purkayashta N, Rigby A, Subang MC, Sclanders M, Vessillier S, Mullen L, Chernajovsky Y, Gould D. Generation of an efficiently secreted, cell penetrating NF-κB inhibitor. FASEB J 2013; 28:373-81. [PMID: 24072781 DOI: 10.1096/fj.13-236570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene therapy is a powerful approach to treat disease locally. However, if the therapeutic target is intracellular, the therapeutic will be effective only in the cells where the therapeutic gene is delivered. We have engineered a fusion protein containing an intracellular inhibitor of the transcription factor NF-κB pathway that can be effectively secreted from producing cells. This fusion protein is cleaved extracellularly by metalloproteinases allowing release of a protein transduction domain (PTD) linked to the NF-κB inhibitor for translocation into neighboring cells. We show that engineered molecules can be efficiently secreted (>80%); are cleaved with matrix metalloprotease-1; inhibit NF-κB driven transcription in a biological assay with a human reporter cell line; and display significant inhibition in mouse paw inflammation models when delivered by lentivirus or secreting cells. No inhibition of NF-κB transcription or therapeutic effect was seen using molecules devoid of the PTD and NF-κB inhibitory domains. By creating a fusion protein with an endogenous secretion partner, we demonstrate a novel approach to efficiently secrete PTD-containing protein domains, overcoming previous limitations, and allowing for potent paracrine effects.
Collapse
Affiliation(s)
- Apostolos Koutsokeras
- 2Bone and Joint Research Unit, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Construction of recombinant proteins for reprogramming of endangered Luxi cattle fibroblast cells. Mol Biol Rep 2012; 39:7175-82. [DOI: 10.1007/s11033-012-1549-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/24/2012] [Indexed: 12/19/2022]
|
10
|
Genetic engineering of mammalian cells by direct delivery of FLP recombinase protein. Methods 2011; 53:386-93. [DOI: 10.1016/j.ymeth.2010.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/24/2010] [Accepted: 12/17/2010] [Indexed: 11/23/2022] Open
|
11
|
Kalvala A, Rainaldi G, Di Primio C, Liverani V, Falaschi A, Galli A. Enhancement of gene targeting in human cells by intranuclear permeation of the Saccharomyces cerevisiae Rad52 protein. Nucleic Acids Res 2010; 38:e149. [PMID: 20519199 PMCID: PMC2919737 DOI: 10.1093/nar/gkq486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The introduction of exogenous DNA in human somatic cells results in a frequency of random integration at least 100-fold higher than gene targeting (GT), posing a seemingly insurmountable limitation for gene therapy applications. We previously reported that, in human cells, the stable over-expression of the Saccharomyces cerevisiae Rad52 gene (yRAD52), which plays the major role in yeast homologous recombination (HR), caused an up to 37-fold increase in the frequency of GT, indicating that yRAD52 interacts with the double-strand break repair pathway(s) of human cells favoring homologous integration. In the present study, we tested the effect of the yRad52 protein by delivering it directly to the human cells. To this purpose, we fused the yRAD52 cDNA to the arginine-rich domain of the TAT protein of HIV (tat11) that is known to permeate the cell membranes. We observed that a recombinant yRad52tat11 fusion protein produced in Escherichia coli, which maintains its ability to bind single-stranded DNA (ssDNA), enters the cells and the nuclei, where it is able to increase both intrachromosomal recombination and GT up to 63- and 50-fold, respectively. Moreover, the non-homologous plasmid DNA integration decreased by 4-fold. yRAD52tat11 proteins carrying point mutations in the ssDNA binding domain caused a lower or nil increase in recombination proficiency. Thus, the yRad52tat11 could be instrumental to increase GT in human cells and a ‘protein delivery approach’ offers a new tool for developing novel strategies for genome modification and gene therapy applications.
Collapse
Affiliation(s)
- Arjun Kalvala
- Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Area della Ricerca CNR, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Trabulo S, Cardoso AL, Mano M, De Lima MCP. Cell-Penetrating Peptides-Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals (Basel) 2010; 3:961-993. [PMID: 27713284 PMCID: PMC4034016 DOI: 10.3390/ph3040961] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/20/2010] [Accepted: 03/29/2010] [Indexed: 01/13/2023] Open
Abstract
The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs) have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides). In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.
Collapse
Affiliation(s)
- Sara Trabulo
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Miguel Mano
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal
| | - Maria C Pedroso De Lima
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, Portugal.
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Apartado 3126, 3001-401 Coimbra, Portugal.
| |
Collapse
|
13
|
Sawant R, Torchilin V. Intracellulartransduction using cell-penetrating peptides. ACTA ACUST UNITED AC 2010; 6:628-40. [DOI: 10.1039/b916297f] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Koutsokeras A, Kabouridis PS. Secretion and uptake of TAT-fusion proteins produced by engineered mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:147-53. [PMID: 19100310 PMCID: PMC2635560 DOI: 10.1016/j.bbagen.2008.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 01/18/2023]
Abstract
BACKGROUND Intracellular signaling can be regulated by the exogenous addition of physiological protein inhibitors coupled to the TAT protein transduction domain. Thus far experiments have been performed with purified inhibitors added exogenously to cells in vitro or administered in vivo. Production of secretable TAT-fusion proteins by engineered mammalian cells, their uptake, and route of entry has not been thoroughly investigated. Such methodology, if established, could be useful for transplantation purposes. METHODS Secretion of TAT-fusion proteins from transfected mammalian cells was achieved by means of a signal peptide. Cell uptake and subcellular localization of TAT-fusion proteins were determined by immunoblotting and confocal microscopy. RESULTS Engineered TAT-fusion proteins were secreted with variable efficiency depending on the nature of the protein fused to the TAT peptide. Secreted proteins were able to transduce unmanipulated cells. Their mechanism of entry into cells partly involves lipid rafts and a portion of the internalised protein is directed to the Golgi. CONCLUSIONS Generation of secretable TAT-coupled inhibitors of signaling pathways, able to transduce other cells can be achieved. GENERAL SIGNIFICANCE These results provide key information that will assist in the design of TAT-inhibitors and engineered cells in order to regulate cell function within tissues.
Collapse
Affiliation(s)
- Apostolos Koutsokeras
- William Harvey Research Institute, Queen Mary’s School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Panagiotis S. Kabouridis
- William Harvey Research Institute, Queen Mary’s School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
15
|
Malik NM, Gilroy DW, Kabouridis PS. Regulation of growth and survival of activated T cells by cell-transducing inhibitors of Ras. FEBS Lett 2009; 583:61-9. [PMID: 19063885 PMCID: PMC2615550 DOI: 10.1016/j.febslet.2008.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/17/2008] [Accepted: 11/27/2008] [Indexed: 12/28/2022]
Abstract
We describe the development of cell-penetrating inhibitors of Ras and study their ability to inhibit T cell activation. The inhibitors transduced T cells in a time and concentration-dependent manner and interacted with endogenous Ras. Anti-CD3/CD28-activated cells when treated with the inhibitors, exhibited a notable reduction in cell size, diminished proliferative capacity, and were more prone to apoptosis. Similarly, lymphocytes activated by antigen in vivo, exhibited accelerated apoptosis when treated with the inhibitors ex vivo. Our data reveal a pro-survival role for Ras in activated primary T cells and describe a new methodology for regulating its activity.
Collapse
Affiliation(s)
- Nasser M. Malik
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary’s School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology, Department of Medicine, Rayne Institute, University College London, 5 University Street, London WC1 6JJ, United Kingdom
| | - Panagiotis S. Kabouridis
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary’s School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
16
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factors are activated by a range of stimuli including pro-inflammatory cytokines. Active NF-kappaB regulates the expression of genes involved in inflammation and cell survival and aberrant NF-kappaB activity plays pathological roles in certain types of cancer and diseases characterized by chronic inflammation. NF-kappaB signaling is an attractive target for the development of novel anti-inflammatory or anti-cancer drugs and we discuss here how the method of peptide transduction has been used to specifically target NF-kappaB. Peptide transduction relies on the ability of certain small cell-penetrating peptides (CPPs) to enter cells, and a panel of CPP-linked inhibitors (CPP-Is) has been developed to directly inhibit NF-kappaB signaling. Remarkably, several of these NF-kappaB-targeting CPP-Is are effective in vivo and therefore offer exciting potential in the clinical setting.
Collapse
Affiliation(s)
- J. S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children’s Hospital of Philadelphia 3615 Civic Center Blvd., ARC 1016H, Philadelphia, PA 19104 USA
| | - M. J. May
- Department of Animal Biology and The Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street (OVH 200E), Philadelphia, PA 19104 USA
| |
Collapse
|
17
|
Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1509-19. [PMID: 18458097 DOI: 10.2353/ajpath.2008.071009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disorder associated with dystrophin deficiency that results in chronic inflammation, sarcolemma damage, and severe skeletal muscle degeneration. Recently, the use of L-arginine, the substrate of nitric oxide synthase (nNOS), has been proposed as a pharmacological treatment to attenuate the dystrophic pattern of DMD. However, little is known about signaling events that occur in dystrophic muscle with l-arginine treatment. Considering the implication of inflammation in dystrophic processes, we asked whether L-arginine inhibits inflammatory signaling cascades. We demonstrate that L-arginine decreases inflammation and enhances muscle regeneration in the mdx mouse model. Classic stimulatory signals, such as proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, are significantly decreased in mdx mouse muscle, resulting in lower nuclear factor (NF)-kappaB levels and activity. NF-kappaB serves as a pivotal transcription factor with multiple levels of regulation; previous studies have shown perturbation of NF-kappaB signaling in both mdx and DMD muscle. Moreover, L-arginine decreases the activity of metalloproteinase (MMP)-2 and MMP-9, which are transcriptionally activated by NF-kappaB. We show that the inhibitory effect of L-arginine on the NF-kappaB/MMP cascade reduces beta-dystroglycan cleavage and translocates utrophin and nNOS throughout the sarcolemma. Collectively, our results clarify the molecular events by which L-arginine promotes muscle membrane integrity in dystrophic muscle and suggest that NF-kappaB-related signaling cascades could be potential therapeutic targets for DMD management.
Collapse
Affiliation(s)
- Karim Hnia
- INSERM ERI 25 Muscle et Pathologies, CHU A. de Villeneuve, Université de Montpellier1, EA 4202, 34295 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Torchilin V. Intracellular delivery of protein and peptide therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e95-e103. [PMID: 24981097 DOI: 10.1016/j.ddtec.2009.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Many proteins and peptides are used as highly specific and effective therapeutic agents. Their use is, however, complicated by their instability and side effects. Because many protein and peptide drugs have their therapeutic targets inside cells, there is also an important task to bring these drugs into target cells without subjecting them to the lysosomal degradation. This review describes current approaches to the intracellular delivery of protein and peptide drugs. Various drug delivery systems and methods are considered allowing for safe and effective transport of protein and peptide drugs into the cell cytoplasm.:
Collapse
Affiliation(s)
- Vladimir Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Verkoczy L, Duong B, Skog P, Aït-Azzouzene D, Puri K, Vela JL, Nemazee D. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. THE JOURNAL OF IMMUNOLOGY 2007; 178:6332-41. [PMID: 17475862 PMCID: PMC3777394 DOI: 10.4049/jimmunol.178.10.6332] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PI3K plays key roles in cell growth, differentiation, and survival by generating the second messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). PIP3 activates numerous enzymes, in part by recruiting them from the cytosol to the plasma membrane. We find that in immature B lymphocytes carrying a nonautoreactive Ag receptor, PI3K signaling suppresses RAG expression and promotes developmental progression. Inhibitors of PI3K signaling abrogate this positive selection. Furthermore, immature primary B cells from mice lacking the p85alpha regulatory subunit of PI3K suppress poorly RAG expression, undergo an exaggerated receptor editing response, and, as in BCR-ligated cells, fail to progress into the G1 phase of cell cycle. Moreover, immature B cells carrying an innocuous receptor have sustained elevation of PIP3 levels and activation of the downstream effectors phospholipase C (PLC)gamma2, Akt, and Bruton's tyrosine kinase. Of these, PLCgamma2 appears to play the most significant role in down-regulating RAG expression. It therefore appears that when the BCR of an immature B cell is ligated, PIP3 levels are reduced, PLCgamma2 activation is diminished, and receptor editing is promoted by sustained RAG expression. Taken together, our results provide evidence that PI3K signaling is an important cue required for fostering development of B cells carrying a useful BCR.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bao Duong
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Kellogg School of Science and Technology Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Patrick Skog
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | | | | | - José Luis Vela
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Kellogg School of Science and Technology Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - David Nemazee
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Address correspondence and reprint requests to Dr. David Nemazee, Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IMM-29, La Jolla, CA 92037.
| |
Collapse
|
20
|
Kim HA, Won Kim D, Park J, Choi SY. Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into human chondrocytes. Arthritis Res Ther 2007; 8:R96. [PMID: 16792821 PMCID: PMC1779403 DOI: 10.1186/ar1972] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/04/2006] [Accepted: 05/12/2006] [Indexed: 01/01/2023] Open
Abstract
This study was performed to investigate the transduction of a full-length superoxide dismutase (SOD) protein fused to transactivator of transcription (Tat) into human chondrocytes, and to determine the regulatory function of transduced Tat-SOD in the inflammatory cytokine induced catabolic pathway. The pTat-SOD expression vector was constructed to express the basic domain of HIV-1 Tat as a fusion protein with Cu, Zn-SOD. We also purified histidine-tagged SOD without an HIV-1 Tat and Tat-GFP as control proteins. Cartilage samples were obtained from patients with osteoarthritis (OA) and chondrocytes were cultured in both a monolayer and an explant. For the transduction of fusion proteins, cells/explants were treated with a variety of concentrations of fusion proteins. The transduced protein was detected by fluorescein labeling, western blotting and SOD activity assay. Effects of transduced Tat-SOD on the regulation of IL-1 induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression was assessed by the Griess reaction and reverse transcriptase PCR, respectively. Tat-SOD was successfully delivered into both the monolayer and explant cultured chondrocytes, whereas the control SOD was not. The intracellular transduction of Tat-SOD into cultured chondrocytes was detected after 1 hours, and the amount of transduced protein did not change significantly after further incubation. SOD enzyme activity increased in a dose-dependent manner. NO production and iNOS mRNA expression, in response to IL-1 stimulation, was significantly down-regulated by pretreatment with Tat-SOD fusion proteins. This study shows that protein delivery employing the Tat-protein transduction domain is feasible as a therapeutic modality to regulate catabolic processes in cartilage. Construction of additional Tat-fusion proteins that can regulate cartilage metabolism favorably and application of this technology in in vivo models of arthritis are the subjects of future studies.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do, 431-070, Korea
| | - Dae Won Kim
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
21
|
Delom F, Fessart D, Caruso ME, Chevet E. Tat-mediated protein delivery in living Caenorhabditis elegans. Biochem Biophys Res Commun 2007; 352:587-91. [PMID: 17141180 DOI: 10.1016/j.bbrc.2006.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022]
Abstract
The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm.
Collapse
Affiliation(s)
- Frédéric Delom
- Department of Surgery, McGill University, Montreal, Que., Canada
| | | | | | | |
Collapse
|
22
|
Gupta B, Torchilin VP. Transactivating transcriptional activator-mediated drug delivery. Expert Opin Drug Deliv 2006; 3:177-90. [PMID: 16506946 DOI: 10.1517/17425247.3.2.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs) are peptide vectors that can traverse through the plasma membrane barrier without breaching the integrity of the cell, and deliver various cargoes inside cell. The range of cargoes that can be delivered intracellularly by CPPs encompasses a broad variety of hydrophilic molecules, such as peptides, proteins, antibodies, imaging agents, DNA and even nanosized entities, including polymer-based systems, solid nanoparticles and liposomes. Multiple studies have focused on CPPs such as transactivating transcriptional activator peptide (TATp), penetratin, VP22, transportan and synthetic oligoarginines because of their high inherent potential as intracellular delivery vectors. However, the TATp remains the most popular CPP used for a variety of purposes. This review article attempts to bring together the available data on TAT-mediated intracellular uptake of a broad range of molecules and nanoparticles. It also considers potential practical applications of this approach.
Collapse
Affiliation(s)
- Bhawna Gupta
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Kwon YD, Oh SK, Kim HS, Ku SY, Kim SH, Choi YM, Moon SY. Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol Ther 2005; 12:28-32. [PMID: 15963917 DOI: 10.1016/j.ymthe.2005.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/07/2005] [Accepted: 03/16/2005] [Indexed: 12/23/2022] Open
Abstract
Human embryonic stem cells (hESCs) are an in vitro model system for the study of human early development and a potential source for cell-based therapies. An efficient strategy for cellular manipulation of hESCs may be highly valuable for the analysis of gene function involved in human embryogenesis and the development of cell-based therapies via induced differentiation into particular cell types. However, plasmid transfection of hESCs has low efficiency and viral transduction may not be the method of choice for cell-based therapies due to genome integration. To overcome these limitations, we applied protein transduction technology that can transfer proteins into cells via direct penetration across the lipid bilayer. Here, we show that the FITC dye fused to the TAT protein transduction domain (PTD) was efficiently transferred into hESCs. In addition, the PDX1 transcription factor, which plays a central role in pancreatic development, was transferred into hESCs as a fusion form of TAT PTD. The transduced TAT-PDX1 activated its downstream target genes and induced insulin protein production in hESCs. These results demonstrate that protein transduction could be used in the cellular manipulation of hESCs and would provide a significant breakthrough for basic and therapeutic research in hESCs.
Collapse
Affiliation(s)
- Young Do Kwon
- Institute of Reproductive Medicine and Population, Medical Research Center, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Verkoczy L, Aїt-Azzouzene D, Skog P, Märtensson A, Lang J, Duong B, Nemazee D. A role for nuclear factor kappa B/rel transcription factors in the regulation of the recombinase activator genes. Immunity 2005; 22:519-31. [PMID: 15845455 PMCID: PMC3792720 DOI: 10.1016/j.immuni.2005.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 03/04/2005] [Accepted: 03/16/2005] [Indexed: 01/25/2023]
Abstract
In developing B cells, expression of surface immunoglobulin is an important signal to terminate recombinase activator gene (RAG) expression and V(D)J recombination. However, autoreactive antigen receptors instead promote continued gene rearrangement and receptor editing. The regulation by B cell receptor (BCR) signaling of RAG expression and editing is poorly understood. We report that in editing-competent cells BCR ligand-induced RAG mRNA expression is regulated at the level of RAG transcription, rather than mRNA stability. In immature B cells carrying innocuous receptors, RAG expression appears to be under rapidly reversible negative regulation. Studies involving transduction of a superrepressive (sr) I kappa B alpha protein indicate that NF-kappaB/Rel proteins promote RAG transcription. Interestingly, NF kappa B1-deficient cells overexpress RAG and undergo an exaggerated receptor editing response. Our data implicate NF kappa B transcription factors in the BCR-mediated regulation of RAG locus transcription. Rapidly activated NF kappa B pathways may facilitate prompt antigen receptor-regulated changes in RAG expression important for editing and haplotype exclusion.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Djemel Aїt-Azzouzene
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Patrick Skog
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Annica Märtensson
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
| | - Julie Lang
- Barbara Davis Center 4200 East Ninth Avenue Denver, Colorado 80262
| | - Bao Duong
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
- The Kellogg School of Science and Technology, Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037
| | - David Nemazee
- Department of Immunology The Scripps Research Institute La Jolla, California 92037
- Barbara Davis Center 4200 East Ninth Avenue Denver, Colorado 80262
- Correspondence:
| |
Collapse
|
25
|
Albarran B, To R, Stayton PS. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Eng Des Sel 2005; 18:147-52. [PMID: 15820981 DOI: 10.1093/protein/gzi014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The HIV-1 TAT peptide has been used extensively for directing the intracellular delivery of an assortment of cargo, including DNA, liposomes and macromolecules. For protein delivery, a variety of TAT-fusion proteins have been described which link the TAT coding sequence to the protein coding sequence of interest. Streptavidin represents a potentially useful TAT-fusion protein because it could be used to deliver a wide array of biotinylated cargo. Here we have characterized a TAT-streptavidin (TAT-SA) fusion protein, which retains the ability to bind biotinylated cargo while directing their efficient cellular uptake. Fluorescence activated cell sorting (FACS) analysis and confocal microscopy characterization showed that TAT-SA is internalized by Jurkat T-cells and NIH 3T3 cells alone and when complexed to phycoerythrin, whereas the native streptavidin is not. Additionally, biotinylated alkaline phosphatase is successfully internalized and retains its activity when complexed to TAT-SA and incubated with Jurkat T-cells. Confocal microscopy suggested, however, that internalized TAT-SA and TAT-SA complexes were largely compartmentalized in vesicular compartments, rather than freely diffusing in the cytoplasmic compartment. To effect cytoplasmic delivery, the endosomal releasing polymer, poly(propylacrylic acid) (PPAA), was biotinylated and complexed to TAT-SA. Endosomal release and cytoplasmic delivery of fluorescently labeled TAT-SA complexes with PPAA was shown by the diffuse distribution of fluorescent protein in the cytoplasm. Taken together, these results demonstrate that TAT-SA can be used to direct intracellular delivery of large biotinylated cargo to intracellular compartments and that biotinylated PPAA can direct cytoplasmic delivery where desired.
Collapse
Affiliation(s)
- Brian Albarran
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
26
|
Chen RF, Li ZH, Kong XH, Chen JS. Effect of mutated IκBα transfection on multidrug resistance in hilar cholangiocarcinoma cell lines. World J Gastroenterol 2005; 11:726-8. [PMID: 15655831 PMCID: PMC4250748 DOI: 10.3748/wjg.v11.i5.726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression effect of mutated IκBα transfection on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells by inhibiting the activity of nuclear transcription factor-κB (NF-κB).
METHODS: We used the mutated IκBα plasmid to transfect QBC939HCVC+ cells and QBC939 cells, and electrophoretic gel mobility shift assay (EMSA) to detect the binding activity of NF-κB DNA and the effect of the transfecting mutated IκBα plasmid on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells and its expression protein (P-GP).
RESULTS: Plasmid DNA was digested by restriction enzymes Xbal and Hand III, and its product after electrophoresis showed two bands with a big difference in molecular weight, with a size of 4.9 kb and 1.55 kb respectively, which indicated that the carrier was successfully constructed and digested with enzymes. The radioactivity accumulation of QBC939HCVC+ and QBC939 cells transfected with mutated IκBα plasmid was significantly lower than that of the control group not transfected with mutated IκBα plasmid. Double densimeter scanning showed that the relative signal density between the tansfection group and non-transfection group was significantly different, which proved that the mutated IκBα plasmid could inhibit the binding activity of NF-κB DNA in hilar cholangiocarcinoma cells. Compared to control group not transfected with m IκBα plasmid, the expression level of MDR-1mRNA in the QBC939 and QBC939HCVC+ cells transfected with mutated IκBα plasmid was lower. The expression intensity of P-GP protein in QBC939 and QBC939HCVC+ cells transfected with mutated IκBα was significantly lower than that of the control group not transfected with mutated IκBα plasmid.
CONCLUSION: The mutated IκBα plasmid transfection can markedly reverse the multidrug resistance of hilar cholangiocarcinoma cells. Interruption of NF-κB activity may become a new target in gene therapy for hilar cholangiocar-cinogenesic carcinoma.
Collapse
Affiliation(s)
- Ru-Fu Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Zhongshan University, Guangzhou 510120, Guangdong Province, China.
| | | | | | | |
Collapse
|
27
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
28
|
Roguska M, Kaymakcalan Z, Salfeld J. Overview on the use of therapeutic antibodies in drug discovery. CURRENT PROTOCOLS IN PHARMACOLOGY 2005; Chapter 9:Unit 9.7. [PMID: 22294129 DOI: 10.1002/0471141755.ph0907s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The number of therapeutic antibodies approved by regulatory agencies as novel drugs and the number of antibodies in development has increased significantly. The modular nature of antibody structure has enabled researchers to more predictably design therapeutic antibodies by choosing appropriate functional features most appropriate for a given antibody target and clinical indication. Advances in recombinant antibody technologies have allowed the routine generation of antibodies that can satisfy stringent drug design criteria, such as low immunogenicity, high affinity, target specificity, and commercially viable manufacturing methods. Engineering design opportunities exist for both the variable and the constant regions that encompass, in addition to antigen specificity and affinity, effector functions that mediate immune complex clearance or pharmacokinetics. These are discussed in the context of relevant in vivo and in vitro technologies, such as human IgG transgenic mice, phage display, and biologics manufacturing. Finally, therapeutic antibodies are compared with traditional drugs with respect to target class, selectivity, route of administration, intellectual property issues, and lead discovery and optimization.
Collapse
|
29
|
Fujihara S, Jaffray E, Farrow SN, Rossi AG, Haslett C, Hay RT. Inhibition of NF-κB by a cell permeable form of IκBα induces apoptosis in eosinophils. Biochem Biophys Res Commun 2005; 326:632-7. [PMID: 15596146 DOI: 10.1016/j.bbrc.2004.11.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Indexed: 01/21/2023]
Abstract
An 11 amino acid HIV-TAT peptide can deliver target proteins into a variety of cells in a receptor-independent manner. To generate a highly specific inhibitor of the transcription factor NF-kappa B, we have fused the TAT-peptide to a version of I kappa B alpha that is resistant to signal-induced degradation. TAT-I kappa B alpha(S32A, S36A) inhibited NF-kappa B-dependent transcription in HeLa and A549 cells by retaining NF-kappa B p65 in the cytoplasm. Introduction of TAT-I kappa B alpha(S32A, S36A) into human eosinophils inhibited the nuclear translocation of NF-kappa B and induced apoptosis. Thus, continuous NF-kappa B-dependent transcription is important for eosinophil survival. While eosinophils are normally refractive to standard methods of gene delivery, the ability of TAT fusion proteins to be taken up by these cells should enable a detailed molecular analysis of survival pathways in these cells.
Collapse
Affiliation(s)
- Satoko Fujihara
- Department of Medicine, Centre for Inflammation Research, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Blackwell NM, Sembi P, Newson JS, Lawrence T, Gilroy DW, Kabouridis PS. Reduced infiltration and increased apoptosis of leukocytes at sites of inflammation by systemic administration of a membrane-permeable IkappaBalpha repressor. ACTA ACUST UNITED AC 2004; 50:2675-84. [PMID: 15334484 PMCID: PMC2596347 DOI: 10.1002/art.20467] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE NF-kappaB activation is associated with several inflammatory disorders, including rheumatoid arthritis (RA), making this family of transcription factors a good target for the development of antiinflammatory treatments. Although inhibitors of the NF-kappaB pathway are currently available, their specificity has not been adequately determined. IkappaBalpha is a physiologic inhibitor of NF-kappaB and a potent repressor experimentally when expressed in a nondegradable form. We describe here a novel means for specifically regulating NF-kappaB activity in vivo by administering a chimeric molecule comprising the super-repressor IkappaBalpha (srIkappaBalpha) fused to the membrane-transducing domain of the human immunodeficiency virus Tat protein (Tat-srIkappaBalpha). METHODS The Wistar rat carrageenan-induced pleurisy model was used to assess the effects of in vivo administration of Tat-srIkappaBalpha on leukocyte infiltration and on cytokine and chemokine production. RESULTS Systemic administration of Tat-srIkappaBalpha diminished infiltration of leukocytes into the site of inflammation. Analysis of the recruited inflammatory cells confirmed uptake of the inhibitor and reduction of the NF-kappaB activity. These cells exhibited elevated caspase activity, suggesting that NF-kappaB is required for the survival of leukocytes at sites of inflammation. Analysis of exudates, while showing decreases in the production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-1beta, also revealed a significant increase in the production of the neutrophil chemoattractants cytokine-induced neutrophil chemoattractant 1 (CINC-1) and CINC-3 compared with controls. This result could reveal a previously unknown feedback mechanism in which infiltrating leukocytes may down-regulate local production of these chemokines. CONCLUSION These results provide new insights into the etiology of inflammation and establish a strategy for developing novel therapeutics by regulating the signaling activity of pathways known to function in RA.
Collapse
Affiliation(s)
- Nathan M. Blackwell
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| | - Phupinder Sembi
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| | - Justine S. Newson
- Center for Biochemical Pharmacology and Experimental Pathology, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| | - Toby Lawrence
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego
| | - Derek W. Gilroy
- Center for Biochemical Pharmacology and Experimental Pathology, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| | - Panagiotis S. Kabouridis
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| |
Collapse
|
31
|
Thornton MV, Kudo D, Rayman P, Horton C, Molto L, Cathcart MK, Ng C, Paszkiewicz-Kozik E, Bukowski R, Derweesh I, Tannenbaum CS, Finke JH. Degradation of NF-kappa B in T cells by gangliosides expressed on renal cell carcinomas. THE JOURNAL OF IMMUNOLOGY 2004; 172:3480-90. [PMID: 15004148 DOI: 10.4049/jimmunol.172.6.3480] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells from cancer patients are often functionally impaired, which imposes a barrier to effective immunotherapy. Most pronounced are the alterations characterizing tumor-infiltrating T cells, which in renal cell carcinomas includes defective NF-kappaB activation and a heightened sensitivity to apoptosis. Coculture experiments revealed that renal tumor cell lines induced a time-dependent decrease in RelA(p65) and p50 protein levels within both Jurkat T cells and peripheral blood T lymphocytes that coincided with the onset of apoptosis. The degradation of RelA/p50 is critical for SK-RC-45-induced apoptosis because overexpression of RelA in Jurkat cells protects against cell death. The loss of RelA/p50 coincided with a decrease in expression of the NF-kappaB regulated antiapoptotic protein Bcl-xL at both the protein and mRNA level. The disappearance of RelA/p50 protein was mediated by a caspase-dependent pathway because pretreatment of T lymphocytes with a pan caspase inhibitor before coculture with SK-RC-45 blocked RelA and p50 degradation. SK-RC-45 gangliosides appear to mediate this degradative pathway, as blocking ganglioside synthesis in SK-RC-45 cells with the glucosylceramide synthase inhibitor, PPPP, protected T cells from tumor cell-induced RelA degradation and apoptosis. The ability of the Bcl-2 transgene to protect Jurkat cells from RelA degradation, caspase activation, and apoptosis implicates the mitochondria in these SK-RC-45 ganglioside-mediated effects.
Collapse
Affiliation(s)
- Mark V Thornton
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The impermeable nature of the cell membrane to peptides, proteins, DNA and oligonucleotides limits the therapeutic potential of these biological agents. However, the recent discovery of short cationic peptides that cross the plasma membrane efficiently is opening up new possibilities for the intracellular delivery of such agents. These peptides are commonly referred to as protein transduction domains (PTDs) and are successfully used to transport heterologous proteins, peptides and other types of cargo into cells. Several recent reports have used the membrane transducing technology in vivo to deliver biologically active cargo into various tissues. This review discusses the structure of the most commonly used PTDs and how their ability to transduce membranes is used to regulate biological functions. It also considers future directions and the potential of this technology to move from the laboratory into the clinic.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:948-950. [DOI: 10.11569/wcjd.v12.i4.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
34
|
Goy A, Gilles F. Update on the Proteasome Inhibitor Bortezomibin Hematologic Malignancies. ACTA ACUST UNITED AC 2004; 4:230-7. [PMID: 15072615 DOI: 10.3816/clm.2004.n.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitin-proteasome system plays a crucial role in eukaryotic cells in maintaining protein homeostasis. Through the disruption of a variety of pathways and cell cycle checkpoints, proteasome inhibition leads to apoptosis and in experimental models can overcome chemoresistance. Bortezomib is the first of its class of proteasome inhibitors tested in humans that showed promising activity in several tumor types, and especially in hematologic malignancies, in phase I studies. The remarkable results obtained in phase II studies in multiple myeloma (MM) led to its fast-track approval by the US Food and Drug Administration in May 2003 for relapsed MM. More recent observation also revealed promising activity in non-Hodgkin's lymphoma. This review will explore the rationale for the use of bortezomib in hematologic malignancies as well as provide an update on the results of ongoing studies and future directions for the use of this new agent in hematologic malignancies. The mechanism of action of bortezomib and its nonoverlapping toxicity profile make it a very appealing drug for combination with other chemotherapeutic or biologic agents. Bortezomib represents an excellent example of how progress in understanding the biology of cancer cells can impact clinical practice and lead toward a new era of rational therapeutics.
Collapse
Affiliation(s)
- Andre Goy
- Department of Lymphoma/Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
35
|
Takada Y, Singh S, Aggarwal BB. Identification of a p65 peptide that selectively inhibits NF-kappa B activation induced by various inflammatory stimuli and its role in down-regulation of NF-kappaB-mediated gene expression and up-regulation of apoptosis. J Biol Chem 2004; 279:15096-104. [PMID: 14711835 DOI: 10.1074/jbc.m311192200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because of the critical role of the nuclear transcription factor NF-kappaB in inflammation, viral replication, carcinogenesis, antiapoptosis, invasion, and metastasis, specific inhibitors of this nuclear factor are being sought and tested as treatments. NF-kappaB activation is known to require p65 phosphorylation at serine residues 276, 529, and 536 before it undergoes nuclear translocation. Small protein domains, termed protein transduction domains (PTDs), which are able to penetrate cell membranes can be used to transport other proteins across the cell membrane. We have identified two peptides from the p65 subunit of NF-kappaB (P1 and P6 were from amino acid residues 271-282 and 525-537, respectively) that, when linked with a PTD derived from the third helix sequence of antennapedia, inhibited tumor necrosis factor (TNF)-induced NF-kappaB activation in vivo. Linkage to the PTD was not, however, required to suppress the binding of the p50-p65-heterodimer to the DNA in vitro. PTD-p65-P1 had no effect on TNF-induced AP-1 activation. PTD-p65-P1 suppressed NF-kappaB activation induced by lipopolysaccharide, interleukin-1, okadaic acid, phorbol 12-myristate 13-acetate, H(2)O(2), and cigarette smoke condensate as well as that induced by TNF. PTD-p65-P1 had no effect on TNF-induced inhibitory subunit of NF-kappaB(IkappaBalpha) phosphorylation, IkappaBalpha degradation, or IkappaBalpha kinase activation, but it blocked TNF-induced p65 phosphorylation and nuclear translocation. NF-kappaB-regulated reporter gene expression induced by TNF, TNF receptor 1, TNF receptor-associated death domain, TNF receptor-associated factor-2, NF-kappaB-inducing kinase, IkappaBalpha kinase, and p65 was also suppressed by these peptides. Suppression of NF-kappaB by PTD-p65-P1 enhanced the apoptosis induced by TNF and chemotherapeutic agents. Overall, our results demonstrate the identification of a p65 peptide that can selectively inhibit NF-kappaB activation induced by various inflammatory stimuli, down-regulate NF-kappaB-mediated gene expression, and up-regulate apoptosis.
Collapse
Affiliation(s)
- Yasunari Takada
- Cytokine Research Laboratory, Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, and Imgenex, San Diego, California 92121, USA
| | | | | |
Collapse
|
36
|
Fittipaldi A, Ferrari A, Zoppé M, Arcangeli C, Pellegrini V, Beltram F, Giacca M. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 2003; 278:34141-9. [PMID: 12773529 DOI: 10.1074/jbc.m303045200] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transactivator protein of human immunodeficiency virus type 1 Tat has the unique property of mediating the delivery of large protein cargoes into the cells when present in the extracellular milieu. Here we show that Tat fusion proteins are internalized by the cells through a temperature-dependent endocytic pathway that originates from cell membrane lipid rafts and follows caveolar endocytosis. These conclusions are supported by the study of the slow kinetics of the internalization of Tat endosomes, by their resistance to nonionic detergents, the colocalization of internalized Tat with markers of caveolar endocytosis, and the impairment of the internalization process by drugs that disrupt lipid rafts or disturb caveolar trafficking. These results are of interest for all those who exploit Tat as a vehicle for transcellular protein delivery.
Collapse
Affiliation(s)
- Antonio Fittipaldi
- Scuola Normale Superiore and NEST-Istituto Nazionale per la Fisica della Materia, and Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Stroh C, Held J, Samraj AK, Schulze-Osthoff K. Specific inhibition of transcription factor NF-kappaB through intracellular protein delivery of I kappaBalpha by the Herpes virus protein VP22. Oncogene 2003; 22:5367-73. [PMID: 12917639 DOI: 10.1038/sj.onc.1206544] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many cancers, a high constitutive activation of transcription factor NF-kappaB has been implicated in tumor progression and apoptosis resistance, making NF-kappaB an attractive target for cancer therapy. Here, we describe the specific inhibition of NF-kappaB by the intracellular delivery of IkappaBalpha through VP22-mediated protein transduction. The Herpes virus protein VP22 has attracted great attention in gene therapy, because of its ability to migrate from an original expressing cell into surrounding recipient cells, resulting in high levels of protein transduction. To evaluate the use of VP22 as a vehicle for NF-kappaB inhibition, we expressed several versions of VP22-IkappaBalpha fusion proteins in baculovirus, bacteria, and mammalian cells. While we could not detect transcellular migration of different VP22-IkappaBalpha constructs, interestingly, baculovirally expressed VP22-IkappaBalpha was efficiently delivered into cells after exogenous administration. The purified and imported VP22-IkappaBalpha retained its function and efficiently inhibited both constitutive and inducible NF-kappaB activation. We further show that the 34 C-terminal amino acids of VP22 were sufficient for the import property, suggesting also that the ability of intercellular migration and cellular import are not linked to each other. Together, our results demonstrate that recombinant VP22 acts as an efficient vehicle for the exogenous delivery of IkappaBalpha and, moreover, might find applications to block NF-kappaB activation specifically.
Collapse
Affiliation(s)
- Christopher Stroh
- Institute of Molecular Medicine, University of Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
38
|
Watanabe N, Iwamoto T, Bowen KD, Dickinson DA, Torres M, Forman HJ. Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways. Biochem Biophys Res Commun 2003; 303:287-93. [PMID: 12646200 DOI: 10.1016/s0006-291x(03)00335-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) have taken center stage as bona fide second messengers in various signaling pathways. Here, we report the synthesis, metabolic fate, and effectiveness in modulating such pathways of a Tat-catalase conjugate. Incubation of L2 cells with Tat-catalase greatly increased cell-associated enzymatic activity, reaching close to a plateau by 30 min. The cell-associated catalase activity and antibody-detectable Tat-derivatives declined over time after changing medium, although still remaining at significantly higher levels than baseline even at 4h. While most cell-associated Tat-catalase was apparently tightly attached to the cell surface, a small fraction entered the cells as the proteasome inhibitor MG-132 slightly prevented the disappearance of the enzyme. Tat-catalase, either membrane-bound or intracellular, but not native catalase, inhibited serum-induced Elk phosphorylation and anisomycin- and/or MG-132-induced ERK phosphorylation, suggesting the involvement of H(2)O(2). Thus, Tat-catalase should be a useful tool to dissect H(2)O(2)-dependent events in signaling pathways.
Collapse
Affiliation(s)
- Nobuo Watanabe
- Department of Environmental Health Sciences, School of Public Health and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|