1
|
Leifer VP, Fang F, Song L, Kim J, Papanikolaou JF, Smeeton J, Thomopoulos S. Single-cell RNA-sequencing analysis of immune and mesenchymal cell crosstalk in the developing enthesis. Sci Rep 2024; 14:26839. [PMID: 39500962 PMCID: PMC11538517 DOI: 10.1038/s41598-024-77958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Autoimmunity underlies many painful disorders, such as enthesopathies, which localize to the enthesis. From infiltration of the synovium and axial skeleton by B cells, to disturbances in the ratio of M1/M2 enthesis macrophages, to CD8 + T cell mediated inflammation, autoimmune dysregulation is becoming increasingly well characterized in enthesopathies. Tissue resident B cells, macrophages, neutrophils, and T cells have also been localized in healthy human entheses. However, the potential developmental origins, presence, and role of immune cells (ICs) in enthesis development is not known. Here, we use single-cell RNA-sequencing analysis to describe IC subtypes present in the enthesis before, during, and after mineralization, and to infer regulatory interactions between ICs and mesenchymal cells (MCs). We report the presence of nine phenotypically distinct IC subtypes, including B cells, macrophages, neutrophils, and T cells. We find that specific IC subtypes may promote MC-proliferation and differentiation, and that MCs may regulate IC phenotype and autoimmunity. Our findings suggest that bidirectional regulatory interactions between ICs and MCs may be important to enthesis mineralization, and suggest that progenitor MCs have a unique ability to limit autoimmunity during development.
Collapse
Affiliation(s)
- Valia P Leifer
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Fei Fang
- Department Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Jieon Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - John F Papanikolaou
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Joanna Smeeton
- Department of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Jeffries NE, Sadreyev D, Trull EC, Chetal K, Yvanovich EE, Mansour MK, Sadreyev RI, Sykes DB. Deferasirox, an iron chelator, impacts myeloid differentiation by modulating NF-kB activity via mitochondrial ROS. Br J Haematol 2024; 205:2000-2007. [PMID: 39327763 PMCID: PMC11568922 DOI: 10.1111/bjh.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
The iron chelator deferasirox (DFX) is effective in the treatment of iron overload. In certain patients with myelodysplastic syndrome, DFX can also provide a dramatic therapeutic benefit, improving red blood cell production and decreasing transfusion requirements. Nuclear Factor-kappa B (NF-kB) signalling has been implicated as a potential mechanism behind this phenomenon, with studies focusing on the effect of DFX on haematopoietic progenitors. Here, we examine the phenotypic and transcriptional effects of DFX throughout myeloid cell maturation in both murine and human model systems. The effect of DFX depends on the stage of differentiation, with effects on mitochondrial reactive oxygen species (ROS) production and NF-kB pathway regulation that vary between progenitors and neutrophils. DFX triggers a greater increase in mitochondrial ROS production in neutrophils and this phenomenon is mitigated when cells are cultured in hypoxic conditions. Single-cell transcriptomic profiling revealed that DFX decreases the expression of NF-kB and MYC (c-Myc) targets in progenitors and decreases the expression of PU.1 (SPI1) gene targets in neutrophils. Together, these data suggest a role of DFX in impairing terminal maturation of band neutrophils.
Collapse
Affiliation(s)
- Nathan E. Jeffries
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Sadreyev
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth C. Trull
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emma E. Yvanovich
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Hai HT, Thanh Hoang Nhat L, Tram TTB, Vinh DD, Nath AP, Donovan J, Thu NTA, Van Thanh D, Bang ND, Ha DTM, Phu NH, Nghia HDT, Van LH, Inouye M, Thwaites GE, Thuong Thuong NT. Whole blood transcriptional profiles and the pathogenesis of tuberculous meningitis. eLife 2024; 13:RP92344. [PMID: 39475467 PMCID: PMC11524586 DOI: 10.7554/elife.92344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Mortality and morbidity from tuberculous meningitis (TBM) are common, primarily due to inflammatory response to Mycobacterium tuberculosis infection, yet the underlying mechanisms remain poorly understood. We aimed to uncover genes and pathways associated with TBM pathogenesis and mortality, and determine the best predictors of death, utilizing whole-blood RNA sequencing from 281 Vietnamese adults with TBM, 295 pulmonary tuberculosis (PTB), and 30 healthy controls. Through weighted gene co-expression network analysis, we identified hub genes and pathways linked to TBM severity and mortality, with a consensus analysis revealing distinct patterns between HIV-positive and HIV-negative individuals. We employed multivariate elastic-net Cox regression to select candidate predictors of death, then logistic regression and internal bootstrap validation to choose best predictors. Increased neutrophil activation and decreased T and B cell activation pathways were associated with TBM mortality. Among HIV-positive individuals, mortality associated with increased angiogenesis, while HIV-negative individuals exhibited elevated TNF signaling and impaired extracellular matrix organization. Four hub genes-MCEMP1, NELL2, ZNF354C, and CD4-were strong TBM mortality predictors. These findings indicate that TBM induces a systemic inflammatory response similar to PTB, highlighting critical genes and pathways related to death, offering insights for potential therapeutic targets alongside a novel four-gene biomarker for predicting outcomes.
Collapse
Affiliation(s)
- Hoang Thanh Hai
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | | | - Do Dinh Vinh
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes InstituteMelbourneAustralia
| | - Joseph Donovan
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Dang Van Thanh
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | | | - Nguyen Hoan Phu
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
- Pham Ngoc Thach University of MedicineHo Chi Minh CityViet Nam
| | - Le Hong Van
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes InstituteMelbourneAustralia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of CambridgeCambridgeUnited Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
4
|
Boudjeniba C, Soret P, Trutschel D, Hamon A, Baloche V, Chassagnol B, Desvaux E, Bichat A, Aussy A, Moingeon P, Lefebvre C, Hubert S, Alarcon-Riquelmé M, Ng WF, Gottenberg JE, Schwikowski B, Bombardieri M, van Roon JAG, Mariette X, Guedj M, Birmele E, Laigle L, Becht E. Consensus gene modules strategy identifies candidate blood-based biomarkers for primary Sjögren's disease. Clin Immunol 2024; 264:110241. [PMID: 38735508 DOI: 10.1016/j.clim.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Primary Sjögren disease (pSD) is an autoimmune disease characterized by lymphoid infiltration of exocrine glands leading to dryness of the mucosal surfaces and by the production of autoantibodies. The pathophysiology of pSD remains elusive and no treatment with demonstrated efficacy is available yet. To better understand the biology underlying pSD heterogeneity, we aimed at identifying Consensus gene Modules (CMs) that summarize the high-dimensional transcriptomic data of whole blood samples in pSD patients. We performed unsupervised gene classification on four data sets and identified thirteen CMs. We annotated and interpreted each of these CMs as corresponding to cell type abundances or biological functions by using gene set enrichment analyses and transcriptomic profiles of sorted blood cell subsets. Correlation with independently measured cell type abundances by flow cytometry confirmed these annotations. We used these CMs to reconcile previously proposed patient stratifications of pSD. Importantly, we showed that the expression of modules representing lymphocytes and erythrocytes before treatment initiation is associated with response to hydroxychloroquine and leflunomide combination therapy in a clinical trial. These consensus modules will help the identification and translation of blood-based predictive biomarkers for the treatment of pSD.
Collapse
Affiliation(s)
- Cheïma Boudjeniba
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France; Laboratoire MAP5 UMR 8145, Université Paris Cité, Paris, France; Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Perrine Soret
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Diana Trutschel
- Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | | | - Valentin Baloche
- Department of Rheumatology and Clinical Immunology, Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Bastien Chassagnol
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Emiko Desvaux
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Antoine Bichat
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Audrey Aussy
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Philippe Moingeon
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Céline Lefebvre
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Sandra Hubert
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Marta Alarcon-Riquelmé
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Spain
| | - Wan-Fai Ng
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Benno Schwikowski
- Computational Systems Biomedicine Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel A G van Roon
- Department of Rheumatology and Clinical Immunology, Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Xavier Mariette
- Department of Rheumatology, Université Paris-Saclay, INSERM UMR1184, AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Mickaël Guedj
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Etienne Birmele
- Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS, Strasbourg, France
| | - Laurence Laigle
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France
| | - Etienne Becht
- Translational Medicine, Servier, Research and Development, Gif-Sur-Yvette, France; Centre de Recherche sur l'Inflammation, INSERM UMRS1149, Paris, France.
| |
Collapse
|
5
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
6
|
Aqdas M, Sung MH. NF-κB dynamics in the language of immune cells. Trends Immunol 2023; 44:32-43. [PMID: 36473794 PMCID: PMC9811507 DOI: 10.1016/j.it.2022.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Biological discovery has been driven by advances in throughput and resolution of analysis technologies. They have also created an indelible bias for snapshot-based knowledge. Even though recent methods such as multi-omics single-cell assays have empowered immunological investigations, they still provide snapshots of cellular behaviors and thus, have inherent limitations in reconstructing unsynchronized dynamic events across individual cells. Here, we present a rationale for how NF-κB may convey specificity of contextual information through subtle quantitative features of its signaling dynamics. The next frontier of predictive understanding should involve functional characterization of NF-κB signaling dynamics and their immunological implications. This may help solve the apparent paradox that a ubiquitously activated transcription factor can shape accurate responses to different immune challenges.
Collapse
Affiliation(s)
- Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Damascena HL, Silveira WAA, Castro MS, Fontes W. Neutrophil Activated by the Famous and Potent PMA (Phorbol Myristate Acetate). Cells 2022; 11:2889. [PMID: 36139464 PMCID: PMC9496763 DOI: 10.3390/cells11182889] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
This review will briefly outline the major signaling pathways in PMA-activated neutrophils. PMA is widely used to understand neutrophil pathways and formation of NETs. PMA activates PKC; however, we highlight some isoforms that contribute to specific functions. PKC α, β and δ contribute to ROS production while PKC βII and PKC ζ are involved in cytoskeleton remodeling. Actin polymerization is important for the chemotaxis of neutrophils and its remodeling is connected to ROS balance. We suggest that, although ROS and production of NETs are usually observed together in PMA-activated neutrophils, there might be a regulatory mechanism balancing both. Interestingly, we suggest that serine proteases might determine the PAD4 action. PAD4 could be responsible for the activation of the NF-κB pathway that leads to IL-1β release, triggering the cleavage of gasdermin D by serine proteases such as elastase, leading to pore formation contributing to release of NETs. On the other hand, when serine proteases are inhibited, NETs are formed by citrullination through the PAD4 pathway. This review puts together results from the last 31 years of research on the effects of PMA on the neutrophil and proposes new insights on their interpretation.
Collapse
Affiliation(s)
| | | | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasilia 70910-900, Brazil
| |
Collapse
|
8
|
Mollenhauer M, Bokredenghel S, Geißen S, Klinke A, Morstadt T, Torun M, Strauch S, Schumacher W, Maass M, Konradi J, Peters VBM, Berghausen E, Vantler M, Rosenkranz S, Mehrkens D, Braumann S, Nettersheim F, Hof A, Simsekyilmaz S, Winkels H, Rudolph V, Baldus S, Adam M, Freyhaus HT. Stamp2 Protects From Maladaptive Structural Remodeling and Systolic Dysfunction in Post-Ischemic Hearts by Attenuating Neutrophil Activation. Front Immunol 2021; 12:701721. [PMID: 34691017 PMCID: PMC8527169 DOI: 10.3389/fimmu.2021.701721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The six-transmembrane protein of prostate 2 (Stamp2) acts as an anti-inflammatory protein in macrophages by protecting from overt inflammatory signaling and Stamp2 deficiency accelerates atherosclerosis in mice. Herein, we describe an unexpected role of Stamp2 in polymorphonuclear neutrophils (PMN) and characterize Stamp2’s protective effects in myocardial ischemic injury. In a murine model of ischemia and reperfusion (I/R), echocardiography and histological analyses revealed a pronounced impairment of cardiac function in hearts of Stamp2-deficient- (Stamp2-/-) mice as compared to wild-type (WT) animals. This difference was driven by aggravated cardiac fibrosis, as augmented fibroblast-to-myofibroblast transdifferentiation was observed which was mediated by activation of the redox-sensitive p38 mitogen-activated protein kinase (p38 MAPK). Furthermore, we observed increased production of reactive oxygen species (ROS) in Stamp2-/- hearts after I/R, which is the likely cause for p38 MAPK activation. Although myocardial macrophage numbers were not affected by Stamp2 deficiency after I/R, augmented myocardial infiltration by polymorphonuclear neutrophils (PMN) was observed, which coincided with enhanced myeloperoxidase (MPO) plasma levels. Primary PMN isolated from Stamp2-/- animals exhibited a proinflammatory phenotype characterized by enhanced nuclear factor (NF)-κB activity and MPO secretion. To prove the critical role of PMN for the observed phenotype after I/R, antibody-mediated PMN depletion was performed in Stamp2-/- mice which reduced deterioration of LV function and adverse structural remodeling to WT levels. These data indicate a novel role of Stamp2 as an anti-inflammatory regulator of PMN and fibroblast-to-myofibroblast transdifferentiation in myocardial I/R injury.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Senai Bokredenghel
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Anna Klinke
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, University Hospital Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tobias Morstadt
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Merve Torun
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Sabrina Strauch
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Wibke Schumacher
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Martina Maass
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Jürgen Konradi
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Vera B M Peters
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Eva Berghausen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Marius Vantler
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Felix Nettersheim
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, University Hospital Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Henrik Ten Freyhaus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Tabasi F, Hasanpour V, Sarhadi S, Kaykhaei MA, Pourzand P, Heravi M, Langari AA, Bahari G, Taheri M, Hashemi M, Ghavami S. Association of miR-499 Polymorphism and Its Regulatory Networks with Hashimoto Thyroiditis Susceptibility: A Population-Based Case-Control Study. Int J Mol Sci 2021; 22:10094. [PMID: 34576267 PMCID: PMC8470033 DOI: 10.3390/ijms221810094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic background. Several genetic factors have been suggested, yet numerous genetic contributors remain to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators critically involved in biological processes, of which polymorphisms can alter their function, leading to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444 polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore, we investigated the potential interacting regulatory network of the miR-499. This case-control study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in heterozygous (OR = 3.32, 95%CI = 2.00-5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI = 1.30-6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97-5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI = 1.62-4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92, 95%CI = 1.37-2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated in regulating immune system functions, including immunorecognition and complement activity. We demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However, predicted regulatory networks revealed that this polymorphism is contributing to the regulation of immune system pathways.
Collapse
Affiliation(s)
- Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Vahed Hasanpour
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Shamim Sarhadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran;
| | - Mahmoud Ali Kaykhaei
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
- Department of Endocrinology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Mehrdad Heravi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Ahmad Alinaghi Langari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Xia Z, Zhang G, Wang C, Feng Y. The role of FKBP51 in the prognosis of ulcerative colitis-associated colorectal cancer. Adv Med Sci 2021; 66:89-97. [PMID: 33461100 DOI: 10.1016/j.advms.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Ulcerative colitis (UC) carries a high risk of developing colorectal cancer (CRC). FK506-binding protein 51 (FKBP51) is a key regulator of glucocorticoid resistance and inflammatory tumor microenvironment. This study aimed to investigate the role of FKBP51 in UC-CRC prognosis. MATERIALS AND METHODS The FKBP51 expression was measured by immunohistochemistry, qRT-PCR and western blot in control and tumor-containing tissues from UC-CRC patients. H&E staining was used to analyze the inflammatory status of each sample. The relationship between FKBP51 expression and UC-CRC prognosis was assessed by Kaplan-Meier curves and Mann-Whitney U test, and receiver-operating characteristic curves were generated to clarify the role of FKBP51 in predicting survival period and recurrence of UC-CRC patients. RESULTS The FKBP51 expression was significantly (p < 0.01) increased by 36.3% in tumor-containing tissues compared to control tissues in UC-CRC patients. Nuclear enrichment of FKBP51 in tumor-containing tissues was significantly (p < 0.001) increased by 78.5%. The UC-CRC patients with higher levels of FKBP51 expression ratio between tumor-containing tissues and control tissues had shorter survival periods, but greater neutrophil invasion and neutrophils to lymphocytes ratio (NLR) in peripheral blood. Moreover, the FKBP51 expression ratio was more helpful in predicting the survival periods and recurrence in the UC-CRC patients than the NLR in peripheral blood. CONCLUSIONS The FKBP51 expression ratio between tumor-containing tissue and control tissue may be an important biomarker of inflammatory tumor microenvironment and more helpful for the UC-CRC prognosis.
Collapse
|
11
|
Lima V, Melo IM, Taira TM, Buitrago LYW, Fonteles CSR, Leal LKAM, Souza ASDQ, Almeida TS, Costa Filho RND, Moraes MO, Cunha FQ, Fukada SY. Uncaria tomentosa reduces osteoclastic bone loss in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153327. [PMID: 32920290 DOI: 10.1016/j.phymed.2020.153327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The genus Uncaria (Rubiaceae) has several biological properties significant to human health. However, the mechanisms underlying the protective effect of this plant on bone diseases are uncertain. PURPOSE The present study investigated the role of Uncaria tomentosa extract (UTE) on alveolar bone loss in rats and on osteoclastogenesis in vitro. MATERIALS UTE was characterized by an Acquity UPLC (Waters) system, coupled to an Electrospray Ionization (ESI) interface and Quadrupole/Flight Time (QTOF, Waters) Mass Spectrometry system (MS). The effect of UTE treatment for 11 days on the ligature-induced bone loss was assessed focusing on several aspects: macroscopic and histological analysis of bone loss, neutrophil and osteoclast infiltration, and anabolic effect. The effect of UTE on bone marrow cell differentiation to osteoclasts was assessed in vitro. RESULTS The analysis of UTE by UPLC-ESI-QTOF-MS/MS identified 24 compounds, among pentacyclic or tetracyclic oxindole alkaloids and phenols. The administration of UTE for 11 days on ligature-induced rat attenuated the periodontal attachment loss and alveolar bone resorption. It also diminished neutrophil migration to the gingiva tissue, demonstrated by a lower level of MPO. UTE treatment also decreased the level of RANKL/OPG ratio, the main osteoclast differentiation-related genes, followed by reduced TRAP-positive cell number lining the alveolar bone. Additionally, the level of bone-specific alkaline phosphatase, an anabolic bone marker, was elevated in the plasma of UTE treated rats. Next, we determined a possible direct effect of UTE on osteoclast differentiation in vitro. The incubation of primary osteoclast with UTE decreased RANKL-induced osteoclast differentiation without affecting cell viability. This effect was supported by downregulation of the nuclear factor activated T-cells, cytoplasmic 1 expression, a master regulator of osteoclast differentiation, and other osteoclast-specific activity markers, such as cathepsin K and TRAP. CONCLUSION UTE exhibited an effective anti-resorptive and anabolic effects, which highlight it as a potential natural product for the treatment of certain osteolytic diseases, such as periodontitis.
Collapse
Affiliation(s)
- Vilma Lima
- School of Medicine, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Brazil; School of Medicine of Ribeirao Preto, Department of Pharmacology, University of São Paulo, Ribeirao Preto, Brazil; School of Pharmaceutical Sciences of Ribeirao Preto, Department of BioMolecular Sciences, University of São Paulo, Av. Café s/n - Bloco S, 3o andar, sala 90A-S, CEP: 14040-903 Ribeirao Preto, SP, Brazil
| | - Iracema Matos Melo
- School of Pharmacy, Nursing and Dentistry, Department of Dentistry, Federal University of Ceara, Fortaleza, Brazil
| | - Thaise Mayumi Taira
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of BioMolecular Sciences, University of São Paulo, Av. Café s/n - Bloco S, 3o andar, sala 90A-S, CEP: 14040-903 Ribeirao Preto, SP, Brazil
| | - Liseth Yamile Wilches Buitrago
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of BioMolecular Sciences, University of São Paulo, Av. Café s/n - Bloco S, 3o andar, sala 90A-S, CEP: 14040-903 Ribeirao Preto, SP, Brazil
| | - Cristiane Sá Roriz Fonteles
- School of Pharmacy, Nursing and Dentistry, Department of Dentistry, Federal University of Ceara, Fortaleza, Brazil
| | | | - Ana Sheila de Queiroz Souza
- School of Pharmacy, Nursing and Dentistry, Department of Pharmacy, Federal University of Ceara, Fortaleza, Brazil
| | - Talysson Silva Almeida
- School of Pharmacy, Nursing and Dentistry, Department of Pharmacy, Federal University of Ceara, Fortaleza, Brazil
| | | | - Manoel Odorico Moraes
- School of Medicine, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Brazil
| | - Fernando Queiroz Cunha
- School of Medicine of Ribeirao Preto, Department of Pharmacology, University of São Paulo, Ribeirao Preto, Brazil
| | - Sandra Yasuyo Fukada
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of BioMolecular Sciences, University of São Paulo, Av. Café s/n - Bloco S, 3o andar, sala 90A-S, CEP: 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
12
|
Coit P, Ortiz-Fernandez L, Lewis EE, McCune WJ, Maksimowicz-McKinnon K, Sawalha AH. A longitudinal and transancestral analysis of DNA methylation patterns and disease activity in lupus patients. JCI Insight 2020; 5:143654. [PMID: 33108347 PMCID: PMC7710270 DOI: 10.1172/jci.insight.143654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic dysregulation is implicated in the pathogenesis of lupus. We performed a longitudinal analysis to assess changes in DNA methylation in lupus neutrophils over 4 years of follow-up and across disease activity levels using 229 patient samples. We demonstrate that DNA methylation profiles in lupus are partly determined by ancestry-associated genetic variations and are highly stable over time. DNA methylation levels in 2 CpG sites correlated significantly with changes in lupus disease activity. Progressive demethylation in SNX18 was observed with increasing disease activity in African American patients. Importantly, demethylation of a CpG site located within GALNT18 was associated with the development of active lupus nephritis. Differentially methylated genes between African American and European American lupus patients include type I IFN-response genes such as IRF7 and IFI44, and genes related to the NF-κB pathway. TREML4, which plays a vital role in TLR signaling, was hypomethylated in African American patients and demonstrated a strong cis-methylation quantitative trait loci (cis-meQTL) effect among 8855 cis-meQTL associations identified in our study.
Collapse
Affiliation(s)
- Patrick Coit
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Immunology and
| | - Lourdes Ortiz-Fernandez
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily E. Lewis
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - W. Joseph McCune
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amr H. Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Zhao X, Hou P, Xin H, Zhang Y, Zhou A, Lai C, Xie J. A glucogalactomanan polysaccharide isolated from Agaricus bisporus causes an inflammatory response via the ERK/MAPK and IκB/NFκB pathways in macrophages. Int J Biol Macromol 2020; 151:1067-1073. [DOI: 10.1016/j.ijbiomac.2019.10.148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
|
14
|
Mesenchymal Stem Cell-Conditioned Medium Induces Neutrophil Apoptosis Associated with Inhibition of the NF-κB Pathway in Endotoxin-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20092208. [PMID: 31060326 PMCID: PMC6540353 DOI: 10.3390/ijms20092208] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
The immunomodulatory effects of mesenchymal stem cells (MSCs) are established. However, the effects of MSCs on neutrophil survival in acute lung injury (ALI) remain unclear. The goal of this study was to investigate the effect of an MSC-conditioned medium (MSC-CM) on neutrophil apoptosis in endotoxin-induced ALI. In this study, an MSC-CM was delivered via tail vein injection to wild-type male C57BL/6 mice 4 h after an intratracheal injection of lipopolysaccharide (LPS). Twenty-four hours later, bronchoalveolar lavage fluid (BALF) and lung tissue were collected to perform histology, immunohistochemistry, apoptosis assay of neutrophil, enzyme-linked immunosorbent assays, and an electrophoretic mobility shift assay. Human neutrophils were also collected from patients with sepsis-induced acute respiratory distress syndrome (ARDS). Human neutrophils were treated in vitro with LPS, with or without subsequent MSC-CM co-treatment, and were then analyzed. Administration of the MSC-CM resulted in a significant attenuation of histopathological changes, the levels of interleukin-6 and macrophage inflammatory protein 2, and neutrophil accumulation in mouse lung tissues of LPS-induced ALI. Additionally, MSC-CM therapy enhanced the apoptosis of BALF neutrophils and reduced the expression of the anti-apoptotic molecules, Bcl-xL and Mcl-1, both in vivo and in vitro experiments. Furthermore, phosphorylated and total levels of nuclear factor (NF)-κB p65 were reduced in lung tissues from LPS + MSC-CM mice. Human MSC-CM also reduced the activity levels of NF-κB and matrix metalloproteinase-9 in the human neutrophils from ARDS patients. Thus, the results of this study suggest that the MSC-CM attenuated LPS-induced ALI by inducing neutrophil apoptosis, associated with inhibition of the NF-κB pathway.
Collapse
|
15
|
Dorrington MG, Fraser IDC. NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front Immunol 2019; 10:705. [PMID: 31024544 PMCID: PMC6465568 DOI: 10.3389/fimmu.2019.00705] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the best understood immune-related pathways thanks to almost four decades of intense research. NF-κB signaling is activated by numerous discrete stimuli and is a master regulator of the inflammatory response to pathogens and cancerous cells, as well as a key regulator of autoimmune diseases. In this regard, the role of NF-κB signaling in immunity is not unlike that of the macrophage. The dynamics by which NF-κB proteins shuttle between the cytoplasm and the nucleus to initiate transcription have been studied rigorously in fibroblasts and other non-hematopoietic cells, but many questions remain as to how current models of NF-κB signaling and dynamics can be translated to innate immune cells such as macrophages. In this review, we will present recent research on the dynamics of NF-κB signaling and focus especially on how these dynamics vary in different cell types, while discussing why these characteristics may be important. We will end by looking ahead to how new techniques and technologies should allow us to analyze these signaling processes with greater clarity, bringing us closer to a more complete understanding of inflammatory transcription factor dynamics and how different cellular contexts might allow for appropriate control of innate immune responses.
Collapse
Affiliation(s)
- Michael G Dorrington
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, DIR, NIH, Bethesda, MD, United States
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, NIAID, DIR, NIH, Bethesda, MD, United States
| |
Collapse
|
16
|
Geranurimi A, Cheng CWH, Quiniou C, Zhu T, Hou X, Rivera JC, St-Cyr DJ, Beauregard K, Bernard-Gauthier V, Chemtob S, Lubell WD. Probing Anti-inflammatory Properties Independent of NF-κB Through Conformational Constraint of Peptide-Based Interleukin-1 Receptor Biased Ligands. Front Chem 2019; 7:23. [PMID: 30815434 PMCID: PMC6381024 DOI: 10.3389/fchem.2019.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1β signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1β and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H-d-Arg-d-Tyr-d-Thr-d-Val-d-Glu-d-Leu-d-Ala-NH2) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1, a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-β-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1β-induced IL-1β synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling.
Collapse
Affiliation(s)
- Azade Geranurimi
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
| | - Colin W H Cheng
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,CHU Sainte-Justine Research Centre, Montréal, QC, Canada.,Hôpital Maisonneuve-Rosemont Research Centre, Montréal, QC, Canada
| | | | - Tang Zhu
- CHU Sainte-Justine Research Centre, Montréal, QC, Canada
| | - Xin Hou
- CHU Sainte-Justine Research Centre, Montréal, QC, Canada
| | - José Carlos Rivera
- CHU Sainte-Justine Research Centre, Montréal, QC, Canada.,Hôpital Maisonneuve-Rosemont Research Centre, Montréal, QC, Canada
| | - Daniel J St-Cyr
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
| | - Kim Beauregard
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
| | | | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,CHU Sainte-Justine Research Centre, Montréal, QC, Canada.,Hôpital Maisonneuve-Rosemont Research Centre, Montréal, QC, Canada.,Departments of Pediatrics, Pharmacology and Physiology, and Ophthalmology, Université de Montréal, Montréal, QC, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
17
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 2018; 131:2454-2465. [PMID: 29650799 DOI: 10.1182/blood-2017-11-814913] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in young adults, remains challenging because of the rarity of tumor cells in involved tissues (usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells. We uncovered several recurrently mutated genes, namely, STAT6 (32% of cases), GNA13 (24%), XPO1 (18%), and ITPKB (16%), and document the functional role of mutant STAT6 in sustaining tumor cell viability. Mutations of STAT6 genetically and functionally cooperated with disruption of SOCS1, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall, 87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in multiple genes (also including STAT3, STAT5B, JAK1, JAK2, and PTPN1), attesting to the pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new therapeutic target in this disease.
Collapse
|
19
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
20
|
Nowak K, Ratajczak-Wrona W, Garley M, Jabłońska E. The effect of ethanol and N-nitrosodimethylamine on the iNOS-dependent NO production in human neutrophils. Role of NF-κB. Xenobiotica 2017; 48:498-505. [DOI: 10.1080/00498254.2017.1342150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Aggarwal N, Korenbaum E, Mahadeva R, Immenschuh S, Grau V, Dinarello CA, Welte T, Janciauskiene S. α-Linoleic acid enhances the capacity of α-1 antitrypsin to inhibit lipopolysaccharide induced IL-1β in human blood neutrophils. Mol Med 2016; 22:680-693. [PMID: 27452044 DOI: 10.2119/molmed.2016.00119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Alpha1-antitrypsin (A1AT, SERPINA1), a major circulating inhibitor of neutrophil elastase (NE) and proteinase-3 (PR3), has been proposed to reduce the processing and release of IL-1β. Since the anti-inflammatory properties of A1AT are influenced by the presence of polyunsaturated fatty acids, we compared effects of fatty acid-free (A1AT-0) and α-linoleic acid bound (A1AT-LA) forms of A1AT on lipopolysaccharide (LPS)-induced synthesis of IL-1β precursor and the release of IL-1β from human blood neutrophils. The presence of A1AT-LA or A1AT-0 significantly reduced LPS induced release of mature IL-1β. However, only A1AT-LA reduced both steady state mRNA levels of IL-1β and the secretion of mature IL-1β. In LPS-stimulated neutrophils, mRNA levels of TLR2/4, NFKBIA, P2RX7, NLRP3, and CASP1 decreased significantly in the presence of A1AT-LA but not A1AT-0. A1AT-0 and A1AT-LA did not inhibit the direct enzymatic activity of caspase-1, but we observed complexes of either form of A1AT with NE and PR3. Consistent with the effect on TLR and IL-1β gene expression, only A1AT-LA inhibited LPS-induced gene expression of NE and PR3. Increased gene expression of PPAR-γ was observed in A1AT-LA treated neutrophils without of LPS stimulation, and the selective PPAR-γ antagonist (GW9662) prevented the reduction in IL-1β by A1AT-LA. We conclude from our data, that the ability of A1AT to reduce TLR and IL-1β gene expression depends on its association with LA. Moreover, the anti-inflammatory properties of A1AT-LA are likely to be mediated by the activation of PPAR-γ.
Collapse
Affiliation(s)
- Nupur Aggarwal
- Department of Respiratory Medicine, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Elena Korenbaum
- Institute of Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ravi Mahadeva
- Cambridge NIHR Biomedical Research Centre, Department of Respiratory Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Welte
- Department of Respiratory Medicine, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Rossi A, Lord JM. Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 2014; 18:1469-80. [PMID: 23982477 PMCID: PMC3825413 DOI: 10.1007/s10495-013-0893-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.
Collapse
Affiliation(s)
- Alessandra Rossi
- MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
23
|
The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors. Adv Med Sci 2014; 58:265-73. [PMID: 23981673 DOI: 10.2478/v10039-012-0074-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. MATERIAL AND METHODS The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. RESULTS The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. CONCLUSION Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.
Collapse
|
24
|
Rollins J, Miskolci V. Immunofluorescence and subsequent confocal microscopy of intracellular TNF in human neutrophils. Methods Mol Biol 2014; 1172:263-70. [PMID: 24908313 DOI: 10.1007/978-1-4939-0928-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Immunofluorescence is an important technique required to observe expression, localization and colocalization of proteins within the cell. Here we describe the immunofluorescence and subsequent confocal microscopy technique of tumor necrosis factor-α (TNF) in human neutrophils (polymorphonuclear leukocytes; PMN). The qualitative technique can be used to observe the expression pattern changes from resting to stimulated leukocytes. Colocalization with other cytokines, proteins, or organelles can be observed. This immunofluorescence technique can be done in 1-2 days.
Collapse
Affiliation(s)
- Janet Rollins
- Division of Natural Sciences, College of Mount Saint Vincent, 6301 Riverdale Avenue, Riverdale, NY, 10471, USA,
| | | |
Collapse
|
25
|
Gatt ME, Takada K, Mani M, Lerner M, Pick M, Hideshima T, Carrasco DE, Protopopov A, Ivanova E, Sangfelt O, Grandér D, Barlogie B, Shaughnessy JD, Anderson KC, Carrasco DR. TRIM13 (RFP2) downregulation decreases tumour cell growth in multiple myeloma through inhibition of NF Kappa B pathway and proteasome activity. Br J Haematol 2013; 162:210-20. [PMID: 23647456 DOI: 10.1111/bjh.12365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/18/2013] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is an incurable neoplasm caused by proliferation of malignant plasma cells in the bone marrow (BM). MM is characterized frequently by a complete or partial deletion of chromosome 13q14, seen in more than 50% of patients at diagnosis. Within this deleted region the tripartite motif containing 13 (TRIM13, also termed RFP2) gene product has been proposed to be a tumour suppressor gene (TSG). Here, we show that low expression levels of TRIM13 in MM are associated with chromosome 13q deletion and poor clinical outcome. We present a functional analysis of TRIM13 using a loss-of-function approach, and demonstrate that TRIM13 downregulation decreases tumour cell survival as well as cell cycle progression and proliferation of MM cells. In addition, we provide evidence for the involvement of TRIM13 downregulation in inhibiting the NF kappa B pathway and the activity of the 20S proteasome. Although this data does not support a role of TRIM13 as a TSG, it substantiates important roles of TRIM13 in MM tumour survival and proliferation, underscoring its potential role as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Moshe E Gatt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bi J, Jiang B, Zorn A, Zhao RG, Liu P, An LJ. Catalpol inhibits LPS plus IFN-γ-induced inflammatory response in astrocytes primary cultures. Toxicol In Vitro 2012; 27:543-50. [PMID: 23164921 DOI: 10.1016/j.tiv.2012.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023]
Abstract
A large body of evidence suggests that the inflammatory reaction plays an important role in the pathogenesis of neurodegenerative diseases. Our previous studies described the neuroprotective effects of catalpol in lipopolysaccharide (LPS)-induced inflammatory models, in which catalpol was shown to prevent mesencephalic neuron death and ameliorate cognitive ability animals. To further investigate the protective effect and underlying mechanism of catalpol, astrocytes were pretreated with low (0.1mM) and high dose (0.5mM) catalpol for 1h prior to LPS plus interferon-γ stimulation. Biochemical analyses showed that NO and ROS production and iNOS activity were significantly reduced by catalpol. Data at transcriptional level also demonstrated that catalpol potently attenuated gene expressions involved in inflammation, such as iNOS, COX-2 and TLR4. In addition, our exploration further revealed that the suppressive action of catalpol on inflammation was mediated via inhibiting nuclear factor-κB (NF-κB) activation. Collectively, these results suggest that catalpol can exert inhibitory effects on the inflammatory reaction in astrocytes and that inactivation of NF-κB could be the major determinant for its anti-inflammatory mechanism. Therefore, catalpol may potentially be a highly effective therapeutic agent in treating neurodegenerative diseases associated with inflammation.
Collapse
Affiliation(s)
- Jing Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | |
Collapse
|
27
|
Poke FS, Upcher WR, Sprod OR, Young A, Brettingham-Moore KH, Holloway AF. Depletion of c-Rel from cytokine gene promoters is required for chromatin reassembly and termination of gene responses to T cell activation. PLoS One 2012; 7:e41734. [PMID: 22860011 PMCID: PMC3408492 DOI: 10.1371/journal.pone.0041734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/25/2012] [Indexed: 01/17/2023] Open
Abstract
The role of the Nuclear Factor κB (NF-κB) transcription factor family in T cell function has been well described. The c-Rel family member is of particular importance in initiating T cell responses to antigen and regulating activation of inflammatory cytokine genes, including the Interleukin-2 (IL-2) and Granulocyte macrophage colony stimulating factor (GM-CSF) genes. c-Rel is required for chromatin remodeling of these gene promoters, which involves depletion of histones from the promoters in response to T cell activating signals. These chromatin remodeling events precede transcriptional activation of the genes. The subsequent down-regulation of cytokine gene expression is important in the termination of an immune response and here we examine this process at the murine GM-CSF and IL-2 genes. We show that the cytokine mRNA levels rapidly return to basal levels following stimulus removal and this is associated with reassembly of histones onto the promoter. Histone reassembly at the GM-CSF and IL-2 promoters occurs concomitantly with depletion of RelA, c-Rel and RNA polymerase II from the promoters. Furthermore we show that transcriptional down-regulation and chromatin reassembly is dependent on depletion of c-Rel from the nucleus, and that this is regulated by the nuclear translocation of the NF-κB inhibitor, IκBα. The nuclear activation of c-Rel therefore not only regulates the initiation of GM-CSF and IL-2 gene activation in response to T cell activation, but also the termination of these gene responses following the removal of the activating signal.
Collapse
Affiliation(s)
- Fiona S. Poke
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - William R. Upcher
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Owen R. Sprod
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Arabella Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Adele F. Holloway
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
28
|
A polysaccharide from Agaricus blazei attenuates tumor cell adhesion via inhibiting E-selectin expression. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Chromatin immunoprecipitation analysis of NFκB transcriptional regulation by nuclear IκBα in human macrophages. Methods Mol Biol 2012; 809:121-34. [PMID: 22113272 DOI: 10.1007/978-1-61779-376-9_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcription factor NFκB comprises a family of proteins that serve as crucial regulators of genes involved in host immune and inflammatory responses, cell survival, proliferation, and differentiation. Since transcription of NFκB-dependent genes is increased in numerous inflammatory disorders as well as in many types of cancer and leukemia, inhibition of NFκB-dependent transcription thus represents an important therapeutic target. We have previously shown that in human leukocytes, transcription of NFκB-dependent genes is inhibited by the nuclear translocation and accumulation of IκBα, which can be induced by an inhibitor of CRM1-dependent nuclear export, leptomycin B (LMB). In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the regulation of NFκB recruitment to NFκB-dependent promoters by nuclear IκBα induced by LMB. We show that in lipopolysaccharide (LPS)-stimulated human U-937 macrophages, recruitment of NFκB p65 and p50 proteins to NFκB-dependent promoters of IκBα and cIAP2 genes is suppressed by the LMB-induced nuclear IκBα. Even though in this study we use U-937 macrophages, this protocol should be readily adaptable to analyze the regulation of NFκB recruitment by nuclear IκBα also in other cell types.
Collapse
|
30
|
Juvekar A, Ramaswami S, Manna S, Chang TP, Zubair A, Vancurova I. Electrophoretic mobility shift assay analysis of NFκB transcriptional regulation by nuclear IκBα. Methods Mol Biol 2012; 809:49-62. [PMID: 22113267 DOI: 10.1007/978-1-61779-376-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcription factor NFκB is a key regulator of genes involved in immune and inflammatory responses, as well as genes regulating cell proliferation and survival. In addition to many inflammatory disorders, NFκB is constitutively activated in a variety of human cancers and leukemia. Thus, inhibition of NFκB DNA binding activity represents an important therapeutic approach for disorders characterized by high levels of constitutive NFκB activity. We have previously shown that NFκB DNA binding activity is suppressed by the nuclear translocation and accumulation of IκBα, which is induced by inhibition of the 26S proteasome. In this chapter, we describe a protocol that uses small inhibitory RNA (si RNA) interference followed by electrophoretic mobility shift assay (EMSA) to analyze the regulation of NFκB DNA binding by nuclear IκBα induced by the proteasome inhibitor MG132. Using this protocol, we show that in human leukemia Hut-78 cells that exhibit high levels of NFκB DNA binding activity, MG132 induces nuclear translocation and accumulation of IκBα, which then specifically inhibits NFκB DNA binding. This protocol uses human leukemia Hut-78 cells; however, it can be easily adapted for other cells exhibiting high levels of constitutive NFκB DNA binding.
Collapse
Affiliation(s)
- Ashish Juvekar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rashmi R, Schnulle PM, Maddox AC, Armbrecht ES, Koenig JM. Flice inhibitory protein is associated with the survival of neonatal neutrophils. Pediatr Res 2011; 70:327-31. [PMID: 21691254 PMCID: PMC3166417 DOI: 10.1203/pdr.0b013e3182290062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal polymorphonuclear leukocytes (PMN) exhibit delayed apoptosis both constitutively and under inflammatory conditions, and evidence has linked PMN longevity to the presence of antiapoptotic proteins. Activation of the survival-associated transcription factor, nuclear factor kappa B (NF-κB), promotes the synthesis of several antiapoptotic proteins including Flice inhibitory protein (FLIP). Neonatal and adult PMN were compared in this study to test the hypothesis that FLIP modulates age-related apoptosis. Expression of the short isoform, FLIP-S, was prominent at baseline and persisted during spontaneous apoptosis in neonatal PMN, whereas basal expression was lower and decreased under the same conditions in adult PMN. Stable FLIP-S expression in neonatal PMN was associated with a relative resistance to apoptosis in response to the protein synthesis inhibitor, cycloheximide (CHX), or the NF-κB inhibitor, gliotoxin. In contrast, similar treatment of adult PMN promoted greater overall apoptosis accompanied by FLIP degradation. Nuclear levels of phosphorylated p65, a critical NF-κB dimer, were relatively robust in neonatal PMN under basal conditions or after stimulation with TNF-α, a cytokine that induces FLIP. In conclusion, persistent FLIP-S expression is involved in the longevity of neonatal PMN, and our data suggest a contribution of NF-κB signaling and related survival mechanisms.
Collapse
Affiliation(s)
- Ramachandran Rashmi
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
32
|
Freitas M, Fernandes E. Zinc, cadmium and nickel increase the activation of NF-κB and the release of cytokines from THP-1 monocytic cells. Metallomics 2011; 3:1238-43. [PMID: 21842098 DOI: 10.1039/c1mt00050k] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sustained activation of the transcription factor nuclear factor κB (NF-κB) by metal-activated signalling pathways can lead to chronic inflammatory processes and related diseases, including carcinogenesis. The aim of the present work was to clarify the effect of zinc, nickel and cadmium on NF-κB activation in the THP-1 human monocytic leukemia cell line. The production of the NF-κB downstream pro-inflammatory mediators tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6 and IL-8 was also evaluated due to their important roles in the pathogenesis of chronic inflammatory and autoimmune diseases and, ultimately, in the development of cancer. The results obtained demonstrated that zinc, nickel and cadmium significantly activate NF-κB, and the release of the chemokine IL-8. Cadmium also induced the release of TNF-α and IL-6 in THP-1 monocytic cells, which may indicate some potential to induce deleterious effects through this pathway.
Collapse
Affiliation(s)
- Marisa Freitas
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | |
Collapse
|
33
|
Nesterovitch AB, Szanto S, Gonda A, Bardos T, Kis-Toth K, Adarichev VA, Olasz K, Ghassemi-Najad S, Hoffman MD, Tharp MD, Mikecz K, Glant TT. Spontaneous insertion of a b2 element in the ptpn6 gene drives a systemic autoinflammatory disease in mice resembling neutrophilic dermatosis in humans. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1701-14. [PMID: 21435452 DOI: 10.1016/j.ajpath.2010.12.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 01/01/2023]
Abstract
We found a spontaneous autosomal mutation in a mouse leading to neutrophil infiltration with ulceration in the upper dermis of homozygous offspring. These animals had increased neutrophil numbers, associated with normal lymphocyte count, in peripheral blood and bone marrow, suggesting a myeloproliferative disorder; however, granulocyte precursor proliferation in bone marrow was actually reduced (because circulating neutrophils were less susceptible to apoptosis). Neutrophil infiltration of the skin and other organs and high serum levels of immunoglobulins and autoantibodies, cytokines, and acute-phase proteins were additional abnormalities, all of which could be reduced by high-dose corticosteroid treatment or neutrophil depletion by antibodies. Use of genome-wide screening localized the mutation within an 0.4-Mbp region on mouse chromosome 6. We identified insertion of a B2 element in exon 6 of the Ptpn6 gene (protein tyrosine phosphatase, non-receptor type 6; also known as Shp-1). This insertion involves amino acid substitutions that significantly reduced the enzyme activity in mice homozygous for the mutation. Disease onset was delayed, and the clinical phenotype was milder than the phenotypes of other Ptpn6-mutants described in motheaten (me, mev) mice; we designated this new genotype as Ptpn6(meB2/meB2) and the phenotype as meB2. This new phenotype encompasses an autoinflammatory disease showing similarities to many aspects of the so-called neutrophilic dermatoses, a heterogeneous group of skin diseases with unknown etiology in humans.
Collapse
|
34
|
RATAJCZAK-WRONA WIOLETTA, JABLONSKA EWA, GARLEY MARZENA, JABLONSKI JAKUB, RADZIWON PIOTR. Effect of N-nitrosodimethylamine on inducible nitric oxide synthase expression and production of nitric oxide by neutrophils and mononuclear cells: the role of JNK signalling pathway. APMIS 2011; 119:431-41. [DOI: 10.1111/j.1600-0463.2011.02750.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Wright HL, Chikura B, Bucknall RC, Moots RJ, Edwards SW. Changes in expression of membrane TNF, NF-{kappa}B activation and neutrophil apoptosis during active and resolved inflammation. Ann Rheum Dis 2011; 70:537-43. [PMID: 21109521 DOI: 10.1136/ard.2010.138065] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Tumour necrosis factor (TNF) is central to the pathophysiological process of rheumatoid arthritis (RA), whether as soluble cytokine or membrane-expressed pro-TNF (mTNF). OBJECTIVES To determine whether neutrophils, which can express TNF, are activated in the blood of patients with RA compared with healthy controls. To investigate, by focusing on mTNF expression, if the functions of RA neutrophils change in response to therapeutic TNF inhibition. METHODS TNF was measured by flow cytometry and qPCR in neutrophils from 20 patients with RA before and after the start of TNF inhibitor therapy. Apoptosis was measured by morphology, and western blotting of pro- and antiapoptotic proteins in cell lysates. Nuclear factor κB (NF-κB) activation was determined by western blotting of phosphorylated NF-κB (p65). RESULTS Before treatment RA neutrophils exhibited increased TNF mRNA expression, elevated mTNF levels and NF-κB activity compared with controls. They also underwent delayed apoptosis as shown by altered expression of anti- and proapoptotic proteins, such as Mcl-1 and caspases. Neutrophil TNF expression returned to baseline levels during successful treatment with anti-TNF biological agents, and there was a close correlation between clinical disease improvement and changes in neutrophil function. CONCLUSIONS Neutrophils express elevated levels of TNF in RA and the transcription factor, NF-κB, a target of TNF, is activated. This mechanism could lead to a self-sustained inflammatory process. These data point to an important role of neutrophils in the abnormal TNF signalling pathways activated in RA and provide new evidence that neutrophils actively contribute to altered cytokine signalling in inflammatory diseases.
Collapse
Affiliation(s)
- Helen L Wright
- Biosciences Building,Crown Street,University of Liverpool,Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
36
|
Juvekar A, Manna S, Ramaswami S, Chang TP, Vu HY, Ghosh CC, Celiker MY, Vancurova I. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL. Mol Cancer Res 2011; 9:183-94. [PMID: 21224428 PMCID: PMC3078042 DOI: 10.1158/1541-7786.mcr-10-0368] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters.
Collapse
MESH Headings
- Apoptosis/genetics
- Base Sequence
- Boronic Acids/pharmacology
- Bortezomib
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- DNA, Neoplasm/metabolism
- Drug Screening Assays, Antitumor
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Neoplasm/genetics
- Humans
- I-kappa B Proteins/metabolism
- Leupeptins/pharmacology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Molecular Sequence Data
- NF-KappaB Inhibitor alpha
- NF-kappa B/genetics
- NF-kappa B/metabolism
- NF-kappa B p50 Subunit/metabolism
- Protein Binding/drug effects
- Protein Subunits/metabolism
- Protein Transport/drug effects
- Pyrazines/pharmacology
- Transcription Factor RelA/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ashish Juvekar
- Department of Biological Sciences, St. John’s University, New York, NY
- Harvard Medical School, Boston, MA
| | - Subrata Manna
- Department of Biological Sciences, St. John’s University, New York, NY
| | | | - Tzu-Pei Chang
- Department of Biological Sciences, St. John’s University, New York, NY
| | - Hai-Yen Vu
- Department of Biological Sciences, St. John’s University, New York, NY
- Department of Medicine, University of Chicago, Chicago, IL
| | - Chandra C Ghosh
- Department of Biological Sciences, St. John’s University, New York, NY
- Harvard Medical School, Boston, MA
| | - Mahmut Y Celiker
- Division of Pediatric Hematology/Oncology, Stony Brook University Medical Center, Stony Brook, NY
| | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY
| |
Collapse
|
37
|
|
38
|
Ghosh CC, Ramaswami S, Juvekar A, Vu HY, Galdieri L, Davidson D, Vancurova I. Gene-specific repression of proinflammatory cytokines in stimulated human macrophages by nuclear IκBα. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3685-93. [PMID: 20696864 PMCID: PMC3078650 DOI: 10.4049/jimmunol.0902230] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that increased nuclear accumulation of IkappaBalpha inhibits NF-kappaB activity and induces apoptosis in human leukocytes. In this study, we wanted to explore the possibility that the nucleocytoplasmic distribution of IkappaBalpha can be used as a therapeutic target for the regulation of NF-kappaB-dependent cytokine synthesis. Treatment of LPS-stimulated human U937 macrophages with an inhibitor of chromosome region maintenance 1-dependent nuclear export, leptomycin B, resulted in the increased nuclear accumulation of IkappaBalpha and inhibition of NF-kappaB DNA binding activity, caused by the nuclear IkappaBalpha-p65 NF-kappaB interaction. Surprisingly, however, whereas mRNA expression and cellular release of TNF-alpha, the beta form of pro-IL-1 (IL-1beta), and IL-6 were inhibited by the leptomycin B-induced nuclear IkappaBalpha, IL-8 mRNA expression and cellular release were not significantly affected. Analysis of in vivo recruitment of p65 NF-kappaB to NF-kappaB-regulated promoters by chromatin immunoprecipitation in U937 cells and human PBMCs indicated that although the p65 recruitment to TNF-alpha, IL-1beta, and IL-6 promoters was inhibited by the nuclear IkappaBalpha, p65 recruitment to IL-8 promoter was not repressed. Chromatin immunoprecipitation analyses using IkappaBalpha and S536 phosphospecific p65 NF-kappaB Abs demonstrated that although the newly synthesized IkappaBalpha induced by postinduction repression is recruited to TNF-alpha, IL-1beta, and IL-6 promoters but not to the IL-8 promoter, S536-phosphorylated p65 is recruited to IL-8 promoter, but not to TNF-alpha, IL-1beta, or IL-6 promoters. Together, these data indicate that the inhibition of NF-kappaB-dependent transcription by nuclear IkappaBalpha in LPS-stimulated macrophages is gene specific and depends on the S536 phosphorylation status of the recruited p65 NF-kappaB.
Collapse
Affiliation(s)
- Chandra C. Ghosh
- Department of Biological Sciences, St. John’s University, New York, NY 11439
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Sitharam Ramaswami
- Department of Biological Sciences, St. John’s University, New York, NY 11439
| | - Ashish Juvekar
- Department of Biological Sciences, St. John’s University, New York, NY 11439
| | - Hai-Yen Vu
- Department of Biological Sciences, St. John’s University, New York, NY 11439
| | - Luciano Galdieri
- Department of Biological Sciences, St. John’s University, New York, NY 11439
| | - Dennis Davidson
- Division of Neonatal-Perinatal Medicine, Schneider Children’s Hospital, North Shore-Long Island Jewish Health System, New Hyde Park, NY 11040
| | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439
- Division of Neonatal-Perinatal Medicine, Schneider Children’s Hospital, North Shore-Long Island Jewish Health System, New Hyde Park, NY 11040
| |
Collapse
|
39
|
Association of the NFKBIA gene polymorphisms with susceptibility to autoimmune and inflammatory diseases: a meta-analysis. Inflamm Res 2010; 60:11-8. [DOI: 10.1007/s00011-010-0216-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 04/19/2010] [Accepted: 05/05/2010] [Indexed: 12/12/2022] Open
|
40
|
Tang W, Liu Q, Wang X, Wang P, Zhang J, Cao B. Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro. ULTRASONICS 2009; 49:786-793. [PMID: 19640555 DOI: 10.1016/j.ultras.2009.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 06/08/2009] [Accepted: 06/27/2009] [Indexed: 05/28/2023]
Abstract
Sonodynamic therapy employs a combination of ultrasound and a sonosensitizer to enhance the cytotoxic effect of ultrasound and promote apoptosis. However, the mechanism underlying the synergistic effect of ultrasound and hematoporphyrin is still unclear. In this study, we investigated mechanism of the induction of apoptosis by sonodynamic therapy in Sarcoma 180 cells. The cell suspension was treated by 1.75-MHz focused continuous ultrasound at an acoustic power (I(SATA)) of 1.4+/-0.07 W/cm(2) for 3 min in the absence or presence of 20 microg/ml hematoporphyrin. The proportion of apoptotic cells was determined by flow cytometry. We then analyzed the reactive oxygen species generation and localization by confocal microscopy. Western blotting and reverse transcriptase-polymerase chain reaction were used to analyze the expression of caspase-8, caspase-9, poly(ADP)-ribose polymerase, and nuclear factor-kappaB. The findings of our study indicate that ultrasound treatment induced the activation of nuclear factor-kappaB as an early stress response. When cells were pretreated with hematoporphyrin, the initial response to the therapy was the formation of (1)O(2) in the mitochondria. Our results primarily demonstrate that the mechanisms of induction of apoptosis by ultrasound and hematoporphyrin-sonodynamic therapies are very different. Our findings can provide a basis for explaining the synergistic effect of ultrasound and hematoporphyrin.
Collapse
Affiliation(s)
- Wei Tang
- College of Life Sciences, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | | | | | | | | | | |
Collapse
|
41
|
Chusid LA, Pereira-Argenziano L, Miskolci V, Vancurova I, Davidson D. Transcriptional control of cytokine release from monocytes of the newborn: effects of endogenous and exogenous interleukin-10 versus dexamethasone. Neonatology 2009; 97:108-16. [PMID: 19713717 PMCID: PMC3696358 DOI: 10.1159/000235807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/12/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Monocytes play an important role in the fetal and neonatal inflammatory response syndrome. They are also the precursors of alveolar macrophages, microglial and Kupffer cells. Monocytes have pro-inflammatory (PI) and anti-inflammatory (AI) functions. Interleukin (IL)-10 is a potent AI cytokine released by monocytes. OBJECTIVE We determined the effects of endogenous and exogenous IL-10 versus equimolar levels of dexamethasone (DEX) on PI and AI cytokine release, as well as transcription factor DNA-binding activity, in endotoxin (lipopolysaccharide, LPS)-stimulated monocytes of the newborn. METHODS Monocytes were isolated into culture media from cord blood. ELISAs, electrophoretic mobility shift assays and Western blots were employed. RESULTS LPS-stimulated monocyte release of PI cytokines, tumor necrosis factor-alpha (TNF-alpha), IL-1beta and IL-8, over 18 h was significantly augmented by addition of an IL-10 monoclonal antibody. Exogenous IL-10 at 10(-8)M inhibited PI cytokine release by 89-97%, while DEX at an equimolar level had no effect. DNA-binding activities of the PI transcription factors nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), and the AI transcription factor signal transducer and activator of transcription 3 (STAT3) were induced over 18 h. DEX at 10(-8)M had no effect on any transcription factor DNA binding, but exogenous IL-10 at 10(-8)M produced a 60% inhibition of AP-1 DNA binding and enhanced phosphorylation of nuclear STAT3 for 18 h. CONCLUSION At therapeutic levels of DEX, monocyte release of PI cytokine was insensitive to DEX in comparison to IL-10. IL-10 or its mechanism of action could lead to new therapy for inflammatory disorders in the perinatal period.
Collapse
Affiliation(s)
- Lina A. Chusid
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, New Hyde Park, N.Y., USA
| | - Lucy Pereira-Argenziano
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, New Hyde Park, N.Y., USA
| | - Veronika Miskolci
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, N.Y., USA
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, New Hyde Park, N.Y., USA
| | - Ivana Vancurova
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, New Hyde Park, N.Y., USA
- Department of Biological Sciences, St. John's University, New York, N.Y., USA
| | - Dennis Davidson
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, N.Y., USA
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, New Hyde Park, N.Y., USA
| |
Collapse
|
42
|
Hung YH, Ou TT, Lin CH, Li RN, Lin YC, Tsai WC, Liu HW, Yen JH. IkBα promoter polymorphisms in patients with ankylosing spondylitis. Rheumatol Int 2009; 30:93-7. [DOI: 10.1007/s00296-009-0923-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/27/2009] [Indexed: 01/19/2023]
|
43
|
Citarella BV, Miskolci V, Vancurova I, Davidson D. Interleukin-10 versus dexamethasone: effects on polymorphonuclear leukocyte functions of the newborn. Pediatr Res 2009; 65:425-9. [PMID: 19127214 PMCID: PMC4288846 DOI: 10.1203/pdr.0b013e318199384d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interleukin-10 (IL-10), an anti-inflammatory cytokine, may have therapeutic potential in the fetal inflammatory response syndrome and its sequelae such as bronchopulmonary dysplasia (BPD). Our aim was to compare the effects of IL-10 versus dexamethasone (DEX) on important PMN functions of the newborn. PMNs were isolated into culture medium from cord blood after elective cesarean section deliveries. IL-10 and DEX were compared on an equimolar basis corresponding to previously measured plasma levels of DEX from infants treated for BPD. The endotoxin (LPS)-stimulated release of the pro-inflammatory cytokines, tumor necrosis factor (TNFalpha) and IL-1 beta, were markedly inhibited equally by IL-10 and DEX; the anti-inflammatory cytokine IL-4 was not released and IL-1 receptor antagonist (IL-1ra) was released less with DEX compared with IL-10. PMNs exposed to LPS, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), or S. aureus did not show a significant difference between control, DEX and IL-10 for apoptosis, respiratory burst, phagocytosis or killing respectively. Chemotaxis to fMLP or IL-8 was unaffected by DEX or IL-10. The principal effects of both IL-10 and DEX, on the PMN functions studied, are related to the control of pro- and anti-inflammatory cytokine release.
Collapse
Affiliation(s)
- Brett V Citarella
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital, New Hyde Park, New York 11040, USA
| | | | | | | |
Collapse
|
44
|
Brown V, Elborn JS, Bradley J, Ennis M. Dysregulated apoptosis and NFkappaB expression in COPD subjects. Respir Res 2009; 10:24. [PMID: 19296848 PMCID: PMC2667166 DOI: 10.1186/1465-9921-10-24] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/18/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The abnormal regulation of neutrophil apoptosis may contribute to the ineffective resolution of inflammation in chronic lung diseases. Multiple signalling pathways are implicated in regulating granulocyte apoptosis, in particular, NFkappaB (nuclear factor-kappa B) signalling which delays constitutive neutrophil apoptosis. Although some studies have suggested a dysregulation in the apoptosis of airway cells in chronic obstructive pulmonary disease (COPD), no studies to date have directly investigated if NFkappaB is associated with apoptosis of airway neutrophils from COPD patients. The objectives of this study were to examine spontaneous neutrophil apoptosis in stable COPD subjects (n = 13), healthy smoking controls (n = 9) and non-smoking controls (n = 9) and to investigate whether the neutrophil apoptotic process in inflammatory conditions is associated with NFkappaB activation. METHODS Analysis of apoptosis in induced sputum was carried out by 3 methods; light microscopy, Annexin V/Propidium iodide and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. Activation of NFkappaB was assessed using a flow cytometric method and the phosphorylation state of IkappaBalpha was carried out using the Bio-Rad Bio-Plex phosphoprotein IkappaBalpha assay. RESULTS Flow cytometric analysis showed a significant reduction in the percentage of sputum neutrophils undergoing spontaneous apoptosis in healthy smokers and subjects with COPD compared to non-smokers (p < 0.001). Similar findings were demonstrated using the Tunel assay and in the morphological identification of apoptotic neutrophils. A significant increase was observed in the expression of both the p50 (p = 0.006) and p65 (p = 0.006) subunits of NFkappaB in neutrophils from COPD subjects compared to non-smokers. CONCLUSION These results demonstrate that apoptosis is reduced in the sputum of COPD subjects and in healthy control smokers and may be regulated by an associated activation of NFkappaB.
Collapse
Affiliation(s)
- Vanessa Brown
- Respiratory Research Group, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Respiratory Research Group, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Judy Bradley
- Institute of Rehabilitation Studies, University of Ulster, Coleraine, UK
| | - Madeleine Ennis
- Respiratory Research Group, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
45
|
Vu HY, Juvekar A, Ghosh C, Ramaswami S, Le DH, Vancurova I. Proteasome inhibitors induce apoptosis of prostate cancer cells by inducing nuclear translocation of IkappaBalpha. Arch Biochem Biophys 2008; 475:156-63. [PMID: 18468507 PMCID: PMC2574911 DOI: 10.1016/j.abb.2008.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Proteasome inhibitors are known to suppress the proteasome-mediated degradation of IkappaBalpha in stimulated cells. This results in the cytoplasmic retention of NFkappaB and its reduced nuclear transcriptional activity. In this study, we show that in the metastatic prostate cancer cells, the proteasome inhibitors exhibit a novel, previously unrecognized effect: they increase the cellular levels of IkappaBalpha, which then translocates to the nucleus, associates with the nuclear p65 NFkappaB, thus inhibiting the constitutive NFkappaB DNA binding activity and inducing apoptosis. The proteasome inhibition-induced nuclear translocation of IkappaBalpha is dependent on de novo protein synthesis, occurs also in other cell types, and does not require IkappaBalpha phosphorylation on Ser-32. Since NFkappaB activity is constitutively increased in many human cancers as well as in inflammatory disorders, the proteasome inhibition-induced nuclear translocation of IkappaBalpha could thus provide a new therapeutic strategy aimed at the specific inhibition of NFkappaB activity by the nuclear IkappaBalpha.
Collapse
Affiliation(s)
- Hai-Yen Vu
- Department of Biological Sciences, St. John’s University, New York
| | - Ashish Juvekar
- Department of Biological Sciences, St. John’s University, New York
| | - Chandra Ghosh
- Department of Biological Sciences, St. John’s University, New York
| | | | - Dung Hong Le
- Department of Biological Sciences, St. John’s University, New York
| | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York
| |
Collapse
|
46
|
Ou TT, Lin CH, Lin YC, Li RN, Tsai WC, Liu HW, Yen JH. IkappaBalpha promoter polymorphisms in patients with primary Sjögren's syndrome. J Clin Immunol 2008; 28:440-4. [PMID: 18600435 DOI: 10.1007/s10875-008-9212-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/19/2008] [Indexed: 12/28/2022]
Abstract
INTRODUCTION To investigate the association of IkBalpha promoter polymorphisms with the development of primary Sjögren's syndrome in Taiwan, 98 patients with primary Sjögren's syndrome and 110 unrelated healthy controls were enrolled in this study. MATERIALS AND METHODS The IkappaBalpha -881 A/G, IkappaBalpha -826 C/T, IkappaBalpha -550 A/T, IkappaBalpha -519 C/T, and IkappaBalpha -297 C/T polymorphisms were determined by the methods of polymerase chain reaction/restriction fragment length polymorphism. RESULTS This study demonstrated that the genotype frequencies of IkappaBalpha -826 C/T and IkappaBalpha -826 T/T, in comparison with that of IkappaBalpha -826 C/C, were significantly higher in the patients with primary Sjögren's syndrome than in the controls. The allele frequency of IkappaBalpha -881 G was significantly decreased in the patients with primary Sjögren's syndrome compared with that of the controls. In contrast, the allele frequency of IkappaBalpha -826 T was significantly higher in the patients with primary Sjögren's syndrome than in the controls. The similar findings could also be found in the allele carriage frequencies. The patients with primary Sjögren's syndrome had lower allele carriage frequencies of IkappaBalpha -881 G and IkappaBalpha -826 C, and a higher allele carriage frequency of IkappaBalpha -826 T. We also found that the estimated haplotype frequency of IkappaBalpha -881A-826T-550A-519C-297C was significantly increased in the patients with primary Sjögren's syndrome in comparison with that of the controls. DISCUSSION This study demonstrated that the IkBalpha -826T allele and IkBalpha -881A-826T-550A-519C-297C haplotype were associated with susceptibility to primary Sjögren's syndrome in Taiwan. However, these findings may not be disease-specific but may be related to inflammatory responses.
Collapse
Affiliation(s)
- Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Zihyou 1st Road, Kaohsiung City 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Controlled nucleocytoplasmic localization regulates activity of NF kappa B as well as other transcription factors. Analysis of the nucleocytoplasmic protein shuttling has been greatly facilitated by the use of leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export. The authors have previously shown that LMB inhibits NF kappa B activity in human neutrophils by increasing the nuclear accumulation of NF kappa B inhibitor, I kappa B alpha. In this chapter, the authors describe a protocol that uses LMB to study the nucleocytoplasmic shuttling of I kappa B alpha in human macrophage-like U937 cells, thus inhibiting NF kappa B activity. This protocol should be readily adaptable to analyze the nucleocytoplasmic shuttling of other proteins in human leukocytes.
Collapse
|
48
|
Lin CH, Wang SC, Ou TT, Li RN, Tsai WC, Liu HW, Yen JH. IκBα Promoter Polymorphisms in Patients with Systemic Lupus Erythematosus. J Clin Immunol 2007; 28:207-13. [PMID: 18071880 DOI: 10.1007/s10875-007-9156-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/19/2007] [Indexed: 01/10/2023]
Affiliation(s)
- Chia-Hui Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Zihyou 1st Road, Kaohsiung City 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
49
|
Miskolci V, Rollins J, Vu HY, Ghosh CC, Davidson D, Vancurova I. NFkappaB is persistently activated in continuously stimulated human neutrophils. Mol Med 2007. [PMID: 17592547 DOI: 10.2119/2006-00072.miskolci] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased activation of the transcription factor NFkappaB in the neutrophils has been associated with the pathogenesis of sepsis, acute lung injury (ALI), bronchopulmonary dysplasia (BPD), and other neutrophil-mediated inflammatory disorders. Despite recent progress in analyzing early NFkappaB activation in human neutrophils, activation of NFkappaB in persistently stimulated neutrophils has not been previously studied. Because it is the persistent NFkappaB activation that is thought to be involved in the host response to sepsis and the pathogenesis of ALI and BPD, we hypothesized that continuously stimulated human neutrophils may exhibit a late phase of NFkappaB activity. The goal of this study was to analyze the NFkappaB activation and expression of IkappaB and NFkappaB proteins during neutrophil stimulation with inflammatory signals for prolonged times. We demonstrate that neutrophil stimulation with lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNFalpha) induces, in addition to the early activation at 30-60 min, a previously unrecognized late phase of NFkappaB activation. In LPS-stimulated neutrophils, this NFkappaB activity typically had a biphasic character, whereas TNFalpha-stimulated neutrophils exhibited a continuous NFkappaB activity peaking around 9 h after stimulation. In contrast to the early NFkappaB activation that inversely correlates to the nuclear levels of IkappaBalpha, however, in continuously stimulated neutrophils, NFkappaB is persistently activated despite considerable levels of IkappaBalpha present in the nucleus. Our data suggest that NFkappaB is persistently activated in human neutrophils during neutrophil-mediated inflammatory disorders, and this persistent NFkappaB activity may represent one of the underlying mechanisms for the continuous production of proinflammatory mediators.
Collapse
Affiliation(s)
- Veronika Miskolci
- Department of Biological Sciences, St. John's University, New York, NY 11439, and Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, North Shore--Long Island Jewish Health System, New Hyde Park, NY, USA
| | | | | | | | | | | |
Collapse
|
50
|
Tamassia N, Le Moigne V, Calzetti F, Donini M, Gasperini S, Ear T, Cloutier A, Martinez FO, Fabbri M, Locati M, Mantovani A, McDonald PP, Cassatella MA. The MyD88-independent pathway is not mobilized in human neutrophils stimulated via TLR4. THE JOURNAL OF IMMUNOLOGY 2007; 178:7344-56. [PMID: 17513785 DOI: 10.4049/jimmunol.178.11.7344] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS activates both MyD88-dependent and -independent signaling via TLR4, but the extent to which each cascade is operative in different cell types remains unclear. This prompted us to revisit the intriguing issue of CXCL10 production, which we previously showed to be inducible in neutrophils stimulated with LPS and IFN-gamma but not with either stimulus alone, contrary to other myeloid cells. We now report that in neutrophils the MyD88-independent pathway is not activated by LPS. Indeed, microarray and real-time PCR experiments showed that neither IFNbeta nor IFNbeta-dependent genes (including CXCL10) are inducible in LPS-treated neutrophils, in contrast to monocytes. Further investigation into the inability of LPS to promote IFNbeta expression in neutrophils revealed that the transcription factors regulating the IFNbeta enhanceosome, such as IFN-regulatory factor-3 and AP-1, are not activated in LPS-treated neutrophils as revealed by lack of dimerization, nuclear translocation, confocal microscopy, and inducible binding to DNA. Moreover, we show that the upstream TANK-binding kinase-1 is not activated by LPS in neutrophils. A lack of IFNbeta/CXCL10 mRNA expression and IFN-regulatory factor 3 activation was also observed in myeloid leukemia HL60 cells differentiated to granulocytes and then stimulated with LPS, indicating that the inability of neutrophils to activate the MyD88-independent pathway represents a feature of their terminal maturation. These results identify a disconnected activation of the two signaling pathways downstream of TLR4 in key cellular components of the inflammatory and immune responses and help us to better understand the primordial role of neutrophils in host defense against nonviral infections.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Pathology, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|