1
|
Muraoka S, Baba T, Akazawa T, Katayama KI, Kusumoto H, Yamashita S, Kohjimoto Y, Iwabuchi S, Hashimoto S, Hara I, Inoue N. Tumor-derived lactic acid promotes acetylation of histone H3K27 and differentiation of IL-10-producing regulatory B cells through direct and indirect signaling pathways. Int J Cancer 2025; 156:840-852. [PMID: 39482832 DOI: 10.1002/ijc.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Tumor cells are known to enhance glycolysis, even under normoxic conditions, via the Warburg effect, producing excess lactic acid in the tumor microenvironment. Lactic acid enhances the IL-23/IL-17 pathway and induces chronic inflammation. The acidic microenvironment formed by lactic acid suppresses immune cell proliferation and activation. In the present study, we clarified that lactic acid had two novel activities for immune cells. First, lactic acid specifically enhanced acetylation at lysine 27 of histone H3 (H3K27ac) in splenic B cells and monocytes/macrophages, and this epigenetically up-regulates the expression of genes. Acetylation and methylation of other residues of histone H3 were rarely induced. Second, lactic acid induced a particularly-marked enhancement of Il10 gene expression in B cells, leading to an increase in IL-10-producing regulatory B (Breg) cells. Furthermore, two pathways should be involved in both the enhancement of H3K27ac and the induction of Breg cells by lactic acid: a direct pathway that enhances the CD40 signal in B cells, and an indirect pathway that affects B cells by activating the exchange protein directly activated by cAMP (EPAC) 1/2 in non-B cells. In tumor-bearing mice, the levels of H3K27ac of tumor-infiltrating B cells were significantly higher than splenic B cells and were suppressed by intraperitoneal injection of the EPAC1/2 inhibitor. In conclusion, tumor-derived lactic acid increases H3K27ac and IL-10-producing Breg cells, causing the suppression of anti-tumor immunity.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Baba
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Kei-Ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kusumoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | | | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Leveque E, Battut L, Petitfils C, Valitutti S, Cenac N, Dietrich G, Espinosa E. Alternative activation of mast cells by CD4+ T helper cells. J Leukoc Biol 2024; 116:1127-1141. [PMID: 38916515 DOI: 10.1093/jleuko/qiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Effector CD4+ T (Teff) lymphocytes infiltrate sites of inflammation and orchestrate the immune response by instructing local leukocytes. Mast cells (MCs) are tissue sentinel cells strategically located near blood vessels and T cell-rich areas. MC/Teff cell interactions shape Teff cell responses, but in turn, Teff cell action on MCs is still poorly understood. Here, we analyzed the human MC/Teff cell interplay through both the application of RNA sequencing and functional assays. We showed that activated Teff cells induce a specific transcriptomic program in MCs including production of both inflammatory cytokines and chemokines, prostaglandin, and a FcεRI-dependent degranulation facilitation, thereby driving them toward an inflammatory phenotype. Moreover, Teff cells induce in MCs the capacity to interact with CD4+ T cells through a wide range of dedicated soluble and membrane ligands and to play the role of antigen-presenting cells.
Collapse
Affiliation(s)
- Edouard Leveque
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
| | - Louise Battut
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Camille Petitfils
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire de Toulouse, 1 avenue Irène Joliot-Curie, Toulouse F-31059, France
| | - Nicolas Cenac
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Gilles Dietrich
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Eric Espinosa
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| |
Collapse
|
3
|
Xiao Z, He R, Zhao Z, Chen T, Ying Z. Dysregulation of epigenetic modifications in inborn errors of immunity. Epigenomics 2024; 16:1301-1313. [PMID: 39404224 PMCID: PMC11534118 DOI: 10.1080/17501911.2024.2410695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Inborn errors of immunity (IEIs) are a group of typically monogenic disorders characterized by dysfunction in the immune system. Individuals with these disorders experience increased susceptibility to infections, autoimmunity and malignancies due to abnormal immune responses. Epigenetic modifications, including DNA methylation, histone modifications and chromatin remodeling, have been well explored in the regulation of immune cell development and effector function. Aberrant epigenetic modifications can disrupt gene expression profiles crucial for immune responses, resulting in impaired immune cell differentiation and function. Dysregulation of these processes caused by mutations in genes involving in epigenetic modifications has been associated with various IEIs. In this review article, we focus on IEIs that are caused by mutations in 13 genes involved in the regulation of DNA methylation, histone modification and chromatin remodeling.
Collapse
Affiliation(s)
- Zhongyao Xiao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rongjing He
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihan Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Taiping Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zhengzhou Ying
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Battut L, Leveque E, Valitutti S, Cenac N, Dietrich G, Espinosa E. IL-33-primed human mast cells drive IL-9 production by CD4 + effector T cells in an OX40L-dependent manner. Front Immunol 2024; 15:1470546. [PMID: 39416773 PMCID: PMC11479898 DOI: 10.3389/fimmu.2024.1470546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Interleukin-33 (IL-33) is an alarmin released by epithelial cells in response to tissue damage. It activates resident immune sentinel cells, which then produce signals commonly associated with type 2 immune responses, particularly affecting infiltrating antigen-specific T cells. Given that mast cells (MCs) are a primary target of IL-33 and can shape T helper (Th) cell responses, we investigated the effect of IL-33 priming on the ability of MCs to influence Th cell cytokine production. To examine the Th cell/MC interaction, we developed human primary MC/memory CD4+ T-cell coculture systems involving both cognate and non-cognate interactions. Our results demonstrated that IL-33-primed MCs, whether as bystander cells cocultured with activated effector T cells or functioning as antigen-presenting cells, promoted IL-9 and increased IL-13 production in Th cells via an OX40L-dependent mechanism. This indicates that MCs sense IL-33-associated danger, prompting them to direct Th cells to produce the key type 2 effector cytokines IL-9 and IL-13.
Collapse
Affiliation(s)
- Louise Battut
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Edouard Leveque
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
| | - Salvatore Valitutti
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, CHU Toulouse, Toulouse, France
| | - Nicolas Cenac
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Gilles Dietrich
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Eric Espinosa
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| |
Collapse
|
5
|
Radpour R, Simillion C, Wang B, Abbas HA, Riether C, Ochsenbein AF. IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion. Blood 2024; 144:888-903. [PMID: 38941612 DOI: 10.1182/blood.2024024000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)-producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM-infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.
Collapse
MESH Headings
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/immunology
- Th1 Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Tumor Microenvironment/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Interferon-gamma/metabolism
- Histone-Lysine N-Methyltransferase/genetics
Collapse
Affiliation(s)
- Ramin Radpour
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bofei Wang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX
| | - Carsten Riether
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Liu Y, Yi J, Wu P, Zhang J, Li X, Li J, Zhou L, Liu Y, Xu H, Chen E, Zhang H, Liang M, Liu P, Pan X, Lu Y. Wemics: A Single-Base Resolution Methylation Quantification Method for Enhanced Prediction of Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308884. [PMID: 38544480 PMCID: PMC11151077 DOI: 10.1002/advs.202308884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation, an epigenetic mechanism that alters gene expression without changing DNA sequence, is essential for organism development and key biological processes like genomic imprinting and X-chromosome inactivation. Despite tremendous efforts in DNA methylation research, accurate quantification of cytosine methylation remains a challenge. Here, a single-base methylation quantification approach is introduced by weighting methylation of consecutive CpG sites (Wemics) in genomic regions. Wemics quantification of DNA methylation better predicts its regulatory impact on gene transcription and identifies differentially methylated regions (DMRs) with more biological relevance. Most Wemics-quantified DMRs in lung cancer are epigenetically conserved and recurrently occurred in other primary cancers from The Cancer Genome Atlas (TCGA), and their aberrant alterations can serve as promising pan-cancer diagnostic markers. It is further revealed that these detected DMRs are enriched in transcription factor (TF) binding motifs, and methylation of these TF binding motifs and TF expression synergistically regulate target gene expression. Using Wemics on epigenomic-transcriptomic data from the large lung cancer cohort, a dozen novel genes with oncogenic potential are discovered that are upregulated by hypomethylation but overlooked by other quantification methods. These findings increase the understanding of the epigenetic mechanism by which DNA methylation regulates gene expression.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Jiani Yi
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Pin Wu
- Department of Thoracic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhou310009China
| | - Jun Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jia Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Liyuan Zhou
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Yong Liu
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
| | - Haiming Xu
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Enguo Chen
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Honghe Zhang
- Department of PathologyResearch Unit of Intelligence Classification of Tumor Pathology and Precision TherapyChinese Academy of Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Mingyu Liang
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
- Cancer centerZhejiang UniversityHangzhou310058China
| | - Xiaoqing Pan
- Department of MathematicsShanghai Normal UniversityShanghai200233China
| | - Yan Lu
- Cancer centerZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological DiseasesDepartment of Gynecologic OncologyWomen's Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310029China
| |
Collapse
|
7
|
Huang X, Huang J, Li X, Fan J, Zhou D, Qu HQ, Glessner JT, Ji D, Jia Q, Ding Z, Wang N, Wei W, Lyu X, Li MJ, Liu Z, Liu W, Wei Y, Hakonarson H, Xia Q, Li J. Target genes regulated by CLEC16A intronic region associated with common variable immunodeficiency. J Allergy Clin Immunol 2024; 153:1668-1680. [PMID: 38191060 DOI: 10.1016/j.jaci.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinxia Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingxian Fan
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Desheng Zhou
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Jia
- International School of Information Science Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Lyu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Liu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
8
|
Kim B, Huh KY, Yu KS, Lee S. Pharmacokinetics, pharmacodynamics and safety of oral formulation (CG-750) of ivaltinostat, a histone deacetylase inhibitor, compared to IV formulation (CG-745). Br J Clin Pharmacol 2024. [PMID: 38263733 DOI: 10.1111/bcp.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
AIMS CG-750 is an oral formulation of ivaltinostat, a newly developing histone deacetylase (HDAC) inhibitor. This study aimed to evaluate the pharmacokinetics (PK), pharmacodynamics (PD) and safety of an oral formulation (CG-750) of ivaltinostat compared to an intravenous (IV) formulation (CG-745). METHODS A randomized, double-blind, placebo-controlled study was conducted in three cohorts. Subjects received either CG-745 (Cohorts 1 and 3: 125 mg; Cohort 2: 250 mg) or placebo followed by CG-750 (Cohort 1: 125 mg; Cohort 2: 375 mg; Cohort 3: 750 mg) or placebo. Blood samples for PK and PD assessment were collected up to 72 h post-dose. Histone H3 acetylation at sites K9, K9/K14 and K27 was assessed for area under the % acetylation induction versus time curve (AUEC). RESULTS A total of 25 subjects were randomized, and 23 subjects completed the study (Cohort 1, n = 6; Cohort 2, n = 6; Cohort 3, n = 6; placebo, n = 5). The mean bioavailability of CG-750 was 10.6% (range: 4.18%-21.33%) and displayed linear PK in the dose range of 125-750 mg. The comparison of AUEC between formulations and the evaluation of the dose-AUEC relationship were inconclusive, due to the small sample sizes and significant variability observed in PD markers. All adverse events (AEs) were transient and of mild or moderate intensity. CONCLUSIONS The oral formulation of ivaltinostat (CG-750) was generally well tolerated after a single dose. CG-750 displayed a mean bioavailability of 10.6%.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Guo RY, Song S, Wang JQ, Guo JY, Liu J, Jia Z, Yuan CC, Li B. Downregulation of lncRNA XIST may promote Th17 differentiation through KDM6A-TSAd pathway in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2023; 76:104801. [PMID: 37315471 DOI: 10.1016/j.msard.2023.104801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUNDS Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease with significant female preponderance. X inactive specific transcript (XIST) is a long non-coding RNA (lncRNA) and a key regulator of X-chromosome inactivation which is related to the sex-bias of autoimmunity. And Th17 cell proportion was significantly elevated in NMOSD according to our previous study. OBJECTIVES This study aimed to explore the expression levels of lncRNA XIST-KDM6A-TSAd pathway in lymphocytes of female NMOSD patients, and investigate its possible relationship with pathogenesis of NMOSD. METHODS AND RESULTS The study enrolled 30 acute-phase untreated female NMOSD patients and 30 age-matched female healthy controls, their lymphocytes were collected for experiments. Microarray as well as validation experiments showed lncRNA XIST was significantly downregulated in the NMOSD group. And the levels of lysine demethylase 6A (KDM6A) decreased in NMOSD and showed significant positive correlation with XIST. The levels of T cell-specific adapter (TSAd) mRNA and protein levels were significantly lower in NMOSD. And Chromatin immunoprecipitation assay demonstrated that NMOSD had more H3K27me3 modification than control at TSAd promoter region. CONCLUSIONS The present study introduced a potential pathway that following lncRNA XIST downregulation, which process may promote Th17 differentiation in NMOSD. These findings shed new light on the immune regulation mechanism about lncRNA XIST and related epigenetic features, which may contribute to develop female-specific treatment plans.
Collapse
Affiliation(s)
- Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jue-Qiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jiang-Yuan Guo
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Cong-Cong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China; Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
10
|
Mei Y, Xin Y, Li X, Yin H, Xiong F, Yang M, Wu H. Aberrant expression of JMJD3 in SLE promotes B-cell differentiation. Immunobiology 2023; 228:152347. [PMID: 36791533 DOI: 10.1016/j.imbio.2023.152347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease distinguished by multiple organ dysfunction, which is related to a variety of causative factors. B-cell overactivation is a key factor in SLE. However, the pathogenesis underlying anomalous B cells has not been well elucidated. B-cell fate is regulated in diverse epigenetic ways apart from traditional ways. As one of the mechanisms of epigenetics, histone modification mainly affects transcription and translation by changing the chemical groups on histones by histone modification enzymes. JMJD3, a histone demethylase, can promote T-cell proliferation in SLE patients, which exacerbates SLE. However, the mechanism of JMJD3 in B cells in SLE has not been studied. Here, we found that the mean fluorescence intensity (MFI) of JMJD3 in classical memory B cells (CMBs) was higher than that in naïve B cells (NBs) from human tonsil tissue; JMJD3 was overexpressed in B cells from the peripheral blood of SLE patients compared with healthy controls (HCs). In vitro, our experiment showed that JMJD3 could regulate B-cell differentiation by promoting naïve B-cell differentiation into CD27+ B cells, and Blimp-1 and Bcl-6 also decreased after inhibitor treatment. These findings provide a new direction for the pathogenesis of SLE and may supply a new idea for subsequent drug development.
Collapse
Affiliation(s)
- Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yue Xin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xi Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Heng Yin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Feng Xiong
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
11
|
Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol 2023; 44:231-244. [PMID: 36774330 DOI: 10.1016/j.it.2023.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
T cell subsets adapt and rewire their metabolism according to their functions and surrounding microenvironment. Whereas naive T cells rely on mitochondrial metabolic pathways characterized by low nutrient requirements, effector T cells induce kinetically faster pathways to generate the biomass and energy needed for proliferation and cytokine production. Recent findings support the concept that alterations in metabolism also affect the epigenetics of T cells. In this review we discuss the connections between T cell metabolism and epigenetic changes such as histone post-translational modifications (PTMs) and DNA methylation, as well as the 'extra-metabolic' roles of metabolic enzymes and molecules. These findings collectively point to a new group of potential therapeutic targets for the treatment of T cell-dependent autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
12
|
Huang D, Zhang C, Wang P, Li X, Gao L, Zhao C. JMJD3 Promotes Porphyromonas gingivalis Lipopolysaccharide-Induced Th17-Cell Differentiation by Modulating the STAT3-RORc Signaling Pathway. DNA Cell Biol 2022; 41:778-787. [PMID: 35867069 PMCID: PMC9416562 DOI: 10.1089/dna.2022.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response mediated by Th17 cells is essential in the pathogenesis of periodontitis. Emerging evidence has demonstrated that lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) could promote Th17-cell differentiation directly, while the downstream signaling remains elusive. This study was aimed to explore the role of JMJD3 (a JmjC family histone demethylase) and signal transducers and activators of transcription 3 (STAT3) in Th17-cell differentiation triggered by Pg-LPS and clarify the interaction between them. We found that the expression of JMJD3 and STAT3 was significantly increased under Th17-polarizing conditions. Pg-LPS could promote Th17-cell differentiation from CD4+ T cells, with an increased expression of JMJD3 and STAT3 compared to the culture without Pg-LPS. The coimmunoprecipitation results showed that the interactions of JMJD3 and STAT3, STAT3 and retinoid-related orphan nuclear receptor γt (RORγt) were enhanced following Pg-LPS stimulation during Th17-cell differentiation. Further blocking assays were performed and the results showed that inhibition of STAT3 or JMJD3 both suppressed the Th17-cell differentiation, JMJD3 inhibitor could reduce the expression of STAT3 and p-STAT3, while JMJD3 expression was not affected when STAT3 was inhibited. Taken together, this study found that JMJD3 could promote Pg-LPS induced Th17-cell differentiation by modulating the STAT3-RORc signaling pathway.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Jin Y, Liu Z, Li Z, Li H, Zhu C, Li R, Zhou T, Fang B. Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1. Int J Oral Sci 2022; 14:34. [PMID: 35831280 PMCID: PMC9279410 DOI: 10.1038/s41368-022-00190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.
Collapse
Affiliation(s)
- Yu Jin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhen Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hairui Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cheng Zhu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
14
|
Abstract
T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
Collapse
Affiliation(s)
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Liang Y, Turcan S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines 2022; 10:biomedicines10020211. [PMID: 35203421 PMCID: PMC8868629 DOI: 10.3390/biomedicines10020211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Epigenetic drugs are used for the clinical treatment of hematologic malignancies; however, their therapeutic potential in solid tumors is still under investigation. Current evidence suggests that epigenetic drugs may lead to antitumor immunity by increasing antigen presentation and may enhance the therapeutic effect of immune checkpoint inhibitors. Here, we highlight their impact on the tumor epigenome and discuss the recent evidence that epigenetic agents may optimize the immune microenvironment and promote antiviral response.
Collapse
|
16
|
Lee JW, Profant M, Wang C. Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:212-220. [PMID: 35017210 DOI: 10.4049/jimmunol.2100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022]
Abstract
The palpable observation in the sex bias of disease prevalence in the CNS has fascinated scientists for several generations. Brain sex dimorphism has been visualized by imaging and analytical tools at the tissue, cellular, and molecular levels. Recent work highlighted the specificity of such sex bias in the brain and its subregions, offering a unique lens through which disease pathogenesis can be investigated. The brain is the largest consumer of energy in the body and provides a unique metabolic environment for diverse lineages of cells. Immune cells are increasingly recognized as an integral part of brain physiology, and their function depends on metabolic homeostasis. This review focuses on metabolic sex dimorphism in brain tissue, resident, and infiltrating immune cells. In this context, we highlight the relevance of recent advances in metabolomics and RNA sequencing technologies at the single cell resolution and the development of novel computational approaches.
Collapse
Affiliation(s)
- Jun Won Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Martin Profant
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Ou K, Hamo D, Schulze A, Roemhild A, Kaiser D, Gasparoni G, Salhab A, Zarrinrad G, Amini L, Schlickeiser S, Streitz M, Walter J, Volk HD, Schmueck-Henneresse M, Reinke P, Polansky JK. Strong Expansion of Human Regulatory T Cells for Adoptive Cell Therapy Results in Epigenetic Changes Which May Impact Their Survival and Function. Front Cell Dev Biol 2021; 9:751590. [PMID: 34869339 PMCID: PMC8639223 DOI: 10.3389/fcell.2021.751590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022] Open
Abstract
Adoptive transfer of regulatory T cells (Treg) is a promising new therapeutic option to treat detrimental inflammatory conditions after transplantation and during autoimmune disease. To reach sufficient cell yield for treatment, ex vivo isolated autologous or allogenic Tregs need to be expanded extensively in vitro during manufacturing of the Treg product. However, repetitive cycles of restimulation and prolonged culture have been shown to impact T cell phenotypes, functionality and fitness. It is therefore critical to scrutinize the molecular changes which occur during T cell product generation, and reexamine current manufacturing practices. We performed genome-wide DNA methylation profiling of cells throughout the manufacturing process of a polyclonal Treg product that has proven safety and hints of therapeutic efficacy in kidney transplant patients. We found progressive DNA methylation changes over the duration of culture, which were donor-independent and reproducible between manufacturing runs. Differentially methylated regions (DMRs) in the final products were significantly enriched at promoters and enhancers of genes implicated in T cell activation. Additionally, significant hypomethylation did also occur in promoters of genes implicated in functional exhaustion in conventional T cells, some of which, however, have been reported to strengthen immunosuppressive effector function in Tregs. At the same time, a set of reported Treg-specific demethylated regions increased methylation levels with culture, indicating a possible destabilization of Treg identity during manufacturing, which was independent of the purity of the starting material. Together, our results indicate that the repetitive TCR-mediated stimulation lead to epigenetic changes that might impact functionality of Treg products in multiple ways, by possibly shifting to an effector Treg phenotype with enhanced functional activity or by risking destabilization of Treg identity and impaired TCR activation. Our analyses also illustrate the value of epigenetic profiling for the evaluation of T cell product manufacturing pipelines, which might open new avenues for the improvement of current adoptive Treg therapies with relevance for conventional effector T cell products.
Collapse
Affiliation(s)
- Kristy Ou
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dania Hamo
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Schulze
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gilles Gasparoni
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Ghazaleh Zarrinrad
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
18
|
Heisey DAR, Jacob S, Lochmann TL, Kurupi R, Ghotra MS, Calbert ML, Shende M, Maves YK, Koblinski JE, Dozmorov MG, Boikos SA, Benes CH, Faber AC. Pharmaceutical Interference of the EWS-FLI1-driven Transcriptome By Cotargeting H3K27ac and RNA Polymerase Activity in Ewing Sarcoma. Mol Cancer Ther 2021; 20:1868-1879. [PMID: 34315769 DOI: 10.1158/1535-7163.mct-20-0489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/23/2020] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
The EWSR1-FLI1 t(11;22)(q24;q12) translocation is the hallmark genomic alteration of Ewing sarcoma, a malignancy of the bone and surrounding tissue, predominantly affecting children and adolescents. Although significant progress has been made for the treatment of localized disease, patients with metastasis or who relapse after chemotherapy have less than a 30% five-year survival rate. EWS-FLI1 is currently not clinically druggable, driving the need for more effective targeted therapies. Treatment with the H3K27 demethylase inhibitor, GSK-J4, leads to an increase in H3K27me and a decrease in H3K27ac, a significant event in Ewing sarcoma because H3K27ac associates strongly with EWS-FLI1 binding at enhancers and promoters and subsequent activity of EWS-FLI1 target genes. We were able to identify targets of EWS-FLI1 tumorigenesis directly inhibited by GSK-J4. GSK-J4 disruption of EWS-FLI1-driven transcription was toxic to Ewing sarcoma cells and slowed tumor growth in patient-derived xenografts (PDX) of Ewing sarcoma. Responses were markedly exacerbated by cotreatment with a disruptor of RNA polymerase II activity, the CDK7 inhibitor THZ1. This combination together suppressed EWS-FLI1 target genes and viability of ex vivo PDX Ewing sarcoma cells in a synergistic manner. In PDX models of Ewing Sarcoma, the combination shrank tumors. We present a new therapeutic strategy to treat Ewing sarcoma by decreasing H3K27ac at EWS-FLI1-driven transcripts, exacerbated by blocking phosphorylation of the C-terminal domain of RNA polymerase II to further hinder the EWS-FLI1-driven transcriptome.
Collapse
Affiliation(s)
- Daniel A R Heisey
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Sheeba Jacob
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Timothy L Lochmann
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Richard Kurupi
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Maninderjit S Ghotra
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Marissa L Calbert
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Mayuri Shende
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Anthony C Faber
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia.
| |
Collapse
|
19
|
Howson LJ, Li J, von Borstel A, Barugahare A, Mak JYW, Fairlie DP, McCluskey J, Turner SJ, Davey MS, Rossjohn J. Mucosal-Associated Invariant T Cell Effector Function Is an Intrinsic Cell Property That Can Be Augmented by the Metabolic Cofactor α-Ketoglutarate. THE JOURNAL OF IMMUNOLOGY 2021; 206:1425-1435. [PMID: 33597151 DOI: 10.4049/jimmunol.2001048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like population of unconventional T cells that respond rapidly to microbial metabolite Ags or cytokine stimulation. Because of this reactivity and surface expression of CD45RO+, CD45RA-, and CD127+, they are described as effector memory cells. Yet, there is heterogeneity in MAIT cell effector response. It is unclear what factors control MAIT cell effector capacity, whether it is fixed or can be modified and if this differs based on whether activation is TCR dependent or independent. To address this, we have taken a systematic approach to examine human MAIT cell effector capacity across healthy individuals in response to ligand and cytokine stimulation. We demonstrate the heterogenous nature of MAIT cell effector capacity and that the ability to produce an effector response is not directly attributable to TCR clonotype or coreceptor expression. Global gene transcription analysis revealed that the MAIT cell effector capacity produced in response to TCR stimulation is associated with increased expression of the epigenetic regulator lysine demethylase 6B (KDM6B). Addition of a KDM6B inhibitor did not alter MAIT cell effector function to Ag or cytokine stimulation. However, addition of the KDM6B cofactor α-ketoglutarate greatly enhanced MAIT cell effector capacity to TCR-dependent stimulation in a partially KDM6B-dependent manner. These results demonstrate that the TCR-dependent effector response of MAIT cells is epigenetically regulated and dependent on the availability of metabolic cofactors.
Collapse
Affiliation(s)
- Lauren J Howson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Jasmine Li
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adele Barugahare
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Stephen J Turner
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Martin S Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
20
|
Maes K, Mondino A, Lasarte JJ, Agirre X, Vanderkerken K, Prosper F, Breckpot K. Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Front Immunol 2021; 12:652160. [PMID: 33859645 PMCID: PMC8042276 DOI: 10.3389/fimmu.2021.652160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being exploited as anti-neoplastic and immunomodulatory agents to restore immunological fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor antigens, immune checkpoints, chemokines or innate defense pathways, and on immune cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can indeed overcome peripheral tolerance to transformed cells. Therefore, combinations of EMAs with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we review several examples of epigenetic changes critical for immune cell functions and tumor-immune evasion and of the use of EMAs in promoting anti-tumor immunity. Finally, we provide our perspective on how EMAs could represent a game changer for combinatorial therapies and the clinical management of cancer.
Collapse
Affiliation(s)
- Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universiteit Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felipe Prosper
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Iwaszkiewicz-Grzes D, Piotrowska M, Gliwinski M, Urban-Wójciuk Z, Trzonkowski P. Antigenic Challenge Influences Epigenetic Changes in Antigen-Specific T Regulatory Cells. Front Immunol 2021; 12:642678. [PMID: 33868279 PMCID: PMC8044853 DOI: 10.3389/fimmu.2021.642678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Human regulatory T cells (Tregs) are the fundamental component of the immune system imposing immune tolerance via control of effector T cells (Teffs). Ongoing attempts to improve Tregs function have led to the creation of a protocol that produces antigen-specific Tregs, when polyclonal Tregs are stimulated with monocytes loaded with antigens specific for type 1 diabetes. Nevertheless, the efficiency of the suppression exerted by the produced Tregs depended on the antigen with the best results when insulin β chain peptide 9-23 was used. Here, we examined epigenetic modifications, which could influence these functional differences. Methods The analysis was pefromed in the sorted specific (SPEC, proliferating) and unspecific (UNSPEC, non-proliferating) subsets of Tregs and Teffs generated by the stimulation with monocytes loaded with either whole insulin (INS) or insulin β chain peptide 9-23 (B:9-23) or polyclonal cells stimulated with anti-CD3/anti-CD28 beads (POLY). A relative expression of crucial Tregs genes was determined by qRT-PCR. The Treg-specific demethylated region (TSDR) in FoxP3 gene methylation levels were assessed by Quantitative Methylation Specific PCR (qMSP). ELISA was used to measure genomic DNA methylation and histone H3 post-translational modifications (PTMs). Results Tregs SPECB:9-23 was the only subset expressing all assessed genes necessary for regulatory function with the highest level of expression among all analyzed conditions. The methylation of global DNA as well as TSDR were significantly lower in Tregs SPECB:9-23 than in Tregs SPECINS. When compared to Teffs, Tregs were characterized by a relatively lower level of PTMs but it varied in respective Tregs/Teffs pairs. Importantly, whenever the difference in PTM within Tregs/Teffs pair was significant, it was always low in one subset from the pair and high in the other. It was always low in Tregs SPECINS and high in Teffs SPECINS, while it was high in Tregs UNSPECINS and low in Teffs UNSPECINS. There were no differences in Tregs/Teffs SPECB:9-23 pair and the level of modifications was low in Tregs UNSPECB:9-23 and high in Teffs UNSPECB:9-23. The regions of PTMs in which differences were significant overlapped only partially between particular Tregs/Teffs pairs. Conclusions Whole insulin and insulin β chain peptide 9-23 affected epigenetic changes in CD4+ T cells differently, when presented by monocytes. The peptide preferably favored specific Tregs, while whole insulin activated both Tregs and Teffs.
Collapse
Affiliation(s)
| | | | - Mateusz Gliwinski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
22
|
Li J, Hardy K, Olshansky M, Barugahare A, Gearing LJ, Prier JE, Sng XYX, Nguyen MLT, Piovesan D, Russ BE, La Gruta NL, Hertzog PJ, Rao S, Turner SJ. KDM6B-dependent chromatin remodeling underpins effective virus-specific CD8 + T cell differentiation. Cell Rep 2021; 34:108839. [PMID: 33730567 DOI: 10.1016/j.celrep.2021.108839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Naive CD8+ T cell activation results in an autonomous program of cellular proliferation and differentiation. However, the mechanisms that underpin this process are unclear. Here, we profile genome-wide changes in chromatin accessibility, gene transcription, and the deposition of a key chromatin modification (H3K27me3) early after naive CD8+ T cell activation. Rapid upregulation of the histone demethylase KDM6B prior to the first cell division is required for initiating H3K27me3 removal at genes essential for subsequent T cell differentiation and proliferation. Inhibition of KDM6B-dependent H3K27me3 demethylation limits the magnitude of an effective primary virus-specific CD8+ T cell response and the formation of memory CD8+ T cell populations. Accordingly, we define the early spatiotemporal events underpinning early lineage-specific chromatin reprogramming that are necessary for autonomous CD8+ T cell proliferation and differentiation.
Collapse
Affiliation(s)
- Jasmine Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kristine Hardy
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Bruce, ACT 2617, Australia
| | - Moshe Olshansky
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Adele Barugahare
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Linden J Gearing
- Hudson Institute for Medical Research, Clayton, VIC 3168, Australia
| | - Julia E Prier
- Department of Microbiology and Immunology, the Doherty Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xavier Y X Sng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michelle Ly Thai Nguyen
- Department of Microbiology and Immunology, the Doherty Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Dana Piovesan
- Department of Microbiology and Immunology, the Doherty Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brendan E Russ
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Paul J Hertzog
- Hudson Institute for Medical Research, Clayton, VIC 3168, Australia
| | - Sudha Rao
- QIMR Berghofer Gene Regulation and Translational Medicine Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Hudson Institute for Medical Research, Clayton, VIC 3168, Australia.
| |
Collapse
|
23
|
Running to Stand Still: Naive CD8 + T Cells Actively Maintain a Program of Quiescence. Int J Mol Sci 2020; 21:ijms21249773. [PMID: 33371448 PMCID: PMC7767439 DOI: 10.3390/ijms21249773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
CD8+ T cells play a pivotal role in clearing intracellular pathogens and combatting tumours. Upon infection, naïve CD8+ T cells differentiate into effector and memory cells, and this program is underscored by large-scale and coordinated changes in the chromatin architecture and gene expression. Importantly, recent evidence demonstrates that the epigenetic mechanisms that regulate the capacity for rapid effector function of memory T cells are shared by innate immune cells such as natural killer (NK) cells. Thus, it appears that the crucial difference between innate and adaptive immunity is the presence of the naïve state. This important distinction raises an intriguing new hypothesis, that the naïve state was evolutionary installed to restrain a default program of effector and memory differentiation in response to antigen recognition. We argue that the hallmark of adaptive T immunity is therefore the naïve program, which actively maintains CD8+ T cell quiescence until receipt of appropriate activation signals. In this review, we examine the mechanistic control of naïve CD8+ T cell quiescence and summarise the multiple levels of restraint imposed in naïve cells in to limit spontaneous and inappropriate activation. This includes epigenetic mechanisms and transcription factor (TF) regulation of gene expression, in addition to novel inhibitory receptors, abundance of RNA, and protein degradation.
Collapse
|
24
|
Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020; 12:v12121409. [PMID: 33302437 PMCID: PMC7762524 DOI: 10.3390/v12121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhixin Tian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Shawna Hengel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Children’s Foundation Research Institute, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-448–3068
| |
Collapse
|
25
|
Huang Y, Wang S, Ding X, Wu C, Chen J, Hu Z, Du X, Wang G. Inhibition of S-adenosyl-L-homocysteine hydrolase alleviates alloimmune response by down-regulating CD4 + T-cell activation in a mouse heart transplantation model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1582. [PMID: 33437781 PMCID: PMC7791210 DOI: 10.21037/atm-20-2899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Transmethylation reactions play an important role on lymphocyte activation and function. S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitors prevent the feedback of transmethylation reactions by S-adenosyl-L-homocysteine (SAH) accumulation, a competitive antagonist of S-adenosylmethionine (SAM)-dependent methyltransferases. However, the role of SAH in solid organ transplantation is currently unclear. Methods A murine model of cardiac transplantation (BALB/C to C57B/6) was established to assess allograft survival, histology, and T cell infiltration. The reversible SAHH inhibitor, DZ2002, and irreversible SAHH inhibitor, adenosine dialdehyde (AdOx), were used to assess their immunosuppressive effects in murine cardiac transplantation, compared with mice with DMSO. Results Both SAHH inhibitors prolonged the survival of cardiac allografts and alleviated alloimmune response. Notably, AdOx and DZ2002 both eliminated frequencies of Th1 and Th17 in CD4+ T cells in cardiac transplantation, and reduced the frequency of active CD4+ T cell (CD44+ CD62L−). The irreversible SAHH inhibitor facilitated the differentiation of regulatory T cells (Tregs) and increased Bim expression. Furthermore, both SAHH inhibitors alleviated infiltration of CD4+ T cells in cardiac allografts. Conclusions The SAHH inhibitors (AdOx and DZ2002) alleviates allograft rejection in cardiac transplantation by inhibition of CD4+ T alloimmune response. SAHH inhibitors, especially DZ2002, is a promising complementary therapeutic agent in organ transplantation.
Collapse
Affiliation(s)
- Yajun Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchao Ding
- Department of Thoracic Surgery, Hubei Provincial People's Hospital, Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Yi FS, Zhang X, Zhai K, Huang ZY, Wu XZ, Wu MT, Shi XY, Pei XB, Dong SF, Wang W, Yang Y, Du J, Luo ZT, Shi HZ. TSAd Plays a Major Role in Myo9b-Mediated Suppression of Malignant Pleural Effusion by Regulating T H1/T H17 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 205:2926-2935. [PMID: 33046503 DOI: 10.4049/jimmunol.2000307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
Emerging evidence indicates that Myo9b is a cancer metastasis-related protein and functions in a variety of immune-related diseases. However, it is not clear whether and how Myo9b functions in malignant pleural effusion (MPE). In this study, our data showed that Myo9b expression levels correlated with lung cancer pleural metastasis, and nucleated cells in MPE from either patients or mice expressed a lower level of Myo9b than those in the corresponding blood. Myo9b deficiency in cancer cells suppressed MPE development via inhibition of migration. Myo9b deficiency in mice suppressed MPE development by decreasing TH1 cells and increasing TH17 cells. CD4+ naive T cells isolated from Myo9b-/- mouse spleens exhibited less TH1 cell differentiation and more TH17 cell differentiation in vitro. mRNA sequencing of nucleated cells showed that T cell-specific adaptor protein (TSAd) was downregulated in Myo9b-/- mouse MPE, and enrichment of the H3K27me3 mark in the TSAd promoter region was found in the Myo9b-/- group. Naive T cells purified from wild type mouse spleens transfected with TSAd-specific small interfering RNAs (siRNAs) also showed less TH1 cell differentiation and more TH17 cell differentiation than those from the siRNA control group. Furthermore, downregulation of TSAd in mice using cholesterol-conjugated TSAd-specific siRNA suppressed MPE development, decreased TH1 cells, and increased TH17 cells in MPE in vivo. Taken together, Myo9b deficiency suppresses MPE development not only by suppressing pleural cancer metastasis but also by regulating TH1/TH17 cell response via a TSAd-dependent pathway. This work suggests Myo9b and TSAd as novel candidates for future basic and clinical investigations of cancer.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Min-Ting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Juan Du
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeng-Tao Luo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
27
|
Liu B, Lindner P, Jirmo AC, Maus U, Illig T, DeLuca DS. A comparison of curated gene sets versus transcriptomics-derived gene signatures for detecting pathway activation in immune cells. BMC Bioinformatics 2020; 21:28. [PMID: 31992182 PMCID: PMC6986093 DOI: 10.1186/s12859-020-3366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the significant contribution of transcriptomics to the fields of biological and biomedical research, interpreting long lists of significantly differentially expressed genes remains a challenging step in the analysis process. Gene set enrichment analysis is a standard approach for summarizing differentially expressed genes into pathways or other gene groupings. Here, we explore an alternative approach to utilizing gene sets from curated databases. We examine the method of deriving custom gene sets which may be relevant to a given experiment using reference data sets from previous transcriptomics studies. We call these data-derived gene sets, "gene signatures" for the biological process tested in the previous study. We focus on the feasibility of this approach in analyzing immune-related processes, which are complicated in their nature but play an important role in the medical research. RESULTS We evaluate several statistical approaches to detecting the activity of a gene signature in a target data set. We compare the performance of the data-derived gene signature approach with comparable GO term gene sets across all of the statistical tests. A total of 61 differential expression comparisons generated from 26 transcriptome experiments were included in the analysis. These experiments covered eight immunological processes in eight types of leukocytes. The data-derived signatures were used to detect the presence of immunological processes in the test data with modest accuracy (AUC = 0.67). The performance for GO and literature based gene sets was worse (AUC = 0.59). Both approaches were plagued by poor specificity. CONCLUSIONS When investigators seek to test specific hypotheses, the data-derived signature approach can perform as well, if not better than standard gene-set based approaches for immunological signatures. Furthermore, the data-derived signatures can be generated in the cases that well-defined gene sets are lacking from pathway databases and also offer the opportunity for defining signatures in a cell-type specific manner. However, neither the data-derived signatures nor standard gene-sets can be demonstrated to reliably provide negative predictions for negative cases. We conclude that the data-derived signature approach is a useful and sometimes necessary tool, but analysts should be weary of false positives.
Collapse
Affiliation(s)
- Bin Liu
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Carl-Neuberg-Straße, Hannover, 30625 Germany
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover, 30167 Germany
| | - Patrick Lindner
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover, 30167 Germany
| | - Adan Chari Jirmo
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Carl-Neuberg-Straße, Hannover, 30625 Germany
- Department of Pediatric Pneumology,Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625 Germany
| | - Ulrich Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Straße 21, Hannover, 30625 Germany
| | - Thomas Illig
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Carl-Neuberg-Straße, Hannover, 30625 Germany
- Hannover Unified Biobank, Hannover Medical School, Feodor-Lynen-Straße, Hannover, 30625 Germany
| | - David S. DeLuca
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Carl-Neuberg-Straße, Hannover, 30625 Germany
| |
Collapse
|
28
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Kleinertz H, Hepner-Schefczyk M, Ehnert S, Claus M, Halbgebauer R, Boller L, Huber-Lang M, Cinelli P, Kirschning C, Flohé S, Sander A, Waydhas C, Vonderhagen S, Jäger M, Dudda M, Watzl C, Flohé SB. Circulating growth/differentiation factor 15 is associated with human CD56 bright natural killer cell dysfunction and nosocomial infection in severe systemic inflammation. EBioMedicine 2019; 43:380-391. [PMID: 30992245 PMCID: PMC6557805 DOI: 10.1016/j.ebiom.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Background Systemic inflammation induced by sterile or infectious insults is associated with an enhanced susceptibility to life-threatening opportunistic, mostly bacterial, infections due to unknown pathogenesis. Natural killer (NK) cells contribute to the defence against bacterial infections through the release of Interferon (IFN) γ in response to Interleukin (IL) 12. Considering the relevance of NK cells in the immune defence we investigated whether the function of NK cells is disturbed in patients suffering from serious systemic inflammation. Methods NK cells from severely injured patients were analysed from the first day after the initial inflammatory insult until the day of discharge in terms of IL-12 receptor signalling and IFN-γ synthesis. Findings During systemic inflammation, the expression of the IL-12 receptor β2 chain, phosphorylation of signal transducer and activation 4, and IFN-γ production on/in NK cells was impaired upon exposure to Staphylococcus aureus. The profound suppression of NK cells developed within 24 h after the initial insult and persisted for several weeks. NK cells displayed signs of exhaustion. Extrinsic changes were mediated by the early and long-lasting presence of growth/differentiation factor (GDF) 15 in the circulation that signalled through the transforming growth factor β receptor I and activated Smad1/5. Moreover, the concentration of GDF-15 in the serum inversely correlated with the IL-12 receptor β2 expression on NK cells and was enhanced in patients who later acquired septic complications. Interpretation GDF-15 is associated with the development of NK cell dysfunction during systemic inflammation and might represent a novel target to prevent nosocomial infections. Fund The study was supported by the Department of Orthopaedics and Trauma Surgery, University Hospital Essen.
Collapse
Affiliation(s)
- Holger Kleinertz
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Monika Hepner-Schefczyk
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, University of Tübingen, Tübingen, Germany
| | - Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Lea Boller
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Paolo Cinelli
- Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sascha Flohé
- Department of Hand- and Trauma Surgery, University Hospital Dusseldorf, University Dusseldorf, Dusseldorf, Germany
| | - André Sander
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Waydhas
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sonja Vonderhagen
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcus Jäger
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Stefanie B Flohé
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
30
|
Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans 2018; 46:1147-1159. [PMID: 30301842 PMCID: PMC6195639 DOI: 10.1042/bst20180169] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.
Collapse
|
31
|
|