1
|
Tan Y, Chen X, Shen Y, Yang J, Wang B, Wang Y, Zhou W, Han Q, Yao Z, Li H, Liang J. Exploring T H17-mediated inflammation in epidermolytic ichthyosis: Clinical and mechanistic insight. Clin Immunol 2025; 277:110494. [PMID: 40288548 DOI: 10.1016/j.clim.2025.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Epidermolytic ichthyosis (EI) is a genetic skin disorder caused by mutations in the KRT1 and KRT10 genes, leading to severe skin abnormalities and inflammation. Current treatment options are limited, emphasizing the need for pathogenesis-based therapies. This study investigates the role of T helper type 17 (TH17) inflammatory responses in EI and explores the mechanisms underlying these responses. We found that patients from the family carrying both KRT1 and MPO mutations exhibited varying degrees of psoriasis-like manifestations and significant therapeutic responses to anti-IL-17 A treatment. The treatment efficacy was also confirmed in patients with KRT10 mutations. Mechanistically, Single-nucleus RNA sequencing revealed significantly elevated levels of TH-17 related cytokines in epidermis and CCR6+ TH17 cell infiltration in the dermis. Additionally, we observed aberrant activation of the IκBα-JNK-c-Jun signaling pathway, leading to heightened IL-8 expression and exacerbated inflammation. Our findings underscore the critical role of TH17-mediated inflammation in the pathogenesis of EI and suggest potential therapeutic avenues targeting this pathway to improve patient outcomes.
Collapse
Affiliation(s)
- Yidong Tan
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuanyi Chen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihang Shen
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinxiang Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bing Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yumeng Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weinan Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiuyi Han
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Huaguo Li
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jianying Liang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Allergy, Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Tausch S, Villinger C, Alexe G, Urban DJ, Shen M, Jahn D, Vischedyk J, Scheich S, Serve H, Hall MD, Stegmaier K, Oellerich T, Cremer A. Inflammatory signaling pathways play a role in SYK inhibitor resistant AML. Sci Rep 2025; 15:11673. [PMID: 40188268 PMCID: PMC11972322 DOI: 10.1038/s41598-025-96660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Trials have shown promising clinical activity of the selective SYK inhibitor entospletinib in patients with high expressing HOXA9/MEIS1 acute leukemias. As the development of resistance mechanisms is a common problem in the use of targeted drugs, we performed a chemical library screen to identify drug sensitivities in SYK inhibitor resistant AML cells. We identified that SYK inhibitor resistant cells displayed an increased sensitivity to glucocorticoids. Glucocorticoids are potent immunosuppressants which work in part by inhibiting the transcription of cytokine genes. RNA sequencing of entospletinib resistant cells revealed a strong enrichment of inflammatory response and TNFα signaling via NF-κB gene sets in comparison to naive cells. Naive AML cells treated with entospletinib showed a strong downregulation of the same gene sets which were upregulated in the resistant state. Our data suggest that inflammatory signaling pathways play a role in entospletinib resistant AML cells.
Collapse
MESH Headings
- Humans
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Inflammation/metabolism
- NF-kappa B/metabolism
Collapse
Affiliation(s)
- Sarah Tausch
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Christina Villinger
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Gabriela Alexe
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel J Urban
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Dominique Jahn
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Jonas Vischedyk
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Sebastian Scheich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Matthew D Hall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Anjali Cremer
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Guler A, Hamurcu Z, Ulutabanca H, Cınar V, Nurdinov N, Erdem S, Ozpolat B. Flavopiridol Suppresses Cell Proliferation and Migration and Induces Apoptotic Cell Death by Inhibiting Oncogenic FOXM1 Signaling in IDH Wild-Type and IDH-Mutant GBM Cells. Mol Neurobiol 2024; 61:1061-1079. [PMID: 37676393 DOI: 10.1007/s12035-023-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM.
Collapse
Affiliation(s)
- Ahsen Guler
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Halil Ulutabanca
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Neurosurgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Venhar Cınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nursultan Nurdinov
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Faculties of Medicine and Dentistry, Ahmet Yesevi University, Turkestan, Kazakhstan
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Methodist Neil Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Dvorak NM, Domingo ND, Tapia CM, Wadsworth PA, Marosi M, Avchalumov Y, Fongsaran C, Koff L, Di Re J, Sampson CM, Baumgartner TJ, Wang P, Villarreal PP, Solomon OD, Stutz SJ, Aditi, Porter J, Gbedande K, Prideaux B, Green TA, Seeley EH, Samir P, Dineley KT, Vargas G, Zhou J, Cisneros I, Stephens R, Laezza F. TNFR1 signaling converging on FGF14 controls neuronal hyperactivity and sickness behavior in experimental cerebral malaria. J Neuroinflammation 2023; 20:306. [PMID: 38115011 PMCID: PMC10729485 DOI: 10.1186/s12974-023-02992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nadia D Domingo
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paul A Wadsworth
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mate Marosi
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yosef Avchalumov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Leandra Koff
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Catherine M Sampson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Timothy J Baumgartner
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pingyuan Wang
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paula P Villarreal
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Clinical Sciences Program, The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Olivia D Solomon
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sonja J Stutz
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Aditi
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jacob Porter
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA
| | - Brendan Prideaux
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Parimal Samir
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kelley T Dineley
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Gracie Vargas
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Irma Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07301, USA.
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
6
|
Wu J, Peng J, Zhou Y, Zhang R, Wang Z, Hu N, Zhang D, Quan G, Wu Y, Feng J, Shen B, Zhao J, Zhang Y, Yang K, Luo L. Screening and Identification of a Novel Anti-Siglec-15 Human Antibody 3F1 and Relevant Antitumor Activity. Mol Pharmacol 2022; 102:161-171. [PMID: 35764384 DOI: 10.1124/molpharm.121.000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/19/2022] [Indexed: 11/22/2022] Open
Abstract
Sialic acid-binding Ig-like lectin-15 is an important immunosuppressive molecule considered to be a key target in next-generation tumor immunotherapy. In this study, we screened 22 high-affinity antibodies that specifically recognize human Siglec-15 by using a large human phage antibody library, and five representative sequences were selected for further study. The results showed the binding activity of five antibodies to Siglec-15 (EC50 ranged from 0.02368 μg/mL to 0.07949 μg/mL), and in two Siglec-15-overexpressed cell lines, three antibodies had the strongest binding activity, so the two clones were discarded for further study. Subsequently, the affinity of three antibodies were measured by bio-layer interferometry technology (5-9 × 10E-09M). As the reported ligands of Siglec-15, the binding activity of Siglec-15 and sialyl-Tn, cluster of differentiation 44, myelin-associated glycoprotein, and leucine-rich repeat-containing protein 4C can be blocked by three of the antibodies. Among these, 3F1 had a competitive advantage. Then, the antibody 3F1 showed an obvious antibody-dependent cell-mediated cytotoxicity effect (EC50 was 0.85 μg/mL). Further, antibody 3F1 can reverse the inhibitory effect of Siglec-15 on lymphocyte proliferation (especially CD4+T and CD8+T) and cytokine release Interferon-γ. Given the above results, 3F1 was selected as a candidate for the in vivo pharmacodynamics study. In the tumor model of Balb/c Nude mice, 3F1 (10 mg/kg) showed certain antitumor effects [tumor growth inhibition (TGI) was 31.5%], while the combination of 3F1 (5 mg/kg) and Erbitux (5 mg/kg) showed significant antitumor effects (TGI was 48.7%) compared with the PBS group. In conclusion, novel human antibody 3F1 has antitumor activity and is expected to be an innovative candidate drug targeting Siglec-15 for tumor immunotherapy. SIGNIFICANCE STATEMENT: Siglec-15 is considered as an important target in the next generation of tumor immunotherapy. 3F1 is expected to be the most promising potential candidate for targeting Siglec-15 for cancer treatment and could provide a reference for the development of antitumor drugs.
Collapse
Affiliation(s)
- Jiaguo Wu
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Jingyi Peng
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Yangyihua Zhou
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Ran Zhang
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Zhihong Wang
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Naijing Hu
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Dingmu Zhang
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Guiqi Quan
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Yuanyu Wu
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Jiannan Feng
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Beifen Shen
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Jian Zhao
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Yan Zhang
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Kaiming Yang
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| | - Longlong Luo
- Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali, China (J.W., K.Y.); State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China (J.W., J.P., Y.Zho., Z.W., N.H., D.Z., G.Q., Y.W., J.F., B.S., L.L.); Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China (J.P.); Hunan Normal University School of Medicine, Changsha, China (Y.Zho., R.Z., G.Q.); JOINN Biologics, Co., Ltd, Beijing, China (J.Z.); and Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA, Beijing, China (Y.Zha.)
| |
Collapse
|
7
|
Antonia RJ, Karelehto E, Toriguchi K, Matli M, Warren RS, Pfeffer LM, Donner DB. STAT3 regulates inflammatory cytokine production downstream of TNFR1 by inducing expression of TNFAIP3/A20. J Cell Mol Med 2022; 26:4591-4601. [PMID: 35841281 PMCID: PMC9357623 DOI: 10.1111/jcmm.17489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Tumour Necrosis Factor (TNF) potently induces a transient inflammatory response that must be downregulated once any invasive stimulus has resolved. Yet, how TNF‐induced inflammation is shut down in normal cells is incompletely understood. The present study shows that STAT3 was activated in mouse embryo fibroblasts (MEFs) by treatment with TNF or an agonist antibody to TNFR1. STAT3 activation was inhibited by pharmacological inhibition of the Jak2 tyrosine kinase that associates with TNFR1. To identify STAT3 target genes, global transcriptome analysis by RNA sequencing was performed in wild‐type MEFs and MEFs from STAT3 knockout (STAT3KO) mice that were stimulated with TNF, and the results were validated at the protein level by using multiplex cytokine assays and immunoblotting. After TNF stimulation, STAT3KO MEFs showed greater gene and protein induction of the inflammatory chemokines Ccl2, Cxcl1 and Cxcl10 than WT MEFs. These observations show that, by activating STAT3, TNF selectively modulates expression of a cohort of chemokines that promote inflammation. The greater induction by TNF of chemokines in STAT3KO than WT MEFs suggested that TNF induced an inhibitory protein in WT MEFs. Consistent with this possibility, STAT3 activation by TNFR1 increased the expression of Tnfaip3/A20, a ubiquitin modifying enzyme that inhibits inflammation, in WT MEFs but not in STAT3KO MEFs. Moreover, enforced expression of Tnfaip3/A20 in STAT3KO MEFs suppressed proinflammatory chemokine expression induced by TNF. Our observations identify Tnfaip3/A20 as a new downstream target for STAT3 which limits the induction of Ccl2, Cxcl1 and Cxcl10 and inflammation induced by TNF.
Collapse
Affiliation(s)
- Ricardo J Antonia
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Eveliina Karelehto
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Kan Toriguchi
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Mary Matli
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Robert S Warren
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David B Donner
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|
8
|
Rodriguez-Esteban R. New reasons for biologists to write with a formal language. Database (Oxford) 2022; 2022:6600538. [PMID: 35657112 PMCID: PMC9216469 DOI: 10.1093/database/baac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022]
Abstract
Current biological writing is afflicted by the use of ambiguous names, convoluted sentences, vague statements and narrative-fitted storylines. This represents a challenge for biological research in general and in particular for fields such as biological database curation and text mining, which have been tasked to cope with exponentially growing content. Improving the quality of biological writing by encouraging unambiguity and precision would foster expository discipline and machine reasoning. More specifically, the routine inclusion of formal languages in biological writing would improve our ability to describe, compile and model biology.
Collapse
Affiliation(s)
- Raul Rodriguez-Esteban
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124 , Basel 4070, Switzerland
| |
Collapse
|
9
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Liu Q, Hua L, Bao C, Kong L, Hu J, Liu C, Li Z, Xu S, Liu X. Inhibition of Spleen Tyrosine Kinase Restores Glucocorticoid Sensitivity to Improve Steroid-Resistant Asthma. Front Pharmacol 2022; 13:885053. [PMID: 35600871 PMCID: PMC9117698 DOI: 10.3389/fphar.2022.885053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regulation or restoration of therapeutic sensitivity to glucocorticoids is important in patients with steroid-resistant asthma. Spleen tyrosine kinase (Syk) is activated at high levels in asthma patients and mouse models, and small-molecule Syk inhibitors such as R406 show potent anti-inflammatory effects in the treatment of immune inflammatory diseases. Several downstream signaling molecules of Syk are involved in the glucocorticoid response, so we hypothesized that R406 could restore sensitivity to dexamethasone in severe steroid-resistant asthma. Objective: To discover the role of the Syk inhibitor R406 in glucocorticoid resistance in severe asthma. Methods: Steroid-resistant asthma models were induced by exposure of C57BL/6 mice to house dust mite (HDM) and β-glucan and by TNF-α administration to the bronchial epithelial cell line BEAS-2B. We evaluated the role of the Syk inhibitor R406 in dexamethasone (Dex)-insensitive airway inflammation. Pathological alterations and cytokines in the lung tissues and inflammatory cells in BALF were assessed. We examined the effects of Dex or R406 alone and in combination on the phosphorylation of MAPKs, glucocorticoid receptor (GR) and Syk, as well as the transactivation and transrepression induced by Dex in mouse lung tissues and BEAS-2B cells. Results: Exposure to HDM and β-glucan induced steroid-resistant airway inflammation. The Syk inhibitor R406 plus Dex significantly reduced airway inflammation compared with Dex alone. Additionally, TNF-α-induced IL-8 production in BEAS-2B cells was not completely inhibited by Dex, while R406 markedly promoted the anti-inflammatory effect of Dex. Compared with Dex alone, R406 enhanced Dex-mediated inhibition of the phosphorylation of MAPKs and GR-Ser226 induced by allergens or TNF-α in vivo and in vitro. Moreover, R406 also restored the impaired expression and nuclear translocation of GRα induced by TNF-α. Then, the activation of NF-κB and decreased HDAC2 activity in the asthmatic model were further regulated by R406, as well as the expression of GILZ. Conclusions: The Syk inhibitor R406 improves sensitivity to dexamethasone by modulating GR. This study provides a reference for the development of drugs to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Hua
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxia Kong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Jiannan Hu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziling Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Logie E, Novo CP, Driesen A, Van Vlierberghe P, Vanden Berghe W. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Int J Mol Sci 2021; 22:ijms222312731. [PMID: 34884535 PMCID: PMC8657914 DOI: 10.3390/ijms222312731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Claudina Perez Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Amber Driesen
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | | | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
- Correspondence: ; Tel.: +32-32-65-26-57
| |
Collapse
|
12
|
Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021; 20:839-861. [PMID: 34354255 DOI: 10.1038/s41573-021-00252-y] [Citation(s) in RCA: 437] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The FDA approval of imatinib in 2001 was a breakthrough in molecularly targeted cancer therapy and heralded the emergence of kinase inhibitors as a key drug class in the oncology area and beyond. Twenty years on, this article analyses the landscape of approved and investigational therapies that target kinases and trends within it, including the most popular targets of kinase inhibitors and their expanding range of indications. There are currently 71 small-molecule kinase inhibitors (SMKIs) approved by the FDA and an additional 16 SMKIs approved by other regulatory agencies. Although oncology is still the predominant area for their application, there have been important approvals for indications such as rheumatoid arthritis, and one-third of the SMKIs in clinical development address disorders beyond oncology. Information on clinical trials of SMKIs reveals that approximately 110 novel kinases are currently being explored as targets, which together with the approximately 45 targets of approved kinase inhibitors represent only about 30% of the human kinome, indicating that there are still substantial unexplored opportunities for this drug class. We also discuss trends in kinase inhibitor design, including the development of allosteric and covalent inhibitors, bifunctional inhibitors and chemical degraders.
Collapse
|
13
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Yiu WH, Chan KW, Chan LYY, Leung JCK, Lai KN, Tang SCW. Spleen Tyrosine Kinase Inhibition Ameliorates Tubular Inflammation in IgA Nephropathy. Front Physiol 2021; 12:650888. [PMID: 33790807 PMCID: PMC8006276 DOI: 10.3389/fphys.2021.650888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase involved in signal transduction in a variety of immune responses. It has been demonstrated that Syk plays a pathogenic role in orchestrating inflammatory responses and cell proliferation in human mesangial cells (HMC) in IgA nephropathy (IgAN). However, whether Syk is involved in tubular damage in IgAN remains unknown. Using human kidney biopsy specimens, we found that Syk was activated in renal tubules of biopsy-proven IgAN patients with an increase in total and phosphorylated levels compared to that from healthy control subjects. In vitro, cultured proximal tubular epithelial cells (PTECs) were stimulated with conditioned medium prepared from human mesangial cells incubated with polymeric IgA (IgA-HMC) from patients with IgAN or healthy control. Induction of IL-6, IL-8, and ICAM-1 synthesis from cultured PTECs incubated with IgA-HMC conditioned medium was significantly suppressed by treatment with the Syk inhibitor R406 compared to that from healthy control. Furthermore, R406 downregulated expression of phosphorylated p65 NF-κB and p-42/p-44 MAPK, and attenuated TNF-α-induced cytokine production in PTECs. Taken together, our findings suggest that Syk mediates IgA-HMC conditioned medium-induced inflammation in tubular cells via activation of NF-κB and p-42/p-44 MAPK signaling. Inhibition of Syk may be a potential therapeutic approach for tubulointerstitial injury in IgAN.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
15
|
Buffard M, Naldi A, Freiss G, Deckert M, Radulescu O, Coopman PJ, Larive RM. Comparison of SYK Signaling Networks Reveals the Potential Molecular Determinants of Its Tumor-Promoting and Suppressing Functions. Biomolecules 2021; 11:biom11020308. [PMID: 33670716 PMCID: PMC7923165 DOI: 10.3390/biom11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter. Bioinformatic analyses allowed for unveiling the main differences in signaling pathways, network topology and signal propagation from SYK to its potential effectors. In breast cancer cells, the SYK target-enriched signaling pathways included intercellular adhesion and Hippo signaling components that are often linked to tumor suppression. In Burkitt lymphoma cells, the SYK target-enriched signaling pathways included molecules that could play a role in SYK pro-oncogenic function in B-cell lymphomas. Several protein interactions were profoundly rewired in the breast cancer network compared with the Burkitt lymphoma network. These data demonstrate that proteomic profiling combined with mathematical network modeling allows untangling complex pathway interplays and revealing difficult to discern interactions among the SYK pathways that positively and negatively affect tumor formation and progression.
Collapse
Affiliation(s)
- Marion Buffard
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Aurélien Naldi
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France;
- Lifeware Group, Inria Saclay-île de France, F-91120 Palaiseau, France
| | - Gilles Freiss
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
| | - Marcel Deckert
- C3M, Université Côte d'Azur, INSERM, équipe «Microenvironnement, Signalisation et Cancer», F-06204 Nice, France;
| | - Ovidiu Radulescu
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Peter J. Coopman
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- CNRS—Centre National de la Recherche Scientifique, 1919 Route de Mende, F-34293 Montpellier, France
| | - Romain M. Larive
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- IBMM, Université Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
- Correspondence: ; Tel.: +33-467-61-24-30; Fax: +33-467-61-37-87
| |
Collapse
|
16
|
Murugesan G, Correia VG, Palma AS, Chai W, Li C, Feizi T, Martin E, Laux B, Franz A, Fuchs K, Weigle B, Crocker PR. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology 2021; 31:44-54. [PMID: 32501471 PMCID: PMC7799145 DOI: 10.1093/glycob/cwaa048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.
Collapse
Affiliation(s)
- Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Viviana G Correia
- Applied Molecular Biosciences Unit, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Angelina S Palma
- Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy and Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao 266003, China
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Eva Martin
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Brigitte Laux
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Alexandra Franz
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Klaus Fuchs
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Bernd Weigle
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
17
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
18
|
Chen PH, Wu J, Ding CKC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B, Chi JT. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 2020; 27:1008-1022. [PMID: 31320750 PMCID: PMC7206124 DOI: 10.1038/s41418-019-0393-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a specialized iron-dependent cell death that is associated with lethal lipid peroxidation. Modulation of ferroptosis may have therapeutic potential since it has been implicated in various human diseases as well as potential antitumor activities. However, much remains unknown about the underlying mechanisms and genetic determinants of ferroptosis. Given the critical role of kinases in most biological processes and the availability of various kinase inhibitors, we sought to systemically identify kinases essential for ferroptosis. We performed a forward genetic-based kinome screen against ferroptosis in MDA-MB-231 cells triggered by cystine deprivation. This screen identified 34 essential kinases involved in TNFα and NF-kB signaling. Unexpectedly, the DNA damage response serine/threonine kinase ATM (mutated in Ataxia-Telangiectasia) was found to be essential for ferroptosis. The pharmacological or genetic inhibition of ATM consistently rescued multiple cancer cells from ferroptosis triggered by cystine deprivation or erastin. Instead of the canonical DNA damage pathways, ATM inhibition rescued ferroptosis by increasing the expression of iron regulators involved in iron storage (ferritin heavy and light chain, FTH1 and FTL) and export (ferroportin, FPN1). The coordinated changes of these iron regulators during ATM inhibition resulted in a lowering of labile iron and prevented the iron-dependent ferroptosis. Furthermore, we found that ATM inhibition enhanced the nuclear translocation of metal-regulatory transcription factor 1 (MTF1), responsible for regulating expression of Ferritin/FPN1 and ferroptosis protection. Genetic depletion of MTF-1 abolished the regulation of iron-regulatory elements by ATM and resensitized the cells to ferroptosis. Together, we have identified an unexpected ATM-MTF1-Ferritin/FPN1 regulatory axis as novel determinants of ferroptosis through regulating labile iron levels.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Samuel Pan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Nathan Bossa
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Yitong Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Bernard Mathey-Prevot
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
20
|
Bang BR, Han KH, Seo GY, Croft M, Kang YJ. The protein tyrosine kinase SYK regulates the alternative p38 activation in liver during acute liver inflammation. Sci Rep 2019; 9:17838. [PMID: 31780731 PMCID: PMC6882802 DOI: 10.1038/s41598-019-54335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/11/2019] [Indexed: 12/02/2022] Open
Abstract
Two distinct p38 signaling pathways, classical and alternative, have been identified to regulate inflammatory responses in host defense and disease development. The role of alternative p38 activation in liver inflammation is elusive, while classical p38 signaling in hepatocytes plays a role in regulating the induction of cell death in autoimmune-mediated acute liver injury. In this study, we found that a mutation of alternative p38 in mice augmented the severity of acute liver inflammation. Moreover, TNF-induced hepatocyte death was augmented by a mutation of alternative p38, suggesting that alternative p38 signaling in hepatocytes contributed more significantly to the pathology of acute liver injury. Furthermore, SYK-Vav-1 signaling regulates alternative p38 activation and the downregulation of cell death in hepatocytes. Therefore, it is suggested that alternative p38 signaling in the liver plays a critical role in the induction and subsequent pathological changes of acute liver injury. Collectively, our results imply that p38 signaling in hepatocytes plays a crucial role to prevent excessive liver injury by regulating the induction of cell death and inflammation.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Jun Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Molecular Medicine Research Institute, Sunnyvale, CA, 94085, USA.
| |
Collapse
|
21
|
Tang C, Zhu G. Classic and Novel Signaling Pathways Involved in Cancer: Targeting the NF-κB and Syk Signaling Pathways. Curr Stem Cell Res Ther 2019; 14:219-225. [PMID: 30033874 DOI: 10.2174/1574888x13666180723104340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
Abstract
The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.
Collapse
Affiliation(s)
- Cong Tang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guodong Zhu
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
22
|
Wang S, Ma Y, Wang X, Jiang J, Zhang C, Wang X, Jiang Y, Huang H, Hong L. IL-17A Increases Multiple Myeloma Cell Viability by Positively Regulating Syk Expression. Transl Oncol 2019; 12:1086-1091. [PMID: 31174059 PMCID: PMC6556560 DOI: 10.1016/j.tranon.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE: Elevated IL-17 produced by Th17 cells was reported to promote myeloma cell growth and inhibit immune function in multiple myeloma (MM). IL-17A was also reported to promote MM growth through IL-17 receptors and enhance adhesion to bone marrow stromal cells (BMSCs). Spleen tyrosine kinase (Syk) influences MM cell survival and migration. Herein we aimed to investigate whether Syk was involved in the regulative role of IL-17A in the viability of MM cells. METHODS: Cell viability was determined using CCK8 assay. The production of cytokine including IL-17A was evaluated with ELISA. Western blotting assay was used to determine protein expression levels of Syk and nuclear factor κB (NF-κB) related molecules. mRNA expression level of RORγt was detected with reverse transcription quantitative polymerase chain reaction. RESULTS: IL-17Awas highly expressed in MM patients and was able to induce MM cell viability. Following analysis indicated that the effects of IL-17A were mediated by Syk/ nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Immunoprecipitation also indicated that Syk is involved in IL-17A–induced Act1-TRAF6 complex formation and TRAF6 polyubiquitination in MM cells. CONCLUSIONS: Taken together, our study indicated that IL-17A increases MM cell viability through activating NF-κB signal pathway via positively regulating Syk expression. Syk also participates in the formation of IL-17R-proximal signaling complex (IL-17R-Act1-TRAF6), which is essential for IL-17A–mediated NF-kB activation. These investigations highlight that inhibition of Syk may be a potential therapeutic option for neoplastic diseases such as MM.
Collapse
Affiliation(s)
- Shunye Wang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Yanan Ma
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Xudong Wang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Jie Jiang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Chenglu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Yijing Jiang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China.
| | - Liu Hong
- Department of Hematology, Affiliated Hospital of Nantong University, 20, xisi road, Nantong City, Jiangsu Province, 226001, China
| |
Collapse
|
23
|
FAK and Pyk2 activity promote TNF-α and IL-1β-mediated pro-inflammatory gene expression and vascular inflammation. Sci Rep 2019; 9:7617. [PMID: 31110200 PMCID: PMC6527705 DOI: 10.1038/s41598-019-44098-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine kinase (PTK) activity has been implicated in pro-inflammatory gene expression following tumor necrosis factor-α (TNF-α) or interkeukin-1β (IL-1β) stimulation. However, the identity of responsible PTK(s) in cytokine signaling have not been elucidated. To evaluate which PTK is critical to promote the cytokine-induced inflammatory cell adhesion molecule (CAM) expression including VCAM-1, ICAM-1, and E-selectin in human aortic endothelial cells (HAoECs), we have tested pharmacological inhibitors of major PTKs: Src and the focal adhesion kinase (FAK) family kinases - FAK and proline-rich tyrosine kinase (Pyk2). We found that a dual inhibitor of FAK/Pyk2 (PF-271) most effectively reduced all three CAMs upon TNF-α or IL-1β stimulation compared to FAK or Src specific inhibitors (PF-228 or Dasatinib), which inhibited only VCAM-1 expression. In vitro inflammation assays showed PF-271 reduced monocyte attachment and transmigration on HAoECs. Furthermore, FAK/Pyk2 activity was not limited to CAM expression but was also required for expression of various pro-inflammatory molecules including MCP-1 and IP-10. Both TNF-α and IL-1β signaling requires FAK/Pyk2 activity to activate ERK and JNK MAPKs leading to inflammatory gene expression. Knockdown of either FAK or Pyk2 reduced TNF-α-stimulated ERK and JNK activation and CAM expression, suggesting that activation of ERK or JNK is specific through FAK and Pyk2. Finally, FAK/Pyk2 activity is required for VCAM-1 expression and macrophage recruitment to the vessel wall in a carotid ligation model in ApoE-/- mice. Our findings define critical roles of FAK/Pyk2 in mediating inflammatory cytokine signaling and implicate FAK/Pyk2 inhibitors as potential therapeutic agents to treat vascular inflammatory disease such as atherosclerosis.
Collapse
|
24
|
Bussel JB, Arnold DM, Boxer MA, Cooper N, Mayer J, Zayed H, Tong S, Duliege A. Long-term fostamatinib treatment of adults with immune thrombocytopenia during the phase 3 clinical trial program. Am J Hematol 2019; 94:546-553. [PMID: 30784097 PMCID: PMC6594140 DOI: 10.1002/ajh.25444] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 01/19/2023]
Abstract
Two randomized, double-blind, placebo-controlled studies demonstrated responses (≥50 000/μL) to fostamatinib in adults with long-standing immune thrombocytopenia (ITP). The long-term safety and efficacy of fostamatinib were evaluated in a follow-on, open-label extension (OLE) study. Patients received double-blind fostamatinib in the randomized trials, and responders continued the same dose, 100 to 150 mg BID, in the OLE study. Nonresponders received 100 mg BID for 4 weeks and could escalate to 150 mg BID at week 4. Endpoints included stable response, platelet count ≥50 000/μL at 4/6 biweekly (randomized trials) or 2/3 monthly visits (OLE), and overall response, ≥1 platelet count ≥50 000/μL during weeks 1 to 12. A total of 146 patients received fostamatinib including 123 in the OLE study. Median treatment duration was 6.7 months. Baseline median ITP duration was 8 years and median platelet count was 16 000/μL; prior treatments included thrombopoietic (TPO) agents (47%), splenectomy (35%), and rituximab (32%). Twenty-seven (18%) patients achieved a stable response with median duration of >28 months and a median platelet count of 89 000/μL. Sixty-four (44%) patients achieved an overall response (including stable responders) with a median platelet count of 63 000/μL and a median response duration of >28 months. Twenty-four of 71 (34%) patients who had failed TPO agents achieved overall responses to fostamatinib. The most common adverse events (AEs) were diarrhea, hypertension, nausea, epistaxis, and abnormal liver function tests. Most AEs were mild/moderate and resolved or were managed with dose reduction, dose interruption, and/or secondary medication. Almost half of the patients achieved an overall response, and most of these maintained their responses for >2 years. No new or increased frequency of AEs was seen at up to 31 months of treatment.
Collapse
Affiliation(s)
- James B. Bussel
- Division of Pediatric Hematology/Oncology, Department of PediatricsWeill Cornell MedicineNew YorkNew York
| | - Donald M. Arnold
- Department of MedicineMichael G. DeGroote School of Medicine, McMaster University, and McMaster Centre for Transfusion Research, Hamilton Health SciencesHamiltonOntarioCanada
- Canadian Blood ServicesHamiltonOntarioCanada
| | | | - Nichola Cooper
- Imperial College Healthcare NHS Trust, Hammersmith HospitalLondonUnited Kingdom
| | - Jiri Mayer
- Fakultni nemocnice BrnoBrnoCzech Republic
| | - Hany Zayed
- Rigel Pharmaceuticals Inc.South San FranciscoCalifornia
| | - Sandra Tong
- Rigel Pharmaceuticals Inc.South San FranciscoCalifornia
| | | |
Collapse
|
25
|
Dehydroabietic Acid Suppresses Inflammatory Response Via Suppression of Src-, Syk-, and TAK1-Mediated Pathways. Int J Mol Sci 2019; 20:ijms20071593. [PMID: 30934981 PMCID: PMC6480320 DOI: 10.3390/ijms20071593] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Dehydroabietic acid (DAA) is a naturally occurring diterpene resin acid derived from coniferous plants such as Pinus and Picea. Various bioactive effects of DAA have been studied including antibacterial, antifungal, and anticancer activities. However, the anti-inflammatory mechanism of DAA remains unclear. We evaluated the anti-inflammatory effect of DAA in macrophage cell lines. Dehydroabietic acid clearly reduced nitric oxide (NO) production and inflammatory gene expression decreased according to RT-PCR results. Dehydroabietic acid displayed anti-inflammatory activity at the transcriptional level in results from NF-κB- or AP-1-mediated luciferase assays. To identify the DAA target protein, we investigated NF-κB and AP-1 pathways by Western blotting analysis. Dehydroabietic acid suppressed the activity of proto-oncogene tyrosine protein kinase (Src) and spleen tyrosine kinase (Syk) in the NF-κB cascade and transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 cascade. Using overexpression strategies, we confirmed that DAA targeted these kinases. Our findings demonstrate the anti-inflammatory effects and molecular mechanism of DAA. This suggests that DAA has potential as a drug or supplement to ameliorate inflammation.
Collapse
|
26
|
Activation of NF-κB in B cell receptor signaling through Bruton's tyrosine kinase-dependent phosphorylation of IκB-α. J Mol Med (Berl) 2019; 97:675-690. [PMID: 30887112 DOI: 10.1007/s00109-019-01777-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
The antigen-mediated triggering of B cell receptor (BCR) activates the transcription factor NF-κB that regulates the expression of genes involved in B cell differentiation, proliferation, and survival. The tyrosine kinase Btk is essentially required for the activation of NF-κB in BCR signaling through the canonical pathway of IKK-dependent phosphorylation and proteasomal degradation of IκB-α, the main repressor of NF-κB. Here, we provide the evidence of an additional mechanism of NF-κB activation in BCR signaling that is Btk-dependent and IKK-independent. In DeFew B lymphoma cells, the anti-IgM stimulation of BCR activated Btk and NF-κB p50/p65 within 0.5 min in absence of IKK activation and IκB-α degradation. IKK silencing did not affect the rapid activation of NF-κB. Within this short time, Btk associated and phosphorylated IκB-α at Y289 and Y305, and, concomitantly, p65 translocated from cytosol to nucleus. The mutant IκB-α Y289/305A inhibited the NF-κB activation after BCR triggering, suggesting that the phosphorylation of IκB-α at tyrosines 289 and 305 was required for NF-κB activation. In primary chronic lymphocytic leukemia cells, Btk was constitutively active and associated with IκB-α, which correlated with Y305-phosphorylation of IκB-α and increased NF-κB activity compared with healthy B cells. Altogether, these results describe a novel mechanism of NF-κB activation in BCR signaling that could be relevant for Btk-targeted therapy in B-lymphoproliferative disorders. KEY MESSAGES: Anti-IgM stimulation of BCR activates NF-κB p50/p65 within 30 s by a Btk-dependent and IKK-independent mechanism. Btk associates and phosphorylates IκB-α at Y289 and Y305, promoting NF-κB activation. In primary CLLs, the binding of Btk to IκB-α correlates with tyrosine phosphorylation of IκB-α and increased NF-κB activity.
Collapse
|
27
|
Kjelgaard-Petersen CF, Sharma N, Kayed A, Karsdal MA, Mobasheri A, Hägglund P, Bay-Jensen AC, Thudium CS. Tofacitinib and TPCA-1 exert chondroprotective effects on extracellular matrix turnover in bovine articular cartilage ex vivo. Biochem Pharmacol 2018; 165:91-98. [PMID: 30059674 DOI: 10.1016/j.bcp.2018.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Currently, there are no disease-modifying osteoarthritis drugs (DMOADs) approved for osteoarthritis. It is hypothesized that a subtype of OA may be driven by inflammation and may benefit from treatment with anti-inflammatory small molecule inhibitors adopted from treatments of rheumatoid arthritis. This study aimed to investigate how small molecule inhibitors of intracellular signaling modulate cartilage degradation and formation as a pre-clinical model for structural effects. DESIGN Bovine cartilage explants were cultured with oncostatin M (OSM) and tumour necrosis factor α (TNF-α) either alone or combined with the small molecule inhibitors: SB203580 (p38 inhibitor), R406 (Spleen tyrosine kinase (Syk) inhibitor), TPCA-1 (Inhibitor of κB kinase (Ikk) inhibitor), or Tofacitinib (Tofa) (Janus kinases (Jak) inhibitor). Cartilage turnover was assessed with the biomarkers of degradation (AGNx1 and C2M), and type II collagen formation (PRO-C2) using ELISA. Explant proteoglycan content was assessed by Safranin O/Fast Green staining. RESULTS R406, TPCA-1 and Tofa reduced the cytokine-induced proteoglycan loss and decreased AGNx1 release 3.7-, 43- and 32-fold, respectively. SB203580 showed no effect. All inhibitors suppressed C2M at a concentration of 3 µM. TPCA-1 and Tofa increased the cytokine reduced PRO-C2 3.5 and 3.7-fold, respectively. CONCLUSION Using a pre-clinical model we found that the inhibitors TPCA-1 and Tofa inhibited cartilage degradation and rescue formation of type II collagen under inflammatory conditions, while R406 and SB203580 only inhibited cartilage degradation, and SB203580 only partially. These pre-clinical data suggest that TPCA-1 and Tofa preserve and help maintain cartilage ECM under inflammatory conditions and could be investigated further as DMOADs for inflammation-driven osteoarthritis.
Collapse
Affiliation(s)
- Cecilie F Kjelgaard-Petersen
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark; Department of Bioengineering and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Neha Sharma
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | - Ashref Kayed
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Morten A Karsdal
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford GU2 7AL, United Kingdom.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | - Christian S Thudium
- Rheumatology, Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| |
Collapse
|
28
|
He T, Liu S, Chen S, Ye J, Wu X, Bian Z, Chen X. The p38 MAPK Inhibitor SB203580 Abrogates Tumor Necrosis Factor-Induced Proliferative Expansion of Mouse CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2018; 9:1556. [PMID: 30038619 PMCID: PMC6046375 DOI: 10.3389/fimmu.2018.01556] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
There is now compelling evidence that tumor necrosis factor (TNF) preferentially activates and expands CD4+Foxp3+ regulatory T cells (Tregs) through TNF receptor type II (TNFR2). However, it remains unclear which signaling transduction pathway(s) of TNFR2 is required for the stimulation of Tregs. Previously, it was shown that the interaction of TNF–TNFR2 resulted in the activation of a number of signaling pathways, including p38 MAPK, NF-κB, in T cells. We thus examined the role of p38 MAPK and NF-κB in TNF-mediated activation of Tregs, by using specific small molecule inhibitors. The results show that treatment with specific p38 MAPK inhibitor SB203580, rather than NF-κB inhibitors (Sulfasalazine and Bay 11-7082), abrogated TNF-induced expansion of Tregs in vitro. Furthermore, upregulation of TNFR2 and Foxp3 expression in Tregs by TNF was also markedly inhibited by SB203580. The proliferative expansion and the upregulation of TNFR2 expression on Tregs in LPS-treated mice were mediated by TNF–TNFR2 interaction, as shown by our previous study. The expansion of Tregs in LPS-treated mice were also markedly inhibited by in vivo treatment with SB203580. Taken together, our data clearly indicate that the activation of p38 MAPK is attributable to TNF/TNFR2-mediated activation and proliferative expansion of Tregs. Our results also suggest that targeting of p38 MAPK by pharmacological agent may represent a novel strategy to up- or downregulation of Treg activity for therapeutic purposes.
Collapse
Affiliation(s)
- Tianzhen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Shuoyang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Shaokui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jingyi Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Xueqiang Wu
- Department of Oncology, Beijing Aerospace General Hospital, Beijing, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
29
|
Bussel J, Arnold DM, Grossbard E, Mayer J, Treliński J, Homenda W, Hellmann A, Windyga J, Sivcheva L, Khalafallah AA, Zaja F, Cooper N, Markovtsov V, Zayed H, Duliege A. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials. Am J Hematol 2018; 93:921-930. [PMID: 29696684 PMCID: PMC6055608 DOI: 10.1002/ajh.25125] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 01/19/2023]
Abstract
Spleen tyrosine kinase (Syk) signaling is central to phagocytosis-based, antibody-mediated platelet destruction in adults with immune thrombocytopenia (ITP). Fostamatinib, an oral Syk inhibitor, produced sustained on-treatment responses in a phase 2 ITP study. In two parallel, phase 3, multicenter, randomized, double-blind, placebo-controlled trials (FIT1 and FIT2), patients with persistent/chronic ITP were randomized 2:1 to fostamatinib (n = 101) or placebo (n = 49) at 100 mg BID for 24 weeks with a dose increase in nonresponders to 150 mg BID after 4 weeks. The primary endpoint was stable response (platelets ≥50 000/μL at ≥4 of 6 biweekly visits, weeks 14-24, without rescue therapy). Baseline median platelet count was 16 000/μL; median duration of ITP was 8.5 years. Stable responses occurred in 18% of patients on fostamatinib vs. 2% on placebo (P = .0003). Overall responses (defined retrospectively as ≥1 platelet count ≥50 000/μL within the first 12 weeks on treatment) occurred in 43% of patients on fostamatinib vs. 14% on placebo (P = .0006). Median time to response was 15 days (on 100 mg bid), and 83% responded within 8 weeks. The most common adverse events were diarrhea (31% on fostamatinib vs. 15% on placebo), hypertension (28% vs. 13%), nausea (19% vs. 8%), dizziness (11% vs. 8%), and ALT increase (11% vs. 0%). Most events were mild or moderate and resolved spontaneously or with medical management (antihypertensive, anti-motility agents). Fostamatinib produced clinically-meaningful responses in ITP patients including those who failed splenectomy, thrombopoietic agents, and/or rituximab. Fostamatinib is a novel ITP treatment option that targets an important mechanism of ITP pathogenesis.
Collapse
Affiliation(s)
| | - Donald M. Arnold
- McMaster University, Michael G. DeGroote School of Medicine, and Canadian Blood ServicesHamiltonOntarioCanada
| | | | - Jiří Mayer
- Fakultni nemocnice BrnoBrnoCzech Republic
| | - Jacek Treliński
- Wojewódzki Szpital Specjalistyczny im. M. Kopernika w ŁodziLodzPoland
| | - Wojciech Homenda
- Wojewódzki Szpital Specjalistyczny im. J. Korczaka i Akademia Pomorska w SłupskuSlupskPoland
| | - Andrzej Hellmann
- University Clinical Center, Medical University of GdańskGdańskPoland
| | - Jerzy Windyga
- Instytut Hematologii i TransfuzjologiiWarszawaPoland
| | - Liliya Sivcheva
- First Internal DepartmentMHAT Hristo Botev, AD, VratsaVratsaBulgaria
| | | | - Francesco Zaja
- Clinica Ematologica, DAME, University of UdineUdineItaly
| | | | | | - Hany Zayed
- Rigel PharmaceuticalsSouth San FranciscoCalifornia
| | | |
Collapse
|
30
|
Hiller NDJ, Silva NAAE, Faria RX, Souza ALA, Resende JALC, Borges Farias A, Correia Romeiro N, de Luna Martins D. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. ChemMedChem 2018; 13:1395-1404. [PMID: 29856519 DOI: 10.1002/cmdc.201800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.
Collapse
Affiliation(s)
- Noemi de J Hiller
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Nayane A A E Silva
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Robson X Faria
- Laboratory of Toxoplasmosis and other Protozoan Diseases, Oswaldo Cruz Institute (Fiocruz), Brasil
| | - André Luís A Souza
- Laboratory of Biochemistry of Peptides, Oswaldo Cruz Institute (Fiocruz), Brazil
| | - Jackson A L C Resende
- Laboratory of Solid-State Chemistry, Universidade Federal do Mato Grosso, Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Barra do Garças, MT, 78600-000, Brazil
| | - André Borges Farias
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Nelilma Correia Romeiro
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
31
|
Singhirunnusorn P, Moolmuang B, Lirdprapamongkol K, Ruchirawat M. Arsenite exposure potentiates apoptosis-inducing effects of tumor necrosis factor-alpha- through reactive oxygen species. J Toxicol Sci 2018; 43:159-169. [PMID: 29479036 DOI: 10.2131/jts.43.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine released by immune cells during inflammation process. Sodium arsenite (NaAsO2) is an environmental toxic metal. The effects of excess NaAsO2 on TNF-α response and its intracellular signaling are not well understood. We hypothesized that NaAsO2 exposure might affect cellular response to TNF-α. Using HeLa cell model, we found that the combination of NaAsO2 and TNF-α clearly decreased cell viability and mitochondrial membrane potential, but increased percentage of early and late apoptotic cells and cleaved-poly (ADP-ribose) polymerase (PARP). Moreover, the combination prolonged the phosphorylation of mitogen-activated protein kinase (MAPK) members, including c-Jun-N-terminal kinase (JNK), p38, and extracellular signal related kinases (ERK), and increased intracellular reactive oxygen species (ROS), in comparison to treatment of NaAsO2 or TNF-α alone. We further investigated the role of ROS and MAPK signaling on this event by inhibiting ROS production and MAPK. An antioxidant N-acetylcysteine pretreatment diminished the apoptosis-inducing effect of NaAsO2 and TNF-α combination and also inhibited MAPK signaling. Using specific inhibitor of p38 (SB203580) and siRNA-p38 surprisingly increased cell apoptosis and this effect was not observed by JNK and ERK inhibition. This study suggests that p38 may possibly be a survival mediator in response to environmental toxicant-related inflammation. In conclusion, NaAsO2 exposure might amplify inflammation-related tissue injury by potentiating the apoptosis-inducing effect of TNF-α through ROS-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Thailand
| |
Collapse
|
32
|
Jalsrai A, Reinhold A, Becker A. EthanolIris tenuifoliaextract reduces brain damage in a mouse model of cerebral ischaemia. Phytother Res 2017; 32:333-339. [DOI: 10.1002/ptr.5981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Aldarmaa Jalsrai
- Institute of Traditional Medicine and Technology; Ministry of Education, Culture, Science, and Sports; 17041 Ulaanbaatar Mongolia
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Faculty of Medicine; Otto von Guericke University; Leipziger Strasse 44 39120 Magdeburg Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine; Otto von Guericke University; Leipziger Strasse 44 39120 Magdeburg Germany
| |
Collapse
|
33
|
Alhazmi A, Choi J, Ulanova M. Syk inhibitor R406 downregulates inflammation in an in vitro model of Pseudomonas aeruginosa infection. Can J Physiol Pharmacol 2017; 96:182-190. [PMID: 29020462 DOI: 10.1139/cjpp-2017-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As Pseudomonas aeruginosa infections are characterized by strong inflammation of infected tissues, anti-inflammatory therapies in combination with antibiotics have been considered for the treatment of associated diseases. Syk tyrosine kinase is an important regulator of inflammatory responses, and its specific inhibition was explored as a therapeutic option in several inflammatory conditions; however, this has not been studied in bacterial infections. We used a model of in vitro infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with both wild-type and flagella-deficient mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory responses induced by this pathogen. One-hour pretreatment of THP-1 cells with 10 μmol/L R406 resulted in a significant downregulation of the expression of the adhesion molecule ICAM-1, pro-inflammatory cytokines TNF-α and IL-1β, and phosphorylated signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α release by infected H292 cells. The results suggest that Syk is involved in the regulation of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in dampening the damage caused by severe inflammation associated with this infection.
Collapse
Affiliation(s)
- Alaa Alhazmi
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Joshua Choi
- b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
34
|
Newland A, Lee EJ, McDonald V, Bussel JB. Fostamatinib for persistent/chronic adult immune thrombocytopenia. Immunotherapy 2017; 10:9-25. [PMID: 28967793 DOI: 10.2217/imt-2017-0097] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by phagocytosis and destruction of autoantibody-coated platelets via spleen tyrosine kinase (Syk)-mediated signal transduction in macrophages. Effectiveness of existing therapies varies, and even leading treatments (e.g., IVIg, splenectomy, rituximab, thrombopoietic agents) do not provide optimal management for a substantial number of patients with chronic ITP. Fostamatinib disodium is an orally-bioavailable investigational agent being developed for treatment of primary persistent/chronic adult ITP. Fostamatinib inhibits FcR-triggered, Syk-dependent cytoskeletal rearrangement during phagocytosis. Promising findings have been described in several autoimmune diseases, including rheumatoid arthritis, and sustained responses with manageable adverse events observed with ongoing treatment in patients with heavily treated chronic ITP. Fostamatinib represents an active therapy targeting a previously unexplored mechanism of ITP pathogenesis.
Collapse
Affiliation(s)
- Adrian Newland
- Academic Haematology Unit, Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Eun-Ju Lee
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vickie McDonald
- Department of Haematology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - James B Bussel
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
35
|
Promising Role of Toll-Like Receptor 8 Agonist in Concert with Prostratin for Activation of Silent HIV. J Virol 2017; 91:JVI.02084-16. [PMID: 27928016 DOI: 10.1128/jvi.02084-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
The persistence of latently HIV-infected cells in patients under combined antiretroviral treatment (cART) remains the major hurdle for HIV eradication. Thus far, individual compounds have not been sufficiently potent to reactivate latent virus and guarantee its elimination in vivo. Thus, we hypothesized that transcriptional enhancers, in concert with compounds triggering the innate immune system, are more efficient in reversing latency by creating a Th1 supportive milieu that acts against latently HIV-infected cells at various levels. To test our hypothesis, we screened six compounds on a coculture of latently infected cells (J-lat) and monocyte-derived dendritic cells (MDDCs). The protein kinase C (PKC) agonist prostratin, with a Toll-like receptor 8 (TLR8) agonist, resulted in greater reversion of HIV latency than any single compound. This combinatorial approach led to a drastic phenotypic and functional maturation of the MDDCs. Tumor necrosis factor (TNF) and cell-cell interactions were crucial for the greater reversion observed. Similarly, we found a greater potency of the combination of prostratin and TLR8 agonist in reversing HIV latency when applying it to primary cells of HIV-infected patients. Thus, we demonstrate here the synergistic interplay between TLR8-matured MDDCs and compounds acting directly on latently HIV-infected cells, targeting different mechanisms of latency, by triggering various signaling pathways. Moreover, TLR8 triggering may reverse exhaustion of HIV-specific cytotoxic T lymphocytes that might be essential for killing or constraining the latently infected cells. IMPORTANCE Curing HIV is the Holy Grail. The so-called "shock and kill" strategy relies on drug-mediated reversion of HIV latency and the subsequent death of those cells under combined antiretroviral treatment. So far, no compound achieves efficient reversal of latency or eliminates this latent reservoir. The compounds may not target all of the latency mechanisms in all latently infected cells. Moreover, HIV-associated exhaustion of the immune system hinders the efficient elimination of the reactivated cells. In this study, we demonstrated synergistic latency reversion by combining agonists for protein kinase C and Toll-like receptor 8 in a coculture of latently infected cells with myeloid dendritic cells. The drug prostratin stimulates directly the transcriptional machinery of latently infected cells, and the TLR8 agonist acts indirectly by maturing dendritic cells. These findings highlight the importance of the immune system and its activation, in combination with direct-acting compounds, to reverse latency.
Collapse
|
36
|
Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V, Somasundaram K. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis. J Biol Chem 2015; 290:23401-15. [PMID: 26245897 DOI: 10.1074/jbc.m115.664037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.
Collapse
Affiliation(s)
- Mamatha Bangalore Nijaguna
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Serge Urbach
- the Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier, France, INSERM U1191, F-34094 Montpellier, France, the Université de Montpellier, F-34094 Montpellier, France
| | | | | | - Alangar S Hegde
- the Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India
| | | | | | - Philippe Marin
- the Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier, France, INSERM U1191, F-34094 Montpellier, France, the Université de Montpellier, F-34094 Montpellier, France
| | | | - Kumaravel Somasundaram
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
37
|
Abstract
The transcription factor Miz1 negatively regulates TNF-induced JNK activation and cell death by suppressing TRAF2 K63-polyubiquitination; upon TNF stimulation, the suppression is relieved by Mule/ARF-BP1-mediated Miz1 ubiquitination and subsequent degradation. It is not known how Mule is activated by TNF. Here we report that TNF activates Mule by inducing the dissociation of Mule from its inhibitor ARF. ARF binds to and thereby inhibits the E3 ligase activity of Mule in the steady state. TNF induces tyrosine phosphorylation of Mule, which subsequently dissociates from ARF and becomes activated. Inhibition of Mule phosphorylation by silencing of the Spleen Tyrosine Kinase (Syk) prevents its dissociation from ARF, thereby inhibiting Mule E3 ligase activity and TNF-induced JNK activation and cell death. Our data provides a missing link in TNF signaling pathway that leads to JNK activation and cell death.
Collapse
|
38
|
Wu NL, Huang DY, Tsou HN, Lin YC, Lin WW. Syk Mediates IL−17-Induced CCL20 Expression by Targeting Act1-Dependent K63-Linked Ubiquitination of TRAF6. J Invest Dermatol 2015; 135:490-498. [DOI: 10.1038/jid.2014.383] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
39
|
Mukai T, Ishida S, Ishikawa R, Yoshitaka T, Kittaka M, Gallant R, Lin YL, Rottapel R, Brotto M, Reichenberger EJ, Ueki Y. SH3BP2 cherubism mutation potentiates TNF-α-induced osteoclastogenesis via NFATc1 and TNF-α-mediated inflammatory bone loss. J Bone Miner Res 2014; 29:2618-35. [PMID: 24916406 PMCID: PMC4262741 DOI: 10.1002/jbmr.2295] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/19/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023]
Abstract
Cherubism (OMIM# 118400) is a genetic disorder with excessive jawbone resorption caused by mutations in SH3 domain binding protein 2 (SH3BP2), a signaling adaptor protein. Studies on the mouse model for cherubism carrying a P416R knock-in (KI) mutation have revealed that mutant SH3BP2 enhances tumor necrosis factor (TNF)-α production and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in myeloid cells. TNF-α is expressed in human cherubism lesions, which contain a large number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, and TNF-α plays a critical role in inflammatory bone destruction in homozygous cherubism mice (Sh3bp2(KI/KI) ). The data suggest a pathophysiological relationship between mutant SH3BP2 and TNF-α-mediated bone loss by osteoclasts. Therefore, we investigated whether P416R mutant SH3BP2 is involved in TNF-α-mediated osteoclast formation and bone loss. Here, we show that bone marrow-derived M-CSF-dependent macrophages (BMMs) from the heterozygous cherubism mutant (Sh3bp2(KI/+) ) mice are highly responsive to TNF-α and can differentiate into osteoclasts independently of RANKL in vitro by a mechanism that involves spleen tyrosine kinase (SYK) and phospholipase Cγ2 (PLCγ2) phosphorylation, leading to increased nuclear translocation of NFATc1. The heterozygous cherubism mutation exacerbates bone loss with increased osteoclast formation in a mouse calvarial TNF-α injection model as well as in a human TNF-α transgenic mouse model (hTNFtg). SH3BP2 knockdown in RAW264.7 cells results in decreased TRAP-positive multinucleated cell formation. These findings suggest that the SH3BP2 cherubism mutation can cause jawbone destruction by promoting osteoclast formation in response to TNF-α expressed in cherubism lesions and that SH3BP2 is a key regulator for TNF-α-induced osteoclastogenesis. Inhibition of SH3BP2 expression in osteoclast progenitors could be a potential strategy for the treatment of bone loss in cherubism as well as in other inflammatory bone disorders.
Collapse
Affiliation(s)
- Tomoyuki Mukai
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Shu Ishida
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
- Department of Periodontal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, JAPAN
| | - Remi Ishikawa
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama, JAPAN
| | - Teruhito Yoshitaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
- Department of Periodontal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, JAPAN
| | - Richard Gallant
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Yi-Ling Lin
- UCLA School of Dentistry, Los Angeles, CA, USA
| | - Robert Rottapel
- Ontario Cancer Institute and the Campbell Family Cancer Research Institute, University of Toronto, Toronto, Canada
- Division of Rheumatology, Department of Medicine, Saint Michael's Hospital, Toronto, Canada
| | - Marco Brotto
- School of Nursing & Health Studies and School of Medicine, University of Missouri-Kansas City, MO, USA
| | - Ernst J. Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
40
|
Patterson H, Nibbs R, McInnes I, Siebert S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 2014; 176:1-10. [PMID: 24313320 PMCID: PMC3958149 DOI: 10.1111/cei.12248] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 12/12/2022] Open
Abstract
Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- H Patterson
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - R Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - I McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - S Siebert
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| |
Collapse
|
41
|
Schmeel FC, Schmeel LC, Kim Y, Schmidt-Wolf IGH. Piceatannol exhibits selective toxicity to multiple myeloma cells and influences the Wnt/ beta-catenin pathway. Hematol Oncol 2014; 32:197-204. [PMID: 24470348 DOI: 10.1002/hon.2122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling promotes development and progression of various malignant neoplasms. Recent studies observed that the Wnt pathway is constitutively active in myeloma cells and promotes an exaggerated proliferation. Thus, the Wnt signaling pathway might be an attractive therapeutic target for multiple myeloma. In this study, we identified piceatannol as an inhibitor of the Wnt/β-catenin pathway and as a potent inducer of apoptosis in myeloma cells. Interestingly, healthy cells remained mainly unaffected. These results reveal a significant selective induction of apoptosis by piceatannol and suggest a significant in vivo effect against multiple myeloma.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Internal Medicine III, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
42
|
Lin YC, Huang DY, Chu CL, Lin YL, Lin WW. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 2013; 6:ra71. [PMID: 23962979 DOI: 10.1126/scisignal.2003973] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) are a major family of pattern recognition receptors, and they play a crucial role in innate immune responses. Activation of TLR4 signaling at the plasma membrane by its ligand lipopolysaccharide (LPS) stimulates a proinflammatory pathway dependent on the E3 ubiquitin ligase TRAF6 (tumor necrosis factor receptor-associated factor 6) and the kinase TAK1 (transforming growth factor β-activated kinase 1), whereas TLR4 signaling at endosomes stimulates the production of type I interferons (IFNs) through a pathway that depends on TRAF3 and the kinase TBK1 (TANK-binding kinase-1). We found that the nonreceptor tyrosine kinase Syk partially mediated the endocytosis of TLR4, but it also played a dual role in TLR4-mediated signaling. LPS-dependent stimulation of TLR4 in Syk-deficient macrophages led to enhanced activation of TAK1 and increased production of proinflammatory cytokines compared to that in wild-type macrophages. In contrast, Syk-deficient macrophages exhibited decreased TLR4-dependent activation of TBK1 signaling and production of type I IFNs. We found that Syk was present in both TRAF6- and TRAF3-containing signaling complexes; however, the LPS-dependent, lysine 63-linked ubiquitination of TRAF6 and TRAF3 was oppositely regulated by Syk. We identified the domains of Syk that interacted with TRAF3, TRAF6, TAK1, and TBK1, factors activated by multiple TLRs, which suggests that Syk may act as a common regulator of various TLR responses. Together, our results demonstrate the opposing regulatory roles of Syk in TLR-mediated TRAF6 and TRAF3 signaling pathways, which suggests that Syk may fine-tune the innate immune response to lessen inflammation.
Collapse
Affiliation(s)
- Ying-Cing Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Fei B, Yu S, Geahlen RL. Modulation by Syk of Bcl-2, calcium and the calpain-calpastatin proteolytic system in human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2153-64. [PMID: 23684705 DOI: 10.1016/j.bbamcr.2013.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/02/2023]
Abstract
Syk is a 72kDa non-receptor tyrosine kinase that is best characterized in hematopoietic cells. While Syk is pro-tumorigenic in some cancer cell types, it also has been reported as a negative regulator of metastatic cell growth in others. An examination of the RelA (p65) subunit of NF-κB expressed in MCF7 breast cancer cells indicated that either treatment with pervanadate or stable expression of Syk protected RelA from calpain-mediated proteolysis. Similar results were observed with the tyrosine phosphatase, PTP1B, another sensitive calpain substrate. The activity of calpain in MCF7 cell lysates was inhibited by both treatment with hydrogen peroxide and expression of Syk, the former due to oxidative inactivation of calpain and the latter to enhanced expression of calpastatin (CAST), the endogenous calpain inhibitor. The level of CAST was elevated in the cytosolic fraction of Syk-positive breast cancer cells resulting in more CAST present in complex with calpain in cell lysates. The high levels of CAST coincided with elevated basal levels of calcium-and of intracellular calpain activity-in Syk-expressing cells resulting from decreased levels of Bcl-2, an inhibitor of IP3-receptor-mediated calcium release. The inhibition of cellular calpain stimulated the Syk-mediated enhancement of NF-κB induced by TNF-α, enhanced tyrosine phosphorylation resulting from integrin crosslinking, and increased the localization of Syk to the plasma membrane.
Collapse
Affiliation(s)
- Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
44
|
Brenner M, Gulko PS. The arthritis severity locus Cia5a regulates the expression of inflammatory mediators including Syk pathway genes and proteases in pristane-induced arthritis. BMC Genomics 2012; 13:710. [PMID: 23249408 PMCID: PMC3548698 DOI: 10.1186/1471-2164-13-710] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023] Open
Abstract
Background Cia5a is a locus on rat chromosome 10 that regulates disease severity and joint damage in two models of rheumatoid arthritis, collagen- and pristane-induced arthritis (PIA). In this study, we aimed to identify cellular and molecular processes regulated by Cia5a using microarray-based gene expression analysis of synovial tissues from MHC identical DA (severe erosive disease) and DA.F344(Cia5a) congenics (mild non-erosive disease) rats. Results Synovial tissues from six DA and eight DA.F344(Cia5a) rats were analyzed 21 days after the induction of PIA using the Illumina RatRef-12 BeadChip (21,922 genes) and selected data confirmed with qPCR. There was a significantly increased expression of pro-inflammatory mediators such as Il1b (5-fold), Il18 (3.9-fold), Cxcl1 (10-fold), Cxcl13 (7.5-fold) and Ccl7 (7.9-fold), and proteases like Mmp3 (23-fold), Mmp9 (32-fold), Mmp14 (4.4-fold) and cathepsins in synovial tissues from DA, with reciprocally reduced levels in congenics. mRNA levels of 47 members of the Spleen Tyrosine Kinase (Syk) pathway were significantly increased in DA synovial tissues compared with DA.F344(Cia5a), and included Syk (5.4-fold), Syk-activating receptors and interacting proteins, and genes regulated by Syk such as NFkB, and NAPDH oxidase complex genes. Nuclear receptors (NR) such as Rxrg, Pparg and Rev-erba were increased in the protected congenics, and so was the anti-inflammatory NR-target gene Scd1 (54-fold increase). Tnn (72-fold decrease) was the gene most significantly increased in DA. Conclusions Analyses of gene expression in synovial tissues revealed that the arthritis severity locus Cia5a regulates the expression of key mediators of inflammation and joint damage, as well as the expression of members of the Syk pathway. This expression pattern correlates with disease severity and joint damage and along with the gene accounting for Cia5a could become a useful biomarker to identify patients at increased risk for severe and erosive disease. The identification of the gene accounting for Cia5a has the potential to generate a new and important target for therapy and prognosis.
Collapse
Affiliation(s)
- Max Brenner
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive Room 1240, Manhasset, NY 11030, USA
| | | |
Collapse
|
45
|
Koo TY, Kim YJ, Yang WS, Park JS, Han NJ, Lee JM, Park SK. Mycophenolic acid regulates spleen tyrosine kinase to repress tumour necrosis factor-alpha-induced monocyte chemotatic protein-1 production in cultured human aortic endothelial cells. Cell Biol Int 2012; 37:19-28. [PMID: 23319318 DOI: 10.1002/cbin.10003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/14/2012] [Indexed: 11/08/2022]
Abstract
Atherosclerosis develops from cascades of inflammatory processes. Spleen tyrosine kinase (Syk) and monocyte chemotatic protein-1 (MCP-1) play important roles in the pathogenesis of atherosclerosis. Mycophenolic acid (MPA) has an anti-inflammatory effect. We have investigated whether MPA regulates Syk to repress tumour necrosis factor-α (TNF-α)-induced MCP-1 production in cultured human aortic endothelial cells. Expression of MCP-1 mRNA and its protein were measured by real time RT-PCR and ELISA, respectively. Reactive oxygen species (ROS) production were measured using 2'7'-dichlorofluorescein diacetate. Activation of AP-1 and NF-κB were assessed by electrophoretic mobility shift assay. Tyrosine phosphorylation of Syk was examined by Western blot analysis. TNF-α increased MCP-1 at both mRNA and protein levels. TNF-α-induced MCP-1 mRNA expression was inhibited by N-acetylcysteine (NAC), Syk inhibitor, Syk-siRNA and MPA. TNF-α-induced MCP-1 protein production was also inhibited by Syk inhibitor and MPA. TNF-α increased DNA binding activity of AP-1 and NF-κB, whereas both AP-1 and NF-κB decoy oligodeoxynucleotides downregulated TNF-α-induced MCP-1 mRNA expression. TNF-α increased ROS generation, which was inhibited by NAC and MPA, but not by Syk inhibitor. TNF-α increased tyrosine phosphorylation of Syk, which was attenuated by NAC and MPA. MPA and Syk inhibitor attenuated TNF-α-induced DNA binding activity of NF-κB and AP-1. TNF-α induced MCP-1 expression via activation of AP-1 and NF-κB. AP-1 and NF-κB were mediated through ROS, followed by Syk. MPA exerts anti-inflammatory effect by inhibiting MCP-1 expression via suppression of ROS and Syk.
Collapse
Affiliation(s)
- Tai Yeon Koo
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Chapard C, Hohl D, Huber M. The role of the TRAF-interacting protein in proliferation and differentiation. Exp Dermatol 2012; 21:321-6. [PMID: 22509826 DOI: 10.1111/j.1600-0625.2012.01477.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ubiquitination of proteins is a post-translational modification, which decides on the cellular fate of the protein. Addition of ubiquitin moieties to proteins is carried out by the sequential action of three enzymes: E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; and E3, ubiquitin ligase. The TRAF-interacting protein (TRAIP, TRIP, RNF206) functions as Really Interesting New Gene (RING)-type E3 ubiquitin ligase, but its physiological substrates are not yet known. TRAIP was reported to interact with TRAF [tumor necrosis factor (TNF) receptor-associated factors] and the two tumor suppressors CYLD and Syk (spleen tyrosine kinase). Ectopically expressed TRAIP was shown to inhibit nuclear factor-kappa B (NF-κB) signalling. However, recent results suggested a role for TRAIP in biological processes other than NF-κB regulation. Knock-down of TRAIP in human epidermal keratinocytes repressed cellular proliferation and induced a block in the G1/S phase of the cell cycle without affecting NF-κB signalling. TRAIP is necessary for embryonal development as mutations affecting the Drosophila homologue of TRAIP are maternal effect-lethal mutants, and TRAIP knock-out mice die in utero because of aberrant regulation of cell proliferation and apoptosis. These findings underline the tight link between TRAIP and cell proliferation. In this review, we summarize the data on TRAIP and put them into a larger perspective regarding the role of TRAIP in the control of tissue homeostasis.
Collapse
Affiliation(s)
- Christophe Chapard
- Service of Dermatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
47
|
Lim ST, Miller NLG, Chen XL, Tancioni I, Walsh CT, Lawson C, Uryu S, Weis SM, Cheresh DA, Schlaepfer DD. Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression. ACTA ACUST UNITED AC 2012; 197:907-19. [PMID: 22734001 PMCID: PMC3384409 DOI: 10.1083/jcb.201109067] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kinase-inhibited FAK limits VCAM-1 production via nuclear localization and promotion of GATA4 turnover. Vascular cell adhesion molecule–1 (VCAM-1) plays important roles in development and inflammation. Tumor necrosis factor–α (TNF-α) and focal adhesion kinase (FAK) are key regulators of inflammatory and integrin–matrix signaling, respectively. Integrin costimulatory signals modulate inflammatory gene expression, but the important control points between these pathways remain unresolved. We report that pharmacological FAK inhibition prevented TNF-α–induced VCAM-1 expression within heart vessel–associated endothelial cells in vivo, and genetic or pharmacological FAK inhibition blocked VCAM-1 expression during development. FAK signaling facilitated TNF-α–induced, mitogen-activated protein kinase activation, and, surprisingly, FAK inhibition resulted in the loss of the GATA4 transcription factor required for TNF-α–induced VCAM-1 production. FAK inhibition also triggered FAK nuclear localization. In the nucleus, the FAK-FERM (band 4.1, ezrin, radixin, moesin homology) domain bound directly to GATA4 and enhanced its CHIP (C terminus of Hsp70-interacting protein) E3 ligase–dependent polyubiquitination and degradation. These studies reveal new developmental and anti-inflammatory roles for kinase-inhibited FAK in limiting VCAM-1 production via nuclear localization and promotion of GATA4 turnover.
Collapse
Affiliation(s)
- Ssang-Taek Lim
- Department of Reproductive Medicine, University of California-San Diego, Moores Cancer Center, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Minogue AM, Barrett JP, Lynch MA. LPS-induced release of IL-6 from glia modulates production of IL-1β in a JAK2-dependent manner. J Neuroinflammation 2012; 9:126. [PMID: 22697788 PMCID: PMC3418561 DOI: 10.1186/1742-2094-9-126] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Compelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNF α, IL-6 and IL-1 β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κ B (NF κ B) complex and the Janus kinases (JAKs)/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS). METHODS We examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats. RESULTS TNF α was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1 β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NF κ B signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNF α induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNF α receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNF α and IL-1 β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release. CONCLUSIONS These data indicate that TNF α may regulate IL-6 production through activation of JAK/STAT signaling and that the subsequent production of IL-6 may impact on the release of TNF α, IL-1 β and IL-10.
Collapse
Affiliation(s)
- Aedín M Minogue
- Trinity College Institute for Neuroscience, Lloyd building, University of Dublin, Trinity College, College Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
49
|
Hsieh TC, Lin CY, Lin HY, Wu JM. AKT/mTOR as Novel Targets of Polyphenol Piceatannol Possibly Contributing to Inhibition of Proliferation of Cultured Prostate Cancer Cells. ISRN UROLOGY 2012; 2012:272697. [PMID: 22567414 PMCID: PMC3329858 DOI: 10.5402/2012/272697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/02/2012] [Indexed: 12/25/2022]
Abstract
The polyphenol piceatannol has shown inhibition against tyrosine and serine/threonine kinases. Whether piceatannol also exerts activity on the mammalian target of rapamycin (mTOR), a kinase involved in growth control of eukaryotic cells, is not known. In this study, we tested the effects of piceatannol on proliferation of androgen-dependent (AD) LNCaP and androgen-independent (AI) DU145 and PC-3 prostate cancer (CaP) cells. Suppression of AD and AI CaP cell growth by piceatannol was accompanied by cell cycle blockade in G(1)/S and S phases for LNCaP and PC-3 and induction of apoptosis in DU145 cells. Induction of apoptosis by piceatannol in DU145 cells was evident by reduced expression of poly(ADP-ribose) polymerase (PARP), cleavage of caspase 3 and apoptosis inducing factor AIF, and an increase in cytochrome c. The apoptotic changes occurred in concordance with DNA damage, supported by increased phosphorylated histone H2AX. Immunoblot analyses showed that exposure of different-stage CaP cells to piceatannol also resulted in cell-type-specific downregulation of mTOR and its upstream and downstream effector proteins, AKT and eIF-4E-BP1. We propose that the observed AKT and mTOR changes are new targets of piceatannol possibly contributing to its inhibitory activities on proliferation of CaP cells.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
50
|
Activation of spleen tyrosine kinase is required for TNF-α-induced endothelin-1 upregulation in human aortic endothelial cells. FEBS Lett 2012; 586:818-26. [PMID: 22321643 DOI: 10.1016/j.febslet.2012.01.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/20/2012] [Accepted: 01/27/2012] [Indexed: 01/06/2023]
Abstract
Endothelin-1 (ET-1) promotes atherosclerosis. We tested whether spleen tyrosine kinase (Syk) mediates tumor necrosis factor-α (TNF-α)-induced ET-1 upregulation in human aortic endothelial cells (HAECs) and sought to identify the signal pathways involved. TNF-α-induced reactive oxygen species (ROS) activated Syk and phosphatidylinositol 3-kinase (PI3K), which was required for the activation of AP-1 and subsequent ET-1 gene transcription. ROS mediated c-Jun NH(2)-terminal kinase (JNK) is also required for AP-1 activation, but Syk and PI3K regulated AP-1 activation independently of JNK. Through regulation of ET-1 production, Syk could be implicated in atherosclerosis.
Collapse
|