1
|
Resheq YJ, Menzner AK, Bosch J, Tickle J, Li KK, Wilhelm A, Hepburn E, Murihead G, Ward ST, Curbishley SM, Zimmermann HW, Bruns T, Gilbert DF, Tripal P, Mackensen A, Adams DH, Weston CJ. Impaired Transmigration of Myeloid-Derived Suppressor Cells across Human Sinusoidal Endothelium Is Associated with Decreased Expression of CD13. THE JOURNAL OF IMMUNOLOGY 2017; 199:1672-1681. [PMID: 28739875 DOI: 10.4049/jimmunol.1600466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
Human monocytic myeloid-derived suppressor cells (MO-MDSCs) within the hepatic compartment suppress inflammation and impair immune surveillance in liver cancer. It is currently not known whether recruitment of MO-MDSCs from blood via hepatic sinusoidal endothelium (HSEC) contributes to their enrichment within the hepatic compartment. We compared the transmigratory potential of MO-MDSCs and monocytes after adhesion to hepatic endothelial monolayers in flow-based assays that mimic in vivo shear stress in the sinusoids. Despite comparable binding to HSEC monolayers, proportionally fewer MO-MDSCs underwent transendothelial migration, indicating that the final steps of extravasation, where actin polymerization plays an important role, are impaired in MO-MDSCs. In this article, we found reduced levels of CD13 on MO-MDSCs, which has recently been reported to control cell motility in monocytes, alongside reduced VLA-4 expression, an integrin predominantly involved in adherence to the apical side of the endothelium. CD13 and VLA-4 blocking and activating Abs were used in flow-based adhesion assays, live-cell imaging of motility, and actin polymerization studies to confirm a role for CD13 in impaired MO-MDSC transmigration. These findings indicate that CD13 significantly contributes to tissue infiltration by MO-MDSCs and monocytes, thereby contributing to the pathogenesis of hepatic inflammation.
Collapse
Affiliation(s)
- Yazid J Resheq
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; .,Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Ann-Katrin Menzner
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Jacobus Bosch
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Joseph Tickle
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ka-Kit Li
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Annika Wilhelm
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Division of Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London W2 1NY, United Kingdom
| | - Elizabeth Hepburn
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gillian Murihead
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stephen T Ward
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stuart M Curbishley
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Henning W Zimmermann
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tony Bruns
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.,Department of Medicine IV, University of Jena, 07743 Jena, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany; and
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - David H Adams
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Chris J Weston
- Institute of Immunology and Immunotherapy, Centre for Liver Research and National Institute for Health Research Birmingham Liver Biomedical Research Centre, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Mendonça SCF. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasit Vectors 2016; 9:492. [PMID: 27600664 PMCID: PMC5013623 DOI: 10.1186/s13071-016-1777-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines.
Collapse
Affiliation(s)
- Sergio C F Mendonça
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. 4365 - Manguinhos, 21040-360, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Natural cutaneous anthrax infection, but not vaccination, induces a CD4(+) T cell response involving diverse cytokines. Cell Biosci 2015; 5:20. [PMID: 26075052 PMCID: PMC4464127 DOI: 10.1186/s13578-015-0011-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Whilst there have been a number of insights into the subsets of CD4(+) T cells induced by pathogenic Bacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine. FINDINGS We found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, -9, -10, -13, -17, and -22. CONCLUSIONS Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.
Collapse
|
4
|
Malnati MS, Heltai S, Cosma A, Reitmeir P, Allgayer S, Glashoff RH, Liebrich W, Vardas E, Imami N, Westrop S, Nozza S, Tambussi G, Buttò S, Fanales-Belasio E, Ensoli B, Ensoli F, Tripiciano A, Fortis C, Lusso P, Poli G, Erfle V, Holmes H. A new antigen scanning strategy for monitoring HIV-1 specific T-cell immune responses. J Immunol Methods 2011; 375:46-56. [PMID: 21963950 DOI: 10.1016/j.jim.2011.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/25/2022]
Abstract
Delineation of the immune correlates of protection in natural infection or after vaccination is a mandatory step for vaccine development. Although the most recent techniques allow a sensitive and specific detection of the cellular immune response, a consensus on the best strategy to assess their magnitude and breadth is yet to be reached. Within the AIDS Vaccine Integrated Project (AVIP http://www.avip-eu.org) we developed an antigen scanning strategy combining the empirical-based approach of overlapping peptides with a vast array of database information. This new system, termed Variable Overlapping Peptide Scanning Design (VOPSD), was used for preparing two peptide sets encompassing the candidate HIV-1 vaccine antigens Tat and Nef. Validation of the VOPSD strategy was obtained by direct comparison with 15mer or 20mer peptide sets in a trial involving six laboratories of the AVIP consortium. Cross-reactive background responses were measured in 80 HIV seronegative donors (HIV-), while sensitivity and magnitude of Tat and Nef-specific T-cell responses were assessed on 90 HIV+ individuals. In HIV-, VOPSD peptides generated background responses comparable with those of the standard sets. In HIV-1+ individuals the VOPSD pools showed a higher sensitivity in detecting individual responses (Tat VOPSD vs. Tat 15mers or 20mers: p≤0.01) as well as in generating stronger responses (Nef VOPSD vs. Nef 20mers: p<0.001) than standard sets, enhancing both CD4 and CD8 T-cell responses. Moreover, this peptide design allowed a marked reduction of the peptides number, representing a powerful tool for investigating novel HIV-1 candidate vaccine antigens in cohorts of HIV-seronegative and seropositive individuals.
Collapse
|
5
|
Nieuwenhuis I, Beenhakker N, Bogers WMJM, Otting N, Bontrop RE, Dubois P, Mooij P, Heeney JL, Koopman G. No difference in Gag and Env immune-response profiles between vaccinated and non-vaccinated rhesus macaques that control immunodeficiency virus replication. J Gen Virol 2010; 91:2974-84. [PMID: 20826621 DOI: 10.1099/vir.0.022772-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent advances in human immunodeficiency virus (HIV) vaccine design have resulted in induction of strong CD4 T-cell proliferative and polyfunctional cytokine responses, which are also characteristic for long-term non-progressing (LTNP) HIV-infected individuals. However, limited information is available on the persistence of these responses after infection. Results from studies in non-human primates indicate that vaccine-induced immune responses are partially maintained upon viral infection and differ from the responses seen in non-vaccinated animals that typically progress to disease. However, it is unclear how these partially preserved responses compare to immune responses that are acquired naturally by LTNP animals. In this study, immune-response profiles were compared between vaccinated animals that, upon SHIV₈₉.₆ challenge, became infected but were able to control virus replication, and a group of animals having spontaneous control of this viral infection. Both groups were found to develop very similar immune responses with regard to induction of CD4 and CD8 T-cell polyfunctional cytokine responses, proliferative capacity and cytotoxic capacity, as measured by a standard ₅₁Cr release assay and more direct ex vivo and in vivo CTL assays. Hence, vaccinated animals that become infected, but control infection, appear to establish immune responses that are similar to those elicited by long-term non-progressors.
Collapse
Affiliation(s)
- Ivonne Nieuwenhuis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Repertoire of HLA-DR1-restricted CD4 T-cell responses to capsular Caf1 antigen of Yersinia pestis in human leukocyte antigen transgenic mice. Infect Immun 2010; 78:4356-62. [PMID: 20660611 DOI: 10.1128/iai.00195-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in "humanized" HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Collapse
|
7
|
Abstract
Identification of epitopes defined by T-cell responses aids to (1) monitor antigen-specific cellular immune responses (2) guide rational vaccine design, and (3) understand the nature of protective or harmful T-cell responses in diseases with defined target antigens. The 6-h intracellular cytokine staining (ICS) assay preferentially identifies effector T cells that are readily detectable in the peripheral circulation. In contrast, the whole blood assay (WBA) allows to gauge expansion of antigen-specific T cells over time (7 days), i.e., T cells with lower frequencies (e.g., memory T cells) defined by proliferation and cytokine production. Any cellular immune profile can be measured in the WBA (using the 7 days cell culture supernatants) or directly in responder T cells after antigenic stimulation (in the ICS) with appropriate cytokine-specific detection systems. The choice of the cytokine test panel depends on the nature of the expected immune response. A broad panel of candidate peptides can be tested for T-cell recognition in the WBA due to its simplicity and the low input of (unprocessed, heparinized) blood.
Collapse
|
8
|
Reynolds MR, Weiler AM, Weisgrau KL, Piaskowski SM, Furlott JR, Weinfurter JT, Kaizu M, Soma T, León EJ, MacNair C, Leaman DP, Zwick MB, Gostick E, Musani SK, Price DA, Friedrich TC, Rakasz EG, Wilson NA, McDermott AB, Boyle R, Allison DB, Burton DR, Koff WC, Watkins DI. Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. J Exp Med 2008; 205:2537-50. [PMID: 18838548 PMCID: PMC2571929 DOI: 10.1084/jem.20081524] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/03/2008] [Indexed: 11/19/2022] Open
Abstract
An effective AIDS vaccine will need to protect against globally diverse isolates of HIV. To address this issue in macaques, we administered a live-attenuated simian immunodeficiency virus (SIV) vaccine and challenged with a highly pathogenic heterologous isolate. Vaccinees reduced viral replication by approximately 2 logs between weeks 2-32 (P < or = 0.049) postchallenge. Remarkably, vaccinees expressing MHC-I (MHC class I) alleles previously associated with viral control completely suppressed acute phase replication of the challenge virus, implicating CD8(+) T cells in this control. Furthermore, transient depletion of peripheral CD8(+) lymphocytes in four vaccinees during the chronic phase resulted in an increase in virus replication. In two of these animals, the recrudescent virus population contained only the vaccine strain and not the challenge virus. Alarmingly, however, we found evidence of recombinant viruses emerging in some of the vaccinated animals. This finding argues strongly against an attenuated virus vaccine as a solution to the AIDS epidemic. On a more positive note, our results suggest that MHC-I-restricted CD8(+) T cells contribute to the protection induced by the live-attenuated SIV vaccine and demonstrate that vaccine-induced CD8(+) T cell responses can control replication of heterologous challenge viruses.
Collapse
Affiliation(s)
- Matthew R Reynolds
- AIDS Vaccine Research Laboratory, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Giraldo-Vela JP, Rudersdorf R, Chung C, Qi Y, Wallace LT, Bimber B, Borchardt GJ, Fisk DL, Glidden CE, Loffredo JT, Piaskowski SM, Furlott JR, Morales-Martinez JP, Wilson NA, Rehrauer WM, Lifson JD, Carrington M, Watkins DI. The major histocompatibility complex class II alleles Mamu-DRB1*1003 and -DRB1*0306 are enriched in a cohort of simian immunodeficiency virus-infected rhesus macaque elite controllers. J Virol 2008; 82:859-70. [PMID: 17989178 PMCID: PMC2224575 DOI: 10.1128/jvi.01816-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/24/2007] [Indexed: 12/20/2022] Open
Abstract
The role of CD4(+) T cells in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication is not well understood. Even though strong HIV- and SIV-specific CD4(+) T-cell responses have been detected in individuals that control viral replication, major histocompatibility complex class II (MHC-II) molecules have not been definitively linked with slow disease progression. In a cohort of 196 SIVmac239-infected Indian rhesus macaques, a group of macaques controlled viral replication to less than 1,000 viral RNA copies/ml. These elite controllers (ECs) mounted a broad SIV-specific CD4(+) T-cell response. Here, we describe five macaque MHC-II alleles (Mamu-DRB*w606, -DRB*w2104, -DRB1*0306, -DRB1*1003, and -DPB1*06) that restricted six SIV-specific CD4(+) T-cell epitopes in ECs and report the first association between specific MHC-II alleles and elite control. Interestingly, the macaque MHC-II alleles, Mamu-DRB1*1003 and -DRB1*0306, were enriched in this EC group (P values of 0.02 and 0.05, respectively). Additionally, Mamu-B*17-positive SIV-infected rhesus macaques that also expressed these two MHC-II alleles had significantly lower viral loads than Mamu-B*17-positive animals that did not express Mamu-DRB1*1003 and -DRB1*0306 (P value of <0.0001). The study of MHC-II alleles in macaques that control viral replication could improve our understanding of the role of CD4(+) T cells in suppressing HIV/SIV replication and further our understanding of HIV vaccine design.
Collapse
Affiliation(s)
- Juan P Giraldo-Vela
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Dr., Madison, WI 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Uberla K, Rosenwirth B, Ten Haaft P, Heeney J, Sutter G, Erfle V. Therapeutic immunization with Modified Vaccinia Virus Ankara (MVA) vaccines in SIV-infected rhesus monkeys undergoing antiretroviral therapy. J Med Primatol 2007; 36:2-9. [PMID: 17359459 DOI: 10.1111/j.1600-0684.2006.00190.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The long-term benefits of highly active antiretroviral therapy in HIV-infected patients are limited by emergence of drug-resistant variants and side effects. Therefore, we studied the concept of therapeutic immunization in 18 rhesus monkeys infected with a highly pathogenic simian immunodeficiency virus (SIV) swarm. METHODS Monkeys were treated with the reverse transcriptase inhibitor (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for 19 weeks starting 10 days after infection. After suppression of viremia, one group of monkeys was immunized with recombinant modified vaccinia virus Ankara (MVA) vectors expressing gag-pol and env. A second group received MVA vectors expressing the regulatory genes tat, rev and nef, while a third group was not immunized. RESULTS Immunization with gag-pol and env expressing MVA enhanced SIV antibody titers. Following discontinuation of PMPA treatment, a rebound in viral load was observed. However, in three of six monkeys immunized with MVA gag-pol and MVA env, and two of six monkeys immunized MVA expressing regulatory genes set point RNA levels were below or close to a threshold level of 10(4) RNA copies/ml, while only one of six unvaccinated monkeys maintained such low RNA levels. CONCLUSIONS Although a subset of animals seem to benefit from therapeutic immunization with MVA vectors, the difference in set point RNA levels between the groups did not reach statistical significance.
Collapse
Affiliation(s)
- Klaus Uberla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Kantakamalakul W, de Souza M, Bejrachandra S, Ampol S, Cox J, Sutthent R. Identification of a novel HIV type 1 CRF01_AE cytotoxic T lymphocyte (CTL) epitope restricted by an HLA-Cw0602 allele and a novel HLA-A0206/peptide restriction. AIDS Res Hum Retroviruses 2006; 22:1271-82. [PMID: 17209771 DOI: 10.1089/aid.2006.22.1271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report describes specific T cell responses to HIV-1 CRF01_AE Env and A Gag peptides in 20 HIV-1 CRF01_AE-infected Thai individuals using an interferon-gamma (IFN-gamma) enzyme-linked immunospot (ELISpot) assay. Twenty-six potentially novel HLA class I-restricted CD8+ T cell epitopes were identified in 14/20 subjects. Fine mapping analysis using the chromium release cytotoxic T lymphocyte (CTL) assay revealed a novel HLA-Cw0602 restricted epitope of HIV-1 CRF01_AE Env (NAKTIIVHL) and a previously identified HIV-1 A Gag epitope (ATLEEMMTA) with a novel HLA-A0206 restriction.
Collapse
Affiliation(s)
- Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | | | | | |
Collapse
|
12
|
Gupta SB, Mast CT, Wolfe ND, Novitsky V, Dubey SA, Kallas EG, Schechter M, Mbewe B, Vardas E, Pitisuttithum P, Burke D, Freed D, Mogg R, Coplan PM, Condra JH, Long RS, Anderson K, Casimiro DR, Shiver JW, Straus WL. Cross-Clade Reactivity of HIV-1-Specific T-cell Responses in HIV-1-Infected Individuals From Botswana and Cameroon. J Acquir Immune Defic Syndr 2006; 42:135-9. [PMID: 16760794 DOI: 10.1097/01.qai.0000223017.01568.e7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An effective HIV type 1 (HIV-1) vaccine will likely require elicitation of broadly reactive cell-mediated immune (CMI) responses against divergent HIV-1 clades. We compared anti-HIV-1 T-cell immune responses among 363 unvaccinated adults infected with diverse HIV-1 clades. Response rates to clade B Gag and/or clade B Nef in Botswana (95%) and Cameroon (98%) were similar when compared with those in countries previously studied, including Brazil (92%), Thailand (96%), South Africa (96%), Malawi (100%), and the United States (100%). Substantial cross-clade cell-mediated immune responses in Botswana and Cameroon confirm previous findings in a larger, more genetically diverse collection of HIV-1 samples.
Collapse
|
13
|
McDermott AB, O'Connor DH, Fuenger S, Piaskowski S, Martin S, Loffredo J, Reynolds M, Reed J, Furlott J, Jacoby T, Riek C, Dodds E, Krebs K, Davies ME, Schleif WA, Casimiro DR, Shiver JW, Watkins DI. Cytotoxic T-lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in adenovirus-boosted and DNA-primed Mamu-A*01-positive rhesus macaques. J Virol 2006; 79:15556-66. [PMID: 16306626 PMCID: PMC1315992 DOI: 10.1128/jvi.79.24.15556-15566.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adenovirus 5 (Ad5) vectors show promise as human immunodeficiency virus vaccine candidates. Indian rhesus macaques vaccinated with Ad5-gag controlled simian-human immunodeficiency virus SHIV89.6P viral replication in the absence of Env immunogens that might elicit humoral immunity. Here we immunized 15 macaques using either a homologous Ad5-gag/Ad5-gag (Ad5/Ad5) or a heterologous DNA-gag/Ad5-gag (DNA/Ad5) prime-boost regimen and challenged them with a high dose of simian immunodeficiency virus SIVmac239. Macaques vaccinated with the DNA/Ad5 regimen experienced a brief viral load nadir of less than 10,000 viral copies per ml blood plasma that was not seen in Mamu-A*01-negative DNA/Ad5 vaccinees, Mamu-A*01-positive Ad5/Ad5 vaccinees, or vaccine-naive controls. Interestingly, most of these animals were not durably protected from disease progression when challenged with SIVmac239. To investigate the reasons underlying this short-lived vaccine effect, we investigated breadth of the T-cell response, immunogenetic background, and viral escape from CD8+ lymphocytes that recognize immunodominant T-cell epitopes. We show that these animals do not mount unusually broad cellular immune response, nor do they express unusual major histocompatibility complex class I alleles. Viral recrudescence occurred in four of the five Mamu-A*01-positive vaccinated macaques. However, only a single animal in this group demonstrated viral escape in the immunodominant Gag181-189 CM9 response. These results suggest that viral "breakthrough" in vaccinated animals and viral escape are not inextricably linked and underscore the need for additional research into the mechanisms of vaccine failure.
Collapse
Affiliation(s)
- Adrian B McDermott
- Wisconsin National Primate Center, 1220 Capitol Court, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
There are more cases of tuberculosis in the world today than at any other time in history. The global epidemic has generated intense interest into the immunological mechanisms that control infection. Although CD4+ T cells play a critical role in host immunity to Mycobacterium tuberculosis, there is considerable interest in understanding the role of other T cell subsets in preventing disease development following infection. CD8+ T cells are required for optimum host defense following M. tuberculosis infection, which has led to investigation into how this protective effect is mediated. A critical review of recent literature regarding the role of CD8+ T cells in protective immunity to M. tuberculosis infection is now required to address the strengths and weaknesses of these studies. In this article, we evaluate the evidence that CD8+ T cells are critical in immunity to M. tuberculosis infection. We discuss the specific mycobacterial proteins that are recognized by CD8+ T cells elicited during infection. Finally, we examine the effector mechanisms of CD8+ T cells generated during infection and synthesize recent studies to consider the protective roles that these T cells serve in vivo.
Collapse
Affiliation(s)
- Joshua S M Woodworth
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Puaux AL, Delache B, Marconi S, Huerre M, Le Grand R, Rivière Y, Michel ML. Loss of reactivity of vaccine-induced CD4 T cells in immunized monkeys after SIV/HIV challenge. AIDS 2005; 19:757-65. [PMID: 15867489 DOI: 10.1097/01.aids.0000168969.72928.00] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Immunization protocols involving priming with DNA and boosting with recombinant live virus vectors such as recombinant modified Vaccinia Ankara (rMVA) are considered as vaccine candidates against HIV. Such protocols improve the outcome of simian/human immunodeficiency virus (SHIV) pathogenic challenge in Rhesus monkeys. OBJECTIVES To investigate the fate of vaccine-induced T cells after a mucosal SHIV challenge. METHODS We immunized Rhesus monkeys (Macaca mulatta) by DNA priming followed by rMVA boost. After intrarectal challenge with SHIV 89.6P, immunized animals demonstrated early control of viral replication and stable CD4 T-cell counts. We monitored T-cell responses by measuring IFN-gamma secretion and proliferation. RESULTS Immunization induced strong and sustained SHIV-specific CD4 and CD8 T-cell responses. CD8 T-cell responses were recalled during acute infection, whereas none of the vaccine-induced SHIV-specific CD4 T-cell responses were recalled. Moreover, most of the CD4 T-cell responses became undetectable in peripheral blood or lymph nodes even after in-vitro peptide stimulation. In contrast, we persistently detected CD4 T-cell responses specific for control recall antigens in infected animals. CONCLUSION SHIV 89.6P challenge results in a lack of reactivity of vaccine-induced SHIV-specific CD4 T cells. These results may have important implications in the AIDS vaccine field, especially for the evaluation of new vaccine candidates, both in preventive and therapeutic trials.
Collapse
Affiliation(s)
- Anne-Laure Puaux
- INSERM U 370 Carcinogenèse Hépatique et Virologie Moléculaire, Département de Médecine Moléculaire, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Drexler I, Staib C, Sutter G. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr Opin Biotechnol 2005; 15:506-12. [PMID: 15560976 PMCID: PMC7127071 DOI: 10.1016/j.copbio.2004.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Safety-tested modified vaccinia virus Ankara (MVA) has been established as a potent vector system for the development of candidate recombinant vaccines. The versatility of the vector system was recently demonstrated by the rapid production of experimental MVA vaccines for immunization against severe acute respiratory syndrome associated coronavirus. Promising results were also obtained in the delivery of Epstein-Barr virus or human cytomegalovirus antigens and from the clinical testing of MVA vectors for vaccination against immunodeficiency virus, papilloma virus, Plasmodium falciparum or melanoma. Moreover, MVA is considered to be a prime candidate vaccine for safer protection against orthopoxvirus infections. Thus, vector development to challenge dilemmas in vaccinology or immunization against poxvirus biothreat seems possible, yet the right choice should be made for a most beneficial use.
Collapse
Affiliation(s)
- Ingo Drexler
- GSF - Institute for Molecular Virology, München, Germany
| | - Caroline Staib
- Institute for Virology, Technical University München, Germany
| | - Gerd Sutter
- Paul-Ehrlich-Institute, Department of Virology, 63225 Langen, Germany
| |
Collapse
|
17
|
Slyker JA, Lohman BL, Mbori-Ngacha DA, Reilly M, Wee EGT, Dong T, McMichael AJ, Rowland-Jones SL, Hanke T, John-Stewart G. Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants. Vaccine 2005; 23:4711-9. [PMID: 16043269 PMCID: PMC3382083 DOI: 10.1016/j.vaccine.2005.01.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/25/2022]
Abstract
Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.HIVA and HIV-1 peptides were examined in 13 infected and 81 exposed uninfected infants in Nairobi, Kenya. Responses to MVA.HIVA (38%) and peptide stimulation (38%) were similar in frequency (p=1.0) and magnitude (mean 176 versus 385 HIVSFU/10(6), p=0.96) in HIV-1 infected infants. In exposed uninfected infants, MVA.HIVA detected more positive responses and higher magnitude responses as compared to peptide. MVA.HIVA ELISpot is a sensitive method for quantification of HIV-1-specific CD8+ T cell responses in HIV-1 exposed infants. These results demonstrate the relevance of HIV-1 clade A consensus-derived immunogen HIVA for the viruses currently circulating in Nairobi.
Collapse
|
18
|
Lisziewicz J, Trocio J, Whitman L, Varga G, Xu J, Bakare N, Erbacher P, Fox C, Woodward R, Markham P, Arya S, Behr JP, Lori F. DermaVir: A Novel Topical Vaccine for HIV/AIDS. J Invest Dermatol 2005; 124:160-9. [PMID: 15654970 DOI: 10.1111/j.0022-202x.2004.23535.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human immunodeficiency virus (HIV) vaccines have the potential to improve antiretroviral drug treatment by inducing cytotoxic killing of HIV-infected cells. Prophylactic vaccines utilize new antigens to initiate immunity; however, in HIV-infected individuals the load of viral antigen is not the limiting factor for the restoration of immune responses. Here we describe a novel immunization strategy with DermaVir that improves viral antigen presentation using dendritic cells (DC). DermaVir contains a distinctive plasmid DNA expressing all HIV proteins except integrase to induce immune responses with broad specificity. The DNA is formulated to a mannosilated particle to target antigen-presenting cells and to protect the DNA from intracellular degradation. After topical application, DermaVir-transduced cells migrate from the skin to the draining lymph node and interdigitate as DermaVir-expressing, antigen-presenting DC. We compared the immunogenicity of topical and ex vivo DC-based DermaVir vaccinations in naive rhesus macaques. Both vaccinations induced simian immunodeficiency virus-specific CD4 helper and CD8 memory T cells detected by an in vivo skin test and an in vitro intracellular cytokine-based assay. Topical DermaVir vaccination represents an improvement upon existing ex vivo DC-based immunization technologies and may provide a new therapeutic option for HIV-infected patients.
Collapse
Affiliation(s)
- Julianna Lisziewicz
- Research Institute for Genetic and Human Therapy (RIGHT), Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Boudinot P, Bernard D, Boubekeur S, Thoulouze MI, Bremont M, Benmansour A. The glycoprotein of a fish rhabdovirus profiles the virus-specific T-cell repertoire in rainbow trout. J Gen Virol 2004; 85:3099-3108. [PMID: 15448373 DOI: 10.1099/vir.0.80135-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell responses to viruses are still poorly investigated in lower vertebrates. In rainbow trout, a specific clonal expansion of T cells in response to infection with viral haemorrhagic septicaemia virus (VHSV) was recently identified. Expanded T-cell clones expressed a unique 8 aa Vβ4-Jβ1 junction (SSGDSYSE) in different individuals, reminiscent of a typical public response. To get further insight into the nature of this response the modifications of the T-cell repertoire following immunization with plasmid expressing the VHSV external glycoprotein (G), which is the only protein involved in protective immunity, was analysed. After G-based DNA immunization, CDR3-length spectratypes were skewed for several Vβ-Jβ combinations, including Vβ4-Jβ1. In Vβ4-Jβ1, biases consisted of 6 and 8 aa junctions that were detected from day 52, and were still present 3 months after DNA immunization. Sequence analysis of the Vβ4-Jβ1 junctions showed that the 8 aa junction (SSGDSYSE) was clearly expanded, indicating that viral G protein was probably the target of the anti-VHSV public response. Additional 6 and 8 aa Vβ4-Jβ1 junctions were also expanded in G-DNA-vaccinated fish, showing that significant clonotypic diversity was selected in response to the plasmid-delivered G protein. This higher clonotypic diversity may be related to the demonstrated higher efficiency of G-based DNA vaccines over whole virus immunization. The use of infectious hematopietic necrosis virus (IHNV) recombinant viruses, expressing the VHSV G protein, further substantiated the VHSV G-protein specificity of the 8 aa Vβ4-Jβ1 response and designated the 6 aa Vβ4-Jβ1 response as potentially directed to a T-cell epitope common to VHSV and IHNV.
Collapse
Affiliation(s)
- Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - David Bernard
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Samira Boubekeur
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Maria-Isabel Thoulouze
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Michel Bremont
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Abdenour Benmansour
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
20
|
Koopman G, Mortier D, Hofman S, Niphuis H, Fagrouch Z, Norley S, Sutter G, Liljeström P, Heeney JL. Vaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. J Gen Virol 2004; 85:2915-2924. [PMID: 15448353 DOI: 10.1099/vir.0.80226-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candidate human immunodeficiency virus (HIV) vaccine strategies that induce strong cellular immune responses protect rhesus macaques that are infected with recombinant simian/human immunodeficiency virus SHIV89.6p from acute CD4+ T-cell loss and delay progression to AIDS. However, similar strategies have not proven as efficacious in the simian immunodeficiency virus (SIV)mac model of AIDS, an infection that causes a slow, steady loss of CD4+ T-cell function and numbers in rhesus macaques similar to that caused by HIV-1, the principal cause of AIDS in humans. Efforts to increase vaccine efficacy by repeated boosting with the same vector are quickly limited by rising anti-vector immune responses. Here, the sequential use of three different vectors (DNA, Semliki Forest virus and modified vaccinia virus Ankara) encoding the same SIVmac structural and regulatory antigens was investigated and demonstrated to prevent or slow the loss of CD4+ T-cells after mucosal challenge with the highly pathogenic SIVmac251 strain. Of particular interest was an inverse association between the extent of T-helper 2 cytokine responses and steady-state virus load. Although limited in the number of animals, this study provides important proof of the efficacy of the triple-vector vaccine strategy against chronic, progressive CD4+ T-cell loss in the rigorous SIVmac/rhesus macaque model of AIDS.
Collapse
Affiliation(s)
- Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, the Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, the Netherlands
| | - Sam Hofman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, the Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, the Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, the Netherlands
| | - Steve Norley
- Robert Koch Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Gerd Sutter
- GSF-Institut für Molekulare Virologie, Trogerstrasse 4b, 81675 München, Germany
| | | | - Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, the Netherlands
| |
Collapse
|
21
|
Hudgens MG, Self SG, Chiu YL, Russell ND, Horton H, McElrath MJ. Statistical considerations for the design and analysis of the ELISpot assay in HIV-1 vaccine trials. J Immunol Methods 2004; 288:19-34. [PMID: 15183082 DOI: 10.1016/j.jim.2004.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 12/23/2003] [Accepted: 01/24/2004] [Indexed: 11/28/2022]
Abstract
Effector T lymphocyte responses are considered critical for controlling human immunodeficiency virus type-1 (HIV-1) infection. The enzyme-linked immunospot (ELISpot) assay has emerged as a primary means of assessing HIV-specific T cell responses, and the development of objective methods that distinguish positive and negative ELISpot responses while properly controlling the rate of false positives is critical. In this paper, we consider several statistical methods that are helpful in defining such a positive criterion. Simulation results under a variety of scenarios suggest that a permutation-based criterion using a resampling adjustment for multiple comparisons yields the desired false positive rate while remaining competitive with other potential criteria in terms of sensitivity. These results also provide guidance on the effect of the number of experimental and negative control replicate wells on assay sensitivity. Application of different potential positive criteria using ELISpot assay results from IFN-gamma-secreting T cells of HIV-1 seropositive and seronegative donors confirmed several of the results obtained under simulation. Our findings support the application of statistically-based positive criteria such as the permutation-based resampling approach in assessing HIV vaccine-induced T cell responses. Moreover, the proposed methods have potential utility in related HIV immunopathogenesis studies and in non-HIV clinical vaccine trials.
Collapse
Affiliation(s)
- Michael G Hudgens
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, NW-500, PO Box 19024, Seattle 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Beattie T, Kaul R, Rostron T, Dong T, Easterbrook P, Jaoko W, Kimani J, Plummer F, McMichael A, Rowland-Jones S. Screening for HIV-specific T-cell responses using overlapping 15-mer peptide pools or optimized epitopes. AIDS 2004; 18:1595-8. [PMID: 15238779 DOI: 10.1097/01.aids.0000131362.82951.b2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The IFN-y enzyme-linked immunospot (ELI-Spot) assay is often used to map HIV-specific CD8 T-cell responses. We compared overlapping 15-mer pools with optimized CD8 epitopes to screen ELISpot responses in HIV-infected individuals. The 15-mer pools detected responses to previously undefined epitopes, but often missed low-level responses to predefined epitopes, particularly when the epitope was central in the 15-mer, rather than at the N-terminus or C-terminus. These factors should be considered in the monitoring of HIV vaccine trials.
Collapse
Affiliation(s)
- Tara Beattie
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Draenert R, Verrill CL, Tang Y, Allen TM, Wurcel AG, Boczanowski M, Lechner A, Kim AY, Suscovich T, Brown NV, Addo MM, Walker BD. Persistent recognition of autologous virus by high-avidity CD8 T cells in chronic, progressive human immunodeficiency virus type 1 infection. J Virol 2004; 78:630-41. [PMID: 14694094 PMCID: PMC368768 DOI: 10.1128/jvi.78.2.630-641.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8 T-cell responses are thought to be crucial for control of viremia in human immunodeficiency virus (HIV) infection but ultimately fail to control viremia in most infected persons. Studies in acute infection have demonstrated strong CD8-mediated selection pressure and evolution of mutations conferring escape from recognition, but the ability of CD8 T-cell responses that persist in late-stage infection to recognize viruses present in vivo has not been determined. Therefore, we studied 24 subjects with advanced HIV disease (median viral load = 142,000 copies/ml; median CD4 count = 71/ micro l) and determined HIV-1-specific CD8 T-cell responses to all expressed viral proteins using overlapping peptides by gamma interferon Elispot assay. Chronic-stage virus was sequenced to evaluate autologous sequences within Gag epitopes, and functional avidity of detected responses was determined. In these subjects, the median number of epitopic regions targeted was 13 (range, 2 to 39) and the median cumulative magnitude of CD8 T-cell responses was 5,760 spot-forming cells/10(6) peripheral blood mononuclear cells (range, 185 to 24,700). On average six (range, one to 8) proteins were targeted. For 89% of evaluated CD8 T-cell responses, the autologous viral sequence was predicted to be well recognized by these responses and the majority of analyzed optimal epitopes were recognized with medium to high functional avidity by the contemporary CD8 T cells. Withdrawal of antigen by highly active antiretroviral therapy led to a significant decline both in breadth (P = 0.032) and magnitude (P = 0.0098) of these CD8 T-cell responses, providing further evidence that these responses had been driven by recognition of autologous virus. These results indicate that strong, broadly directed, and high-avidity gamma-interferon-positive CD8 T-cells directed at autologous virus persist in late disease stages, and the absence of mutations within viral epitopes indicates a lack of strong selection pressure mediated by these responses. These data imply functional impairment of CD8 T-cell responses in late-stage infection that may not be reflected by gamma interferon-based screening techniques.
Collapse
Affiliation(s)
- R Draenert
- Howard Hughes Medical Institute, Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School Division of AIDS, Boston, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Therapeutic vaccines against chronic infectious diseases aim at eliciting broad humoral and cellular immune responses against multiple target antigens. Importantly, the development of such vaccines will help to establish surrogate markers of protection in humans and thus will augment the subsequent development of efficient prophylactic vaccines. A combination of synthetic small-molecule drugs and immunotherapeutics is likely to represent a powerful means of controlling chronic infections in the future. Challenges faced in developing therapeutic vaccines include the following: first, overcoming the potential impairment of immune responses due to established infection; second, optimizing schedules of vaccine administration in combination with standard of care chemotherapy; and third, defining what biological and immunological read-outs should be used to infer vaccine efficacy.
Collapse
Affiliation(s)
- Philippe Moingeon
- Aventis Pasteur, Research and Development, Campus Mérieux, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | | | | |
Collapse
|
25
|
O'Connor DH, Mothe BR, Weinfurter JT, Fuenger S, Rehrauer WM, Jing P, Rudersdorf RR, Liebl ME, Krebs K, Vasquez J, Dodds E, Loffredo J, Martin S, McDermott AB, Allen TM, Wang C, Doxiadis GG, Montefiori DC, Hughes A, Burton DR, Allison DB, Wolinsky SM, Bontrop R, Picker LJ, Watkins DI. Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-T-lymphocyte responses. J Virol 2003; 77:9029-40. [PMID: 12885919 PMCID: PMC167227 DOI: 10.1128/jvi.77.16.9029-9040.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIV(mac)239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat(28-35)SL8) and the Mamu-B*17-restricted response (Nef(165-173)IW9) typically select for viral escape variants in early SIV(mac)239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat(28-35)SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection.
Collapse
Affiliation(s)
- David H O'Connor
- Wisconsin Regional Primate Research Center and Department of Pathology and Laboratory Medicine, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|