1
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
2
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
3
|
Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol 2018; 18:5-18. [PMID: 28920587 PMCID: PMC5816344 DOI: 10.1038/nri.2017.97] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In tumour immunology, complement has traditionally been considered as an adjunctive component that enhances the cytolytic effects of antibody-based immunotherapies, such as rituximab. Remarkably, research in the past decade has uncovered novel molecular mechanisms linking imbalanced complement activation in the tumour microenvironment with inflammation and suppression of antitumour immune responses. These findings have prompted new interest in manipulating the complement system for cancer therapy. This Review summarizes our current understanding of complement-mediated effector functions in the tumour microenvironment, focusing on how complement activation can act as a negative or positive regulator of tumorigenesis. It also offers insight into clinical aspects, including the feasibility of using complement biomarkers for cancer diagnosis and the use of complement inhibitors during cancer treatment.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| | | | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Alberto Mantovani
- Humanitas Clinical and Research Center and Humanitas University, Rozzano-Milan 20089, Italy
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
5
|
Maehara N, Arai S, Mori M, Iwamura Y, Kurokawa J, Kai T, Kusunoki S, Taniguchi K, Ikeda K, Ohara O, Yamamura KI, Miyazaki T. Circulating AIM prevents hepatocellular carcinoma through complement activation. Cell Rep 2014; 9:61-74. [PMID: 25284781 DOI: 10.1016/j.celrep.2014.08.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a widespread fatal disease and the third most common cause of cancer deaths. Here, we show the potent anti-HCC effect of the circulating protein AIM. As in adipocytes, AIM is incorporated into normal hepatocytes, where it interferes with lipid storage. In contrast, AIM accumulates on the HCC cell surface and activates the complement cascade via inactivating multiple regulators of complement activation. This response provokes necrotic cell death specifically in AIM-bound HCC cells. Accordingly, AIM(-/-) mice were highly susceptible to steatosis-associated HCC development, whereas no AIM(+/+) mouse developed the disease despite comparable liver inflammation and fibrosis in response to a long-term high-fat diet. Administration of AIM prevented tumor development in AIM(-/-) mice, and HCC induction by diethylnitrosamine was more prominent in AIM(-/-) than wild-type mice. These findings could be the basis for novel AIM-based therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Natsumi Maehara
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mayumi Mori
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshihiro Iwamura
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jun Kurokawa
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshihiro Kai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Kusunoki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kaori Taniguchi
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Osamu Ohara
- Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ken-Ichi Yamamura
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Agency, Tokyo 113-0033, Japan; Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| |
Collapse
|
6
|
A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer. Blood 2012; 119:6043-51. [PMID: 22442351 DOI: 10.1182/blood-2011-10-383232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer.
Collapse
|
7
|
Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2008; 181:8068-76. [PMID: 19017999 DOI: 10.4049/jimmunol.181.11.8068] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm.
Collapse
Affiliation(s)
- Yuxiang Huang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
8
|
Varela JC, Imai M, Atkinson C, Ohta R, Rapisardo M, Tomlinson S. Modulation of protective T cell immunity by complement inhibitor expression on tumor cells. Cancer Res 2008; 68:6734-42. [PMID: 18701498 PMCID: PMC2681227 DOI: 10.1158/0008-5472.can-08-0502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complement-inhibitory proteins expressed on cancer cells can provide protection from antitumor antibodies and may potentially modulate the induction of an immune response to tumor-associated antigens. In the current study, we investigated the consequences of complement inhibitor down-regulation on the effector and inductive phases of an immune response. Stable small interfering RNA-mediated down-regulation of the complement inhibitor Crry on MB49 murine bladder cancer cells increased their susceptibility to monoclonal antibody and complement in vitro. In a syngeneic model of metastatic cancer, the down-regulation of Crry on i.v.-injected MB49 cells was associated with a significant decrease in tumor burden and an increase in the survival of challenged mice. However, monoclonal antibody therapy had no additional benefit. There was an antitumor IgG response, but the response was not effected by Crry down-regulation on inoculated tumor cells. Down-regulation of Crry on MB49 cells resulted in an enhanced antitumor T-cell response in challenged mice (measured by lymphocyte IFN-gamma secretion), and CD8+ T cell depletion of mice prior to injection of MB49 cells completely abrogated the effect of Crry down-regulation on tumor burden and survival. Deficiency of C3 also abrogated the effect of Crry down-regulation on the survival of MB49-challenged mice, indicating a complement-dependent mechanism. These data indicate that complement inhibitors expressed on a tumor cell can suppress a T cell response and that enhancing complement activation on a tumor cell surface can promote protective T cell immunity.
Collapse
Affiliation(s)
- Juan C Varela
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
9
|
Thurman JM, Ljubanović D, Royer PA, Kraus DM, Molina H, Barry NP, Proctor G, Levi M, Holers VM. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J Clin Invest 2006; 116:357-68. [PMID: 16444293 PMCID: PMC1352158 DOI: 10.1172/jci24521] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 11/29/2005] [Indexed: 12/31/2022] Open
Abstract
Ischemia/reperfusion (I/R) of several organs results in complement activation, but the kidney is unique in that activation after I/R occurs only via the alternative pathway. We hypothesized that selective activation of this pathway after renal I/R could occur either because of a loss of complement inhibition or from increased local synthesis of complement factors. We examined the relationship between renal complement activation after I/R and the levels and localization of intrinsic membrane complement inhibitors. We found that loss of polarity of complement receptor 1-related protein y (Crry) in the tubular epithelium preceded activation of the alternative pathway along the basolateral aspect of the tubular cells. Heterozygous gene-targeted mice that expressed lower amounts of Crry were more sensitive to ischemic injury. Furthermore, inhibition of Crry expressed by proximal tubular epithelial cells in vitro resulted in alternative pathway-mediated injury to the cells. Thus, altered expression of a complement inhibitor within the tubular epithelium appears to be a critical factor permitting activation of the alternative pathway of complement after I/R. Increased C3 mRNA and decreased factor H mRNA were also detected in the outer medulla after I/R, suggesting that altered synthesis of these factors might further contribute to complement activation in this location.
Collapse
MESH Headings
- Animals
- Antigens, Surface
- Complement Activation/physiology
- Complement System Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Complement 3b
- Reperfusion Injury/immunology
- Reperfusion Injury/pathology
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gelderman KA, Lam S, Gorter A. Inhibiting complement regulators in cancer immunotherapy with bispecific mAbs. Expert Opin Biol Ther 2005; 5:1593-601. [PMID: 16318423 DOI: 10.1517/14712598.5.12.1593] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although monoclonal antibody (mAb)-mediated immunotherapy of cancer has been proven to be feasible for clinical use, success rates until now have been disappointing. One reason for this might be the overexpression of membrane-bound complement regulatory proteins (mCRPs) by tumour cells. As complement activation is an important effector mechanism induced by therapeutic mAbs, inhibition of complement activation by tumour cells might reduce therapeutic efficacy by decreasing direct complement-mediated lysis as well as complement-dependent cellular cytotoxicity. Modulation of the function of these mCRPs might be achieved with therapeutic bispecific (bi-)mAbs that target a tumour antigen and simultaneously block a major mCRP. Clinical results will probably increase with such bi-mAbs compared with monovalent antitumour mAbs. In this review the feasibility of this approach is discussed.
Collapse
Affiliation(s)
- Kyra A Gelderman
- Department of Medical Inflammation Research, Lund University, BMC I-11, 221 84 Lund, Sweden.
| | | | | |
Collapse
|