1
|
Wang X, Qu Q, Li Z, Lu S, Ferrandon D, Xi L. An unusual Toll/MyD88-mediated Drosophila host defence against Talaromyces marneffei. Fly (Austin) 2024; 18:2398300. [PMID: 39239739 PMCID: PMC11382710 DOI: 10.1080/19336934.2024.2398300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Talaromycosis, caused by Talaromyces marneffei (T. marneffei, formerly known as Penicillium marneffei), is an opportunistic invasive mycosis endemic in tropical and subtropical areas of Asia with high mortality rate. Despite various infection models established to study the immunological interaction between T. marneffei and the host, the pathogenicity of this fungus is not yet fully understood. So far, Drosophila melanogaster, a well-established genetic model organism to study innate immunity, has not been used in related research on T. marneffei. In this study, we provide the initial characterization of a systemic infection model of T. marneffei in the D. melanogaster host. Survival curves and fungal loads were tested as well as Toll pathway activation was quantified by RT-qPCR of several antimicrobial peptide (AMP) genes including Drosomycin, Metchnikowin, and Bomanin Short 1. We discovered that whereas most wild-type flies were able to overcome the infection, MyD88 or Toll mutant flies failed to prevent fungal dissemination and proliferation and ultimately succumbed to this challenge. Unexpectedly, the induction of classical Toll pathway activation readouts, Drosomycin and Bomanin Short 1, by live or killed T. marneffei was quite limited in wild-type flies, suggesting that the fungus largely escapes detection by the systemic immune system. This unusual situation of a poor systemic activation of the Toll pathway and a strong susceptibility phenotype of MyD88/Toll might be accounted for by a requirement for this host defence in only specific tissues, a hypothesis that remains to be rigorously tested.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Dermatology hospital, Southern Medical University, Guangzhou, China
| | - Qinglin Qu
- Dermatology hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Liyan Xi
- Dermatology hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Martinez M, Garsin DA, Lorenz MC. Vertebrate and invertebrate animal infection models of Candida auris pathogenicity. Curr Opin Microbiol 2024; 80:102506. [PMID: 38925077 PMCID: PMC11432150 DOI: 10.1016/j.mib.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Candida auris is an emerging fungal pathogen with several concerning qualities. First recognized in 2009, it has arisen in multiple geographically distinct genomic clades nearly simultaneously. C. auris strains are typically multidrug resistant and colonize the skin much better than most other pathogenic fungi; it also persists on abiotic surfaces, enabling outbreaks due to transmission in health care facilities. All these suggest a biology substantially different from the 'model' fungal pathogen, Candida albicans and support intensive investigation of C. auris biology directly. To uncover novel virulence mechanisms in this species requires the development of appropriate animal infection models. Various studies using mice, the definitive model, are inconsistent due to differences in mouse and fungal strains, immunosuppressive regimes, doses, and outcome metrics. At the same time, developing models of skin colonization present a route to new insights into an aspect of fungal pathogenesis that has not been well studied in other species. We also discuss the growing use of nonmammalian model systems, including both vertebrates and invertebrates, such as zebrafish, C. elegans, Drosophila, and Galleria mellonella, that have been productively employed in virulence studies with other fungal species. This review will discuss progress in developing appropriate animal models, outline current challenges, and highlight opportunities in demystifying this curious species.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA.
| |
Collapse
|
4
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
6
|
Turillazzi S, Meriggi N, Cavalieri D. Mutualistic Relationships between Microorganisms and Eusocial Wasps (Hymenoptera, Vespidae). Microorganisms 2023; 11:1340. [PMID: 37317314 DOI: 10.3390/microorganisms11051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Eusocial wasps are represented in the Vespidae by the subfamilies Stenogastrinae, Vespinae and Polistinae. These wasps present colonies that are sometimes composed of thousands of individuals which live in nests built with paper materials. The high density of the adult and larval population, as well as the stable micro environment of the nests, make very favourable conditions for the flourishing of various types of microorganisms. These microorganisms, which may be pathogens, are beneficial and certainly contribute to model the sociality of these insects. The mutualistic relationships that we observe in some species, especially in Actinomycete bacteria and yeasts, could have important fallouts for the development of new medicines and for the use of these insects in agricultural environments.
Collapse
Affiliation(s)
- Stefano Turillazzi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Insect Pharma Entomotherapy s.r.l., Via M. del Piano 6, 50019 Firenze, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
- Joint Laboratory LABREMMA, University of Firenze, Via M. del Piano 6, 50019 Firenze, Italy
| |
Collapse
|
7
|
Xu R, Lou Y, Tidu A, Bulet P, Heinekamp T, Martin F, Brakhage A, Li Z, Liégeois S, Ferrandon D. The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins. EMBO Rep 2023; 24:e56036. [PMID: 36322050 PMCID: PMC9827548 DOI: 10.15252/embr.202256036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022] Open
Abstract
Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.
Collapse
Affiliation(s)
- Rui Xu
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Yanyan Lou
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Antonin Tidu
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209CNRS UMR 5309GrenobleFrance
- Platform BioPark ArchampsArchampsFrance
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
| | - Franck Martin
- Université de StrasbourgStrasbourgFrance
- Architecture et Réactivité de l'ARNUPR 9002 du CNRSStrasbourgFrance
| | - Axel Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans Knöll Institute (Leibniz‐HKI)JenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Zi Li
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Samuel Liégeois
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| | - Dominique Ferrandon
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
- Université de StrasbourgStrasbourgFrance
- Modèles Insectes de l'Immunité InnéeUPR 9022 du CNRSStrasbourgFrance
| |
Collapse
|
8
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Duneau D, Ferdy JB. Pathogen within-host dynamics and disease outcome: what can we learn from insect studies? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100925. [PMID: 35489681 DOI: 10.1016/j.cois.2022.100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Parasite proliferations within/on the host form the basis of the outcome of all infectious diseases. However, within-host dynamics are difficult to study in vertebrates, as it requires regularly following pathogen proliferation from the start of the infection and at the organismal level. Invertebrate models allow for this monitoring under controlled conditions using population approaches. These approaches offer the possibility to describe many parameters of the within-host dynamics, such as rate of proliferation, probability to control the infection, and average time at which the pathogen is controlled. New parameters such as the Pathogen Load Upon Death and the Set-Point Pathogen Load have emerged to characterize within-host dynamics and better understand disease outcome. While contextualizing the potential of studying within-host dynamics in insects to build fundamental knowledge, we review what we know about within-host dynamics using insect models, and what it can offer to our knowledge of infectious diseases.
Collapse
Affiliation(s)
- David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780 Oeiras, Portugal.
| | - Jean-Baptiste Ferdy
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.
| |
Collapse
|
10
|
Csonka K, Tasi Z, Vedelek V, Vágvölgyi C, Sinka R, Gácser A. Deciphering of Candida parapsilosis induced immune response in Drosophila melanogaster. Virulence 2021; 12:2571-2582. [PMID: 34569900 PMCID: PMC8477938 DOI: 10.1080/21505594.2021.1980989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Candida infections are the most prevalent cause of serious human mycoses and are the third most common pathogens isolated from bloodstream infections in hospitalized patients. C. parapsilosis is a member of the non-albicans spp., which have a predilection for causing life-threatening disease in neonates and hospitalized pediatric patients. In this study, we utilized a Drosophila melanogaster infection model to analyze the immunological responses to C. parapsilosis. Our results demonstrate that the Toll pathway in Drosophila controls C. parapsilosis proliferation as the Toll signaling mutant MyD88-/- flies are highly susceptible to C. parapsilosis. We also confirmed that the MyD88-/- fly is a convenient invertebrate animal model to analyze virulence properties of different species and strains from the C. parapsilosis sensu lato complex as C. orthopsilosis, C. metapsilosis proved to be less virulent than C. parapsilosis sensu stricto and the N-mannan deficient C. parapsilosis och1Δ/Δ strain showed attenuated pathogenicity in this immunodeficient Drosophila background. We also found that Persephone protease is not required for detection and activation of Toll pathway during C. parapsilosis infection. Furthermore, we observed that Drosophila β-glucan receptor deficient flies where more sensitive to C. parapsilosis compared to wild-type flies; however, we could not find a clear dependence on the recognition of this receptor and the cell wall β-glucan exposure-induced host response. These studies establish this D. melanogaster infection model as an efficient tool in deciphering immune responses to C. parapsilosis as well as for assessing virulence factors produced by this emerging fungal predator.
Collapse
Affiliation(s)
- Katalin Csonka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Tasi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Lyons N, Softley I, Balfour A, Williamson C, O'Brien HE, Shetty AC, Bruno VM, Diezmann S. Tobacco Hornworm ( Manduca sexta) caterpillars as a novel host model for the study of fungal virulence and drug efficacy. Virulence 2021; 11:1075-1089. [PMID: 32842847 PMCID: PMC7549948 DOI: 10.1080/21505594.2020.1806665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The two leading yeast pathogens of humans, Candida albicans and Cryptococcus neoformans, cause systemic infections in >1.4 million patients worldwide with mortality rates approaching 75%. It is thus imperative to study fungal virulence mechanisms, efficacy of antifungal drugs, and host response pathways. While this is commonly done in mammalian models, which are afflicted by ethical and practical concerns, invertebrate models, such as wax moth larvae and nematodes have been introduced over the last two decades. To complement existing invertebrate host models, we developed fifth instar caterpillars of the Tobacco Hornworm moth Manduca sexta as a novel host model. These caterpillars can be maintained at 37°C, are suitable for injections with defined amounts of yeast cells, and are susceptible to the most threatening yeast pathogens, including C. albicans, C. neoformans, C. auris, and C. glabrata. Importantly, fungal burden can be assessed daily throughout the course of infection in a single caterpillar’s feces and hemolymph. Infected caterpillars can be rescued by treatment with antifungal drugs. Notably, these animals are large enough for weight to provide a reliable and reproducible measure of fungal disease and to facilitate host tissue-specific expression analyses. M. sexta caterpillars combine a suite of parameters that make them suitable for the study of fungal virulence.
Collapse
Affiliation(s)
- Naomi Lyons
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University , Tel Aviv, Israel.,Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Isabel Softley
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Andrew Balfour
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University , Cardiff, UK
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath , Bath, UK.,School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| |
Collapse
|
12
|
Transmission of the wMel Wolbachia strain is modulated by its titre and by immune genes in Drosophila melanogaster (Wolbachia density and transmission). J Invertebr Pathol 2021; 181:107591. [PMID: 33882275 DOI: 10.1016/j.jip.2021.107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
Wolbachia are common intracellular endosymbionts of arthropods, but the interactions between Wolbachia and arthropods are only partially understood. The fruit fly Drosophila melanogaster is a model insect for understanding Wolbachia-host interactions. Here the native wMel strain of D. melanogaster was isolated and then different initial titres of wMel were artificially transferred back into antibiotics-treated fruit flies. Our purpose was to examine the interactions between the injected wMel in a density gradient and the recipient host during trans-generational transmission. The results showed that the trans-generational transmission rates of wMel and titres of wMel exhibited a fluctuating trend over nine generations, and the titres of wMel displayed a similar fluctuating trans-generational trend. There was a significant positive correlation between the transmission rate and the titre of wMel. Reciprocal crossings between wMel-transinfected and uninfected fruit flies revealed that wMel could induce cytoplasmic incompatibility (CI) at different initial titres, but the intensity of CI was not significantly correlated with the initial titre of wMel. Quantitative PCR analysis showed that the immune genes Drsl5 and Spn38F displayed a significant transcriptional response to wMel transfection, with an obvious negative correlation with the titre of wMel at the 3rd and 4th generations. Furthermore, RNA interference-mediated knockdown of Drsl5 and Spn38F elicited a drastic increase in the titre of wMel. In combination, our study suggests that the trans-generational transmission of wMel is modulated by its density, and the immune genes are involved in the regulation of Wolbachia density.
Collapse
|
13
|
Huang C, Xu R, Liégeois S, Chen D, Li Z, Ferrandon D. Differential Requirements for Mediator Complex Subunits in Drosophila melanogaster Host Defense Against Fungal and Bacterial Pathogens. Front Immunol 2021; 11:478958. [PMID: 33746938 PMCID: PMC7977287 DOI: 10.3389/fimmu.2020.478958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The humoral immune response to bacterial or fungal infections in Drosophila relies largely on a transcriptional response mediated by the Toll and Immune deficiency NF-κB pathways. Antimicrobial peptides are potent effectors of these pathways and allow the organism to attack invading pathogens. Dorsal-related Immune Factor (DIF), a transcription factor regulated by the Toll pathway, is required in the host defense against fungal and some Gram-positive bacterial infections. The Mediator complex is involved in the initiation of transcription of most RNA polymerase B (PolB)-dependent genes by forming a functional bridge between transcription factors bound to enhancer regions and the gene promoter region and then recruiting the PolB pre-initiation complex. Mediator is formed by several modules that each comprises several subunits. The Med17 subunit of the head module of Mediator has been shown to be required for the expression of Drosomycin, which encodes a potent antifungal peptide, by binding to DIF. Thus, Mediator is expected to mediate the host defense against pathogens controlled by the Toll pathway-dependent innate immune response. Here, we first focus on the Med31 subunit of the middle module of Mediator and find that it is required in host defense against Aspergillus fumigatus, Enterococcus faecalis, and injected but not topically-applied Metarhizium robertsii. Thus, host defense against M. robertsii requires Dif but not necessarily Med31 in the two distinct infection models. The induction of some Toll-pathway-dependent genes is decreased after a challenge of Med31 RNAi-silenced flies with either A. fumigatus or E. faecalis, while these flies exhibit normal phagocytosis and melanization. We have further tested most Mediator subunits using RNAi by monitoring their survival after challenges to several other microbial infections known to be fought off through DIF. We report that the host defense against specific pathogens involves a distinct set of Mediator subunits with only one subunit for C. glabrata or Erwinia carotovora carotovora, at least one for M. robertsii or a somewhat extended repertoire for A. fumigatus (at least eight subunits) and E. faecalis (eight subunits), with two subunits, Med6 and Med11 being required only against A. fumigatus. Med31 but not Med17 is required in fighting off injected M. robertsii conidia. Thus, the involvement of Mediator in Drosophila innate immunity is more complex than expected.
Collapse
Affiliation(s)
- Chuqin Huang
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Di Chen
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
14
|
Pam D, Etuh AM, Oyeniran OI, Mdekere IW. Toxicity of Mangifera Indica aqueous stem bark extract evaluated in drosophila melanogaster used as model organism. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:539-546. [PMID: 33675736 DOI: 10.1016/j.pharma.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mangifera indica has been used for treating health complications with little data on its toxicological impact on survival, geotaxis, reproduction, and the antioxidant system. METHODS Total phenol and flavonoid contents were estimated. The ingestion method of exposure (extract was mixed in flies' food) was used. Each concentration was administered per 10g fruit flies diet. 7-day LC50 was determined by exposing 50 flies for 7 days to Mangifera indica concentration ranging from 100mg extract/10g diet to 2000mg extract/10g diet. 28 days survival assay was performed by exposing 50 fruit flies each to 25mg extract/10g diet, 50mg extract/10 diet g, and 100mg extract/10g diet for 28 days. A 6-day short term exposure was also conducted to assess Mangifera indica toxic effect on climbing activity, survival, reproduction, and antioxidant system in Drosophila melanogaster. RESULTS Total phenol and flavonoid content were 0.226±0.02 and 0.027±0.05mg/g dry weight of the extract, respectively. There was a significant mortality rate (P<0.05), and the 7-day LC50 was 353mg extract/10g diet. At 25mg extract/10g diet 50mg extract/10g diet and 100mg extract/10g diet, the survival-rate of fruit flies significantly dropped (P<0.05) with arise in Mangifera indica concentration. Short-term exposure also showed a significant reduction (P<0.05) in GST-activity, survival-rate, and emergence of young fruit flies with an increase in concentration. Total thiol, locomotor, AChE, and CAT activities decreased non-significantly (P>0.05). CONCLUSION The significant adverse effect of Mangifera indica extract as seen in the decrease in survival rate, the emergence of young flies, climbing, and antioxidant activities of fruit flies suggests its cautious application and use in herbal medicine.
Collapse
Affiliation(s)
- D Pam
- Department of Zoology (Applied Entomology and Parasitology Unit), University of Jos, Jos, Nigeria.
| | - A M Etuh
- Department of Zoology (Applied Entomology and Parasitology Unit), University of Jos, Jos, Nigeria
| | - O I Oyeniran
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - I W Mdekere
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| |
Collapse
|
15
|
Rosiana S, Zhang L, Kim GH, Revtovich AV, Uthayakumar D, Sukumaran A, Geddes-McAlister J, Kirienko NV, Shapiro RS. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans. Genetics 2021; 217:iyab003. [PMID: 33724419 PMCID: PMC8045720 DOI: 10.1093/genetics/iyab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.
Collapse
Affiliation(s)
- Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
16
|
Almaliki HS, Angela A, Goraya NJ, Yin G, Bennett JW. Volatile Organic Compounds Produced by Human Pathogenic Fungi Are Toxic to Drosophila melanogaster. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:629510. [PMID: 37743879 PMCID: PMC10512272 DOI: 10.3389/ffunb.2020.629510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 09/26/2023]
Abstract
Volatile organic compounds (VOCs) are low molecular mass organic compounds that easily evaporate at room temperature. Fungi produce diverse mixtures of VOCs, some of which may contribute to "sick building syndrome," and which have been shown to be toxigenic in a variety of laboratory bioassays. We hypothesized that VOCs from medically important fungi might be similarly toxigenic and tested strains of Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Cryptococcus gattii, and Saccharomyces cerevisiae in a Drosophila melanogaster eclosion bioassay. Fungi were grown in a shared microhabitat with third instar larvae of D. melanogaster such that there was no physical contact between flies and fungi. As the flies went through metamorphosis, the numbers of larvae, pupae, and adults were counted daily for 15 days. After 8 days, ~80% of controls had eclosed into adults and after 15 days the controls yielded 96-97% eclosion. In contrast, eclosion rates at 8 days were below 70% for flies exposed to VOCs from six different A. fumigatus strains; the eclosion rate at 15 days was only 58% for flies exposed to VOCs from A. fumigatus strain SRRC 1607. When flies were grown in a shared atmosphere with VOCs from S. cerevisiae, after 15 days, 82% of flies had eclosed into adults. Exposure to the VOCs from the medically important yeasts Candida albicans, Cryptococcus neoformans, and Cryptococcus gattii caused significant delays in metamorphosis with eclosion rates of 58% for Candida albicans, 44% for Cryptococcus neoformans, and 56% for Cryptococcus gattii. Using gas chromatography-mass spectrometry, the VOCs from the most toxic and least toxic strains of A. fumigatus were assayed. The two most common VOCs produced by both strains were 1-octen-3-ol and isopentyl alcohol; however, these compounds were produced in 10-fold higher concentrations by the more toxic strain. Our research demonstrates that gas phase compounds emitted by fungal pathogens may have been overlooked as contributing to the pathogenicity of medically important fungi and therefore deserve more scrutiny by the medical mycology research community.
Collapse
Affiliation(s)
- Hadeel S. Almaliki
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Technical Institute of Samawa, Al-Furat Al-Awsat Technical University, Samawa, Iraq
| | - Astrid Angela
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Nayab J. Goraya
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Guohua Yin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Joan W. Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
17
|
Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence 2020; 11:238-246. [PMID: 32079502 PMCID: PMC7051127 DOI: 10.1080/21505594.2020.1731137] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Insects are a highly successful group of animals that inhabit almost every habitat and environment on Earth. Part of their success is due to a rapid and highly effective immune response that identifies, inactivates, and eliminates pathogens. Insects possess an immune system that shows many similarities to the innate immune system of vertebrates, but they do not possess an equivalent system to the antibody-mediated adaptive immune response of vertebrates. However, some insect do display a process known as immune priming in which prior exposure to a sublethal dose of a pathogen, or pathogen-derived material, leads to an elevation in the immune response rendering the insect resistant to a subsequent lethal infection a short time later. This process is mediated by an increase in the density of circulating hemocytes and increased production of antimicrobial peptides. Immune priming is an important survival strategy for certain insects while other insects that do not show this response may have colony-level behaviors that may serve to limit the success of pathogens. Insects are now widely used as in vivo models for studying microbial pathogens of humans and for assessing the in vivo efficacy of antimicrobial agents. Knowledge of the process of immune priming in insects is essential in these applications as it may operate and augment the perceived in vivo antimicrobial activity of novel compounds.Abbreviations: 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate; SBC3: antimicrobial peptides; AMPs: dorsal-related immunity factor; DIF: Down syndrome cell adhesion molecule; Dscam: Lipopolysaccharide; LPS: Pathogen-associated molecular patterns; PAMPS: Patterns recognition receptors; PRR: Prophenoloxidase; PO: Toll-like receptors; TLRs: Toll/IL-1R; TIR, Transgenerational Immune Priming; TgIP: Tumor necrosis factor-α; TNF-α.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gemma Farrell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
18
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
19
|
Meriggi N, Di Paola M, Cavalieri D, Stefanini I. Saccharomyces cerevisiae - Insects Association: Impacts, Biogeography, and Extent. Front Microbiol 2020; 11:1629. [PMID: 32760380 PMCID: PMC7372139 DOI: 10.3389/fmicb.2020.01629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last few years, an increasing number of studies have reported the existence of an association between the budding yeast Saccharomyces cerevisiae and insects. The discovery of this relationship has called into question the hypothesis that S. cerevisiae is unable to survive in nature and that the presence of S. cerevisiae strains in natural specimens is the result of contamination from human-related environments. S. cerevisiae cells benefit from this association as they find in the insect intestine a shelter, but also a place where they can reproduce themselves through mating, the latter being an event otherwise rarely observed in natural environments. On the other hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as nutriment to properly develop, to localize suitable food, and to enhance their immune system. Despite the relevance of this relationship on both yeast and insect ecology, we are still far from completely appreciating its extent and effects. It has been shown that other yeasts are able to colonize only one or a few insect species. Is it the same for S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this association geographically or topographically limited in areas characterized by specific physical features? With this review, we recapitulate the nature of the S. cerevisiae-insect association, disclose its extent in terms of geographical distribution and species involved, and present YeastFinder, a cured online database providing a collection of information on this topic.
Collapse
Affiliation(s)
| | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | | | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Ramírez-Camejo LA, Bayman P. Gene expression on the fly: A transcriptome-level view of Drosophila's immune response to the opportunistic fungal pathogen Aspergillus flavus. INFECTION GENETICS AND EVOLUTION 2020; 82:104308. [PMID: 32240802 DOI: 10.1016/j.meegid.2020.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Aspergilloses are opportunistic infections in animals and humans caused by several Aspergillus species, including Aspergillus flavus. Although the immune system of Drosophila melanogaster is extensively studied, little is known about the fly's specific responses to infection by A. flavus. We compared gene expression levels during induced infections in D. melanogaster by a virulent A. flavus isolate and a less virulent isolate, as well as from uninfected flies as a control. We found that 1081 of the 14,554 gene regions detected were significantly differentially expressed among treatments. Some of these up- and down- regulated genes were previously shown to be involved in defense responses against pathogens. Some are known to be involved in vitelline membrane formation in flies. Other up- and down-regulated genes are of unknown function. Understanding expression of these genes during the process of infection in flies should improve our knowledge of innate immunity in invertebrates, and by extension, in vertebrates as well.
Collapse
Affiliation(s)
- Luis A Ramírez-Camejo
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, IN 47901, USA; Department of Biology, University of Puerto Rico - Río Piedras, San Juan, PR, USA; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton, Panama, Panama.
| | - Paul Bayman
- Department of Biology, University of Puerto Rico - Río Piedras, San Juan, PR, USA
| |
Collapse
|
21
|
Li R, Huang Y, Zhang Q, Zhou H, Jin P, Ma F. The miR-317 functions as a negative regulator of Toll immune response and influences Drosophila survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:19-27. [PMID: 30708026 DOI: 10.1016/j.dci.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The miR-317 has been revealed to involve in the reproductive response and the larval ovary morphogenesis of Drosophila. However, whether the miR-317 can also regulate Drosophila innate immune responses, which remains unclear to date. Here we have verified that miR-317 can directly target the 3'UTR of Dif-Rc to down-regulate the expression levels of AMP Drs to negatively control Drosophila Toll immune response in vivo and vitro. Specially, the Dif is an important transcription factor of Toll pathway with four transcripts (Dif-Ra, Dif-Rb, Dif-Rc and Dif-Rd). Our results show that miR-317 only targets to Dif-Rc, but not Dif-Ra/b/d, implying that miRNAs can regulate different isoforms of an alternative splicing gene to fine tune immune responses and maintain homeostasis in post-transcriptional level. Furthermore, we have demonstrated that the miR-317 sponge can restore the expression levels of Drs and Dif-Rc at mRNA and protein levels. Remarkably, during Gram-positive bacterial infection, the overexpressed miR-317 flies have poor survival outcome, whereas the knockout miR-317 flies have favorable survival compared to the control group, respectively, suggesting that the miR-317 might play a key role in Drosophila survival. Taken together, our current works not only reveal an innate immune function and a novel regulation pattern of miR-317, but also provide a new insight into the underlying molecular mechanisms of immunity disorder influencing on Drosophila survival.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Qi Zhang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
22
|
Troha K, Buchon N. Methods for the study of innate immunity in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e344. [PMID: 30993906 DOI: 10.1002/wdev.344] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
From flies to humans, many components of the innate immune system have been conserved during metazoan evolution. This foundational observation has allowed us to develop Drosophila melanogaster, the fruit fly, into a powerful model to study innate immunity in animals. Thanks to an ever-growing arsenal of genetic tools, an easily manipulated genome, and its winning disposition, Drosophila is now employed to study not only basic molecular mechanisms of pathogen recognition and immune signaling, but also the nature of physiological responses activated in the host by microbial challenge and how dysregulation of these processes contributes to disease. Here, we present a collection of methods and protocols to challenge the fly with an assortment of microbes, both systemically and orally, and assess its humoral, cellular, and epithelial response to infection. Our review covers techniques for measuring the reaction to microbial infection both qualitatively and quantitatively. Specifically, we describe survival, bacterial load, BLUD (a measure of disease tolerance), phagocytosis, melanization, clotting, and ROS production assays, as well as efficient protocols to collect hemolymph and measure immune gene expression. We also offer an updated catalog of online resources and a collection of popular reporter lines and mutants to facilitate research efforts. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Katia Troha
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| |
Collapse
|
23
|
Ng CT, Yu LE, Ong CN, Bay BH, Baeg GH. The use of Drosophila melanogaster as a model organism to study immune-nanotoxicity. Nanotoxicology 2018; 13:429-446. [DOI: 10.1080/17435390.2018.1546413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Teng Ng
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Liya E Yu
- Department of Civil and Environmental, National University of Singapore, Singapore, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Kounatidis I, Ames L, Mistry R, Ho HL, Haynes K, Ligoxygakis P. A Host-Pathogen Interaction Screen Identifies ada2 as a Mediator of Candida glabrata Defenses Against Reactive Oxygen Species. G3 (BETHESDA, MD.) 2018; 8:1637-1647. [PMID: 29535147 PMCID: PMC5940155 DOI: 10.1534/g3.118.200182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 11/20/2022]
Abstract
Candida glabrata (C. glabrata) forms part of the normal human gut microbiota but can cause life-threatening invasive infections in immune-compromised individuals. C. glabrata displays high resistance to common azole antifungals, which necessitates new treatments. In this investigation, we identified five C. glabrata deletion mutants (∆ada2, ∆bas1, ∆hir3, ∆ino2 and ∆met31) from a library of 196 transcription factor mutants that were unable to grow and activate an immune response in Drosophila larvae. This highlighted the importance of these transcription factors in C. glabrata infectivity. Further ex vivo investigation into these mutants revealed the requirement of C. glabrata ADA2 for oxidative stress tolerance. We confirmed this observation in vivo whereby growth of the C. glabrata Δada2 strain was permitted only in flies with suppressed production of reactive oxygen species (ROS). Conversely, overexpression of ADA2 promoted C. glabrata replication in infected wild type larvae resulting in larval killing. We propose that ADA2 orchestrates the response of C. glabrata against ROS-mediated immune defenses during infection. With the need to find alternative antifungal treatment for C. glabrata infections, genes required for survival in the host environment, such as ADA2, provide promising potential targets.
Collapse
Affiliation(s)
- Ilias Kounatidis
- Cell Biology, Development and Genetics Laboratory, Department of Biochemistry, University of Oxford, OX1 3QU UK
| | - Lauren Ames
- Exeter Biosciences, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK
| | - Rupal Mistry
- Cell Biology, Development and Genetics Laboratory, Department of Biochemistry, University of Oxford, OX1 3QU UK
| | - Hsueh-Lui Ho
- Exeter Biosciences, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK
| | - Ken Haynes
- Exeter Biosciences, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK
| | - Petros Ligoxygakis
- Cell Biology, Development and Genetics Laboratory, Department of Biochemistry, University of Oxford, OX1 3QU UK
| |
Collapse
|
25
|
Scorzoni L, de Paula E Silva ACA, de Oliveira HC, Marcos CM, Singulani JDL, Fusco-Almeida AM, Mendes-Giannini MJS. Can passage in Galleria mellonella activate virulence factors of Paracoccidioides brasiliensis as in the murine model? Med Mycol 2018. [PMID: 28637229 DOI: 10.1093/mmy/myx045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a fungal disease restricted to Latin countries, and its etiologic agents derive from the Paracoccidioides genus. Attenuation or loss of virulence in Paracoccidioides spp. following successive subculturing has been described. However, virulence can be recovered by passage in mammalian host. In this study, the recovery of adhesion of P. brasiliensis through passage in mice was compared to that in the insect Galleria mellonella. Analysis of in vitro fungal-host cell interaction, gene expression of adhesins, and analysis of the survival curves revealed that Galleria mellonella is useful for the reactivation of P. brasiliensis adhesion.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Ana Carolina Alves de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Caroline Maria Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Junya de Lacorte Singulani
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Brasil
| |
Collapse
|
26
|
Stefanini I. Yeast-insect associations: It takes guts. Yeast 2018; 35:315-330. [PMID: 29363168 PMCID: PMC5947625 DOI: 10.1002/yea.3309] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/02/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Insects interact with microorganisms in several situations, ranging from the accidental interaction to locate attractive food or the acquisition of essential nutrients missing in the main food source. Despite a wealth of studies recently focused on bacteria, the interactions between insects and yeasts have relevant implications for both of the parties involved. The insect intestine shows several structural and physiological differences among species, but it is generally a hostile environment for many microorganisms, selecting against the most sensitive and at the same time guaranteeing a less competitive environment to resistant ones. An intensive characterization of the interactions between yeasts and insects has highlighted their relevance not only for attraction to food but also for the insect's development and behaviour. Conversely, some yeasts have been shown to benefit from interactions with insects, in some cases by being carried among different environments. In addition, the insect intestine may provide a place to reside for prolonged periods and possibly mate or generate sexual forms able to mate once back in the external environments. YEA-May-17-0084.R3.
Collapse
Affiliation(s)
- Irene Stefanini
- Division of Biomedical SciencesUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
27
|
Segal E, Frenkel M. Experimental in Vivo Models of Candidiasis. J Fungi (Basel) 2018; 4:E21. [PMID: 29415485 PMCID: PMC5872324 DOI: 10.3390/jof4010021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 11/16/2022] Open
Abstract
Candidiasis is a multifaceted fungal disease including mucosal-cutaneous, visceral, and disseminated infections caused by yeast species of the genus Candida. Candida infections are among the most common human mycoses. Candida species are the third to fourth most common isolates from bloodstream infections in neutropenic or immunocompromised hospitalized patients. The mucosal-cutaneous forms-particularly vaginal infections-have a high prevalence. Vaginitis caused by Candida species is the second most common vaginal infection. Hence, candidiasis is a major subject for research, including experimental in vivo models to study pathogenesis, prevention, or therapy of the disease. The following review article will focus on various experimental in vivo models in different laboratory animals, such as mammals (mice, rats, rabbits), the fruit fly-Drosophila melanogaster, the larvae of the moth Galleria mellonella, or the free-living nematode Caenorhabditis elegans. The review will describe the induction of the different clinical forms of candidiasis in the various models and the validity of such models in mimicking the human clinical situations. The use of such models for the assessment of antifungal drugs, evaluation of potential vaccines to protect before candidiasis, exploration of Candida virulence factors, and comparison of pathogenicity of different Candida species will be included in the review. All of the above will be reported as based on published studies of numerous investigators as well as on the research of the author and his group.
Collapse
Affiliation(s)
- Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Michael Frenkel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
28
|
Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens? Int J Microbiol 2017; 2017:8526385. [PMID: 29234354 PMCID: PMC5694983 DOI: 10.1155/2017/8526385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/30/2017] [Accepted: 09/24/2017] [Indexed: 12/01/2022] Open
Abstract
Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.
Collapse
|
29
|
Gu W, Yu Q, Yu C, Sun S. In vivo activity of fluconazole/tetracycline combinations in Galleria mellonella with resistant Candida albicans infection. J Glob Antimicrob Resist 2017; 13:74-80. [PMID: 29191612 DOI: 10.1016/j.jgar.2017.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Treatment of azole-resistant Candida albicans infections continues to pose significant challenges. With limited options of licensed agents, drug combinations may be a practical treatment alternative. In our previous studies, the combinations minocycline/fluconazole (MINO/FLC) and doxycycline/fluconazole (DOXY/FLC) shown synergistic effects in vitro. It is necessary to explore their appropriate dosage, potential toxicity and in vivo efficacy. METHODS The Galleria mellonella infection model was employed to study the in vivo efficacy of MINO/FLC and DOXY/FLC by survival analysis, quantification of C. albicans fungal burden and histological studies. RESULTS The survival rates of G. mellonella larvae infected with lethal doses of resistant C. albicans CA10 increased significantly when treated with the drug combinations compared with FLC treatment alone, and the fungal burden was reduced by almost four-fold. The histopathological study showed that fewer infected areas in larvae were observed and the destructive degree was less when larvae were exposed to the drug combinations. CONCLUSIONS These findings suggest that combination of a tetracycline antibiotic (MINO or DOXY) with FLC has antifungal activity against azole-resistant C. albicans in vivo. This is in agreement with several previous in vitro studies and provides preliminary in vivo evidence that such a combination might be useful therapeutically.
Collapse
Affiliation(s)
- Wenrui Gu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China; Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qiong Yu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
30
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
31
|
Wang S, Zhu Y, Li X, Wang Q, Li J, Li W. Fatty acid binding protein regulate antimicrobial function via Toll signaling in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2017; 63:9-17. [PMID: 28131672 DOI: 10.1016/j.fsi.2017.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Fatty acid binding proteins (FABPs) are members of the lipid binding protein superfamily and play crucial role in fatty acid transport and lipid metabolism. In macrophages, Adipocyte-type FABP is an important mediator of inflammation. However, the immune functions of FABPs in invertebrates are not well understood; here, we obtained the gene structure of Eriocheir sinensis FABP 3 and FABP 9 (EsFABP 3 and EsFABP 9), and compared with EsFABP 10. The mRNA expression profiles show that all three FABPs were significantly up-regulated in hemocytes after being challenged with bacteria. Of the three, EsFABP 3 was the most stable and also the most highly up-regulated. Further studies showed that knockdown of EsFABP 3 led to higher bacterial counts in the hemocyte culture medium and a significant decrease in the mRNA expression of some antimicrobial peptides following bacterial stimulation. Moreover, a subcellular study demonstrated that EsFABP 3 can affect nuclear translocation of the dorsal after Gram-positive bacterial stimulation in hemocytes. These findings support the notion that EsFABP 3 could inhibit bacterial proliferation by regulating antimicrobial peptides expression via the Toll signaling pathway.
Collapse
Affiliation(s)
- Shichuang Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Youting Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuejie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Jiayao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
32
|
Li Y, Li S, Li R, Xu J, Jin P, Chen L, Ma F. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:34-45. [PMID: 27871832 DOI: 10.1016/j.dci.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Yao Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiao Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
33
|
Weerasinghe H, Payne M, Beard S, Andrianopoulos A. Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei. Future Microbiol 2016; 11:511-26. [PMID: 27073980 DOI: 10.2217/fmb.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Michael Payne
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Sally Beard
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
34
|
de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva ACA, Da Silva JDF, Singulani JDL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015; 6:1319. [PMID: 26635779 PMCID: PMC4658449 DOI: 10.3389/fmicb.2015.01319] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Patrícia A Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Caroline M Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana C A de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany De Fátima Da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Kaila M Alarcon
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
35
|
Chen YZ, Yang YL, Chu WL, You MS, Lo HJ. Zebrafish Egg Infection Model for Studying Candida albicans Adhesion Factors. PLoS One 2015; 10:e0143048. [PMID: 26569623 PMCID: PMC4646526 DOI: 10.1371/journal.pone.0143048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Disseminated candidiasis is associated with 30-40% mortality in severely immunocompromised patients. Among the causal agents, Candida albicans is the dominant one. Various animal models have been developed for investigating gene functions in C. albicans. Zebrafish injection models have increasingly been applied in elucidating C. albicans pathogenesis because of the conserved immunity, prolific fecundity of the zebrafish and the low costs of care systems. In this study, we established a simple, noninvasive zebrafish egg bath infection model, defined its optimal conditions, and evaluated the model with various C. albicans mutant strains. The deletion of SAP6 did not have significant effect on the virulence. By contrast, the deletion of BCR1, CPH1, EFG1, or TEC1 significantly reduced the virulence under current conditions. Furthermore, all embryos survived when co-incubated with bcr1/bcr1, cph1/cph1 efg1/efg1, efg1/efg1, or tec1/tec1 mutant cells. The results indicated that our novel zebrafish model is time-saving and cost effective.
Collapse
Affiliation(s)
- Yin-Zhi Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Li Chu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Ho HL, Haynes K. Candida glabrata: new tools and technologies-expanding the toolkit. FEMS Yeast Res 2015; 15:fov066. [PMID: 26205243 PMCID: PMC4629792 DOI: 10.1093/femsyr/fov066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a noticeable rise in fungal infections related to non-albicans Candida species, including Candida glabrata which has both intrinsic resistance to and commonly acquired resistance to azole antifungals. Phylogenetically, C. glabrata is more closely related to the mostly non-pathogenic model organism Saccharomyces cerevisiae than to other Candida species. Despite C. glabrata's designation as a pathogen by Wickham in 1957, relatively little is known about its mechanism of virulence. Over the past few years, technology to analyse the molecular basis of infection has developed rapidly, and here we briefly review the major advances in tools and technologies available to explore and investigate the virulence of C. glabrata that have occurred over the past decade.
Collapse
Affiliation(s)
- Hsueh-lui Ho
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
37
|
Abstract
Fungi cause the majority of insect disease. However, to date attempts to model host–fungal interactions with Drosophila have focused on opportunistic human pathogens. Here, we performed a screen of 2,613 mutant Drosophila lines to identify host genes affecting susceptibility to the natural insect pathogen Metarhizium anisopliae (Ma549). Overall, 241 (9.22%) mutant lines had altered resistance to Ma549. Life spans ranged from 3.0 to 6.2 days, with females being more susceptible than males in all lines. Speed of kill correlated with within-host growth and onset of sporulation, but total spore production is decoupled from host genotypes. Results showed that mutations affected the ability of Drosophila to restrain rather than tolerate infections and suggested trade-offs between antifungal and antibacterial genes affecting cuticle and gut structural barriers. Approximately, 13% of mutations where in genes previously associated with host pathogen interactions. These encoded fast-acting immune responses including coagulation, phagocytosis, encapsulation and melanization but not the slow-response induction of anti-fungal peptides. The non-immune genes impact a wide variety of biological functions, including behavioral traits. Many have human orthologs already implicated in human disorders; while others were mutations in protein and non-protein coding genes for which disease resistance was the first biological annotation.
Collapse
|
38
|
Xu H, Jenkinson HF, Dongari-Bagtzoglou A. Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol Oral Microbiol 2015; 29:99-116. [PMID: 24877244 PMCID: PMC4238848 DOI: 10.1111/omi.12049] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans and streptococci of the mitis group colonize the oral cavities of the majority of healthy humans. While C. albicans is considered an opportunistic pathogen, streptococci of this group are broadly considered avirulent or even beneficial organisms. However, recent evidence suggests that multi-species biofilms with these organisms may play detrimental roles in host homeostasis and may promote infection. In this review we summarize the literature on molecular interactions between members of this streptococcal group and C. albicans, with emphasis on their potential role in the pathogenesis of opportunistic oral mucosal infections.
Collapse
|
39
|
Balasubramani SP, Mohan J, Chatterjee A, Patnaik E, Kukkupuni SK, Nongthomba U, Venkatasubramanian P. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study. Front Public Health 2014; 2:245. [PMID: 25566518 PMCID: PMC4267107 DOI: 10.3389/fpubh.2014.00245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings.
Collapse
Affiliation(s)
| | - Jayaram Mohan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Arunita Chatterjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Esha Patnaik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Subrahmanya Kumar Kukkupuni
- Foundation for Revitalisation of Local Health Traditions (FRLHT) , Bangalore , India ; Manipal University , Manipal , India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | |
Collapse
|
40
|
Harwood CG, Rao RP. Host pathogen relations: exploring animal models for fungal pathogens. Pathogens 2014; 3:549-62. [PMID: 25438011 PMCID: PMC4243428 DOI: 10.3390/pathogens3030549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023] Open
Abstract
Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.
Collapse
Affiliation(s)
- Catherine G Harwood
- Biology and Biotechnology Department, Worcester Polytechnic University, Worcester, MA 01605, USA.
| | - Reeta P Rao
- Biology and Biotechnology Department, Worcester Polytechnic University, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136130. [PMID: 24757665 PMCID: PMC3976935 DOI: 10.1155/2014/136130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.
Collapse
|
42
|
Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat Commun 2014; 5:3458. [PMID: 24632597 PMCID: PMC3959197 DOI: 10.1038/ncomms4458] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/17/2014] [Indexed: 12/15/2022] Open
Abstract
Innate immunity mediated by Toll signalling has been extensively studied, but how Toll signalling is precisely controlled in balancing innate immune responses remains poorly understood. It was reported that the plasma membrane localization of Drosophila MyD88 is necessary for the recruitment of cytosolic adaptor Tube to the cell surface, thus contributing to Toll signalling transduction. Here we demonstrate that Drosophila Pellino functions as a negative regulator in Toll-mediated signalling. We show that Pellino accumulates at the plasma membrane upon the activation of Toll signalling in a MyD88-dependent manner. Moreover, we find that Pellino is associated with MyD88 via its CTE domain, which is necessary and sufficient to promote Pellino accumulation at the plasma membrane where it targets MyD88 for ubiquitination and degradation. Collectively, our study uncovers a mechanism by which a feedback regulatory loop involving MyD88 and Pellino controls Toll-mediated signalling, thereby maintaining homeostasis of host innate immunity. Toll signalling activates the innate immune response; however, it remains unclear how this pathway is suppressed to avoid excessive inflammatory responses. Here, the authors report that Pellino, a RING domain-containing ubiquitin E3 ligase, is a negative regulator of Toll signalling in Drosophila.
Collapse
|
43
|
Panayidou S, Ioannidou E, Apidianakis Y. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 2014; 5:253-69. [PMID: 24398387 DOI: 10.4161/viru.27524] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.
Collapse
Affiliation(s)
- Stavria Panayidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | - Eleni Ioannidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | | |
Collapse
|
44
|
Ramírez-Camejo LA, Torres-Ocampo AP, Agosto-Rivera JL, Bayman P. An opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in virulence in Drosophila melanogaster. Med Mycol 2014; 52:211-9. [PMID: 24577003 DOI: 10.1093/mmy/myt008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aspergilloses are fungal diseases in humans and animals that is caused by members of the genus Aspergillus. Aspergillus flavus is an important opportunistic pathogen, second only to A. fumigatus as a cause of human aspergillosis. Differences in virulence among A. flavus isolates from clinical and other substrates and mating types are not well known. The fruit fly Drosophila melanogaster has become a model organism for investigating virulence of human pathogens due to similarities between its immune system and that of mammals. In this study we used D. melanogaster as a model host to compare virulence among A. flavus strains obtained from clinical sources as compared with other substrates, between isolates of different mating types, and between isolates of A. flavus and A. fumigatus. Anesthetized flies were infected with A. flavus; mortality ranged from 15% to >90%. All strains were virulent, but some were significantly more so than others, which in turn led to the wide mortality range. Clinical strains were significantly less virulent than environmental strains, probably because the clinical strains were from culture collections and the environmental strains were recent isolates. Mean virulence did not differ between MAT1-1 and MAT1-2 mating types and the phylogeny of A. flavus isolates did not predict virulence. A. flavus was on average significantly more virulent than A. fumigatus on two lines of wild-type flies, Canton-S and Oregon-R. D. melanogaster is an attractive model to test pathogenicity and could be useful for identifying genes involved in virulence.
Collapse
|
45
|
Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 2013; 8:e60047. [PMID: 23555877 PMCID: PMC3610750 DOI: 10.1371/journal.pone.0060047] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/20/2013] [Indexed: 12/28/2022] Open
Abstract
The incidence of opportunistic fungal infections has increased in recent decades due to the growing proportion of immunocompromised patients in our society. Candida krusei has been described as a causative agent of disseminated fungal infections in susceptible patients. Although its prevalence remains low among yeast infections (2-5%), its intrinsic resistance to fluconazole makes this yeast important from epidemiologic aspects. Non mammalian organisms are feasible models to study fungal virulence and drug efficacy. In this work we have used the lepidopteran Galleria mellonella and the nematode Caenorhabditis elegans as models to assess antifungal efficacy during infection by C. krusei. This yeast killed G. mellonella at 25, 30 and 37°C and reduced haemocytic density. Infected larvae melanized in a dose-dependent manner. Fluconazole did not protect against C. krusei infection, in contrast to amphotericin B, voriconazole or caspofungin. However, the doses of these antifungals required to obtain larvae protection were always higher during C. krusei infection than during C. albicans infection. Similar results were found in the model host C. elegans. Our work demonstrates that non mammalian models are useful tools to investigate in vivo antifungal efficacy and virulence of C. krusei.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Maria Pilar de Lucas
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cecilia Mesa-Arango
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Group of Investigative Dermatology, University of Antioquia, Medellín, Colombia
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Encarnación Lozano
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jose Mendes-Giannini
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
- * E-mail: (MJMG); (OZ)
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (MJMG); (OZ)
| |
Collapse
|
46
|
Arvanitis M, Glavis-Bloom J, Mylonakis E. Invertebrate models of fungal infection. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1378-83. [PMID: 23517918 DOI: 10.1016/j.bbadis.2013.03.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
The morbidity, mortality and economic burden associated with fungal infections, together with the emergence of fungal strains resistant to current antimicrobial agents, necessitate broadening our understanding of fungal pathogenesis and discovering new agents to treat these infections. Using invertebrate hosts, especially the nematode Caenorhabditis elegans and the model insects Drosophila melanogaster and Galleria mellonella, could help achieve these goals. The evolutionary conservation of several aspects of the innate immune response between invertebrates and mammals makes the use of these simple hosts an effective and fast screening method for identifying fungal virulence factors and testing potential antifungal compounds. The purpose of this review is to compare several model hosts that have been used in experimental mycology to-date and to describe their different characteristics and contribution to the study of fungal virulence and the detection of compounds with antifungal properties. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Marios Arvanitis
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
47
|
Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D. The Drosophila Toll pathway controls but does not clear Candida glabrata infections. THE JOURNAL OF IMMUNOLOGY 2013; 190:2818-27. [PMID: 23401590 DOI: 10.4049/jimmunol.1201861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenicity of Candida glabrata to patients remains poorly understood for lack of convenient animal models to screen large numbers of mutants for altered virulence. In this study, we explore the minihost model Drosophila melanogaster from the dual perspective of host and pathogen. As in vertebrates, wild-type flies contain C. glabrata systemic infections yet are unable to kill the injected yeasts. As for other fungal infections in Drosophila, the Toll pathway restrains C. glabrata proliferation. Persistent C. glabrata yeasts in wild-type flies do not appear to be able to take shelter in hemocytes from the action of the Toll pathway, the effectors of which remain to be identified. Toll pathway mutant flies succumb to injected C. glabrata. In this immunosuppressed background, cellular defenses provide a residual level of protection. Although both the Gram-negative binding protein 3 pattern recognition receptor and the Persephone protease-dependent detection pathway are required for Toll pathway activation by C. glabrata, only GNBP3, and not psh mutants, are susceptible to the infection. Both Candida albicans and C. glabrata are restrained by the Toll pathway, yet the comparative study of phenoloxidase activation reveals a differential activity of the Toll pathway against these two fungal pathogens. Finally, we establish that the high-osmolarity glycerol pathway and yapsins are required for virulence of C. glabrata in this model. Unexpectedly, yapsins do not appear to be required to counteract the cellular immune response but are needed for the colonization of the wild-type host.
Collapse
Affiliation(s)
- Jessica Quintin
- Unité Propre de Recherche 9022 du Centre National de la Recherche Scientifique, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, F67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
49
|
Edwards S, Kjellerup BV. Exploring the applications of invertebrate host-pathogen models for in vivo biofilm infections. ACTA ACUST UNITED AC 2012; 65:205-14. [PMID: 22533965 DOI: 10.1111/j.1574-695x.2012.00975.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 12/26/2022]
Abstract
In the natural environment, microorganisms exist together in self-produced polymeric matrix biofilms. Often, several species, which can belong to both bacterial and fungal kingdoms, coexist and interact in ways which are not completely understood. Biofilm infections have become prevalent largely in medical settings because of the increasing use of indwelling medical devices such as catheters or prosthetics. These infections are resistant to common antimicrobial therapies because of the inherent nature of their structure. In terms of infectious biofilms, it is important to understand the microbe-microbe interactions and how the host immune system reacts in order to discover therapeutic targets. Currently, single infection immune response studies are thriving with the use of invertebrate models. This review highlights the advances in single microbial-host immune response as well as the promising aspects of polymicrobial biofilm study in five invertebrate models: Lemna minor (duckweed), Arabidopsis thaliana (thale cress), Dictyostelium discoideum (slime mold), Drosophila melanogaster (common fruit fly), and Caenorhabditis elegans (roundworm).
Collapse
Affiliation(s)
- Sarah Edwards
- Department of Biological Sciences, Goucher College, Baltimore, MD 21204, USA
| | | |
Collapse
|
50
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|