1
|
Batista LFS, Sandoval Pacheco CM, Flores GVA, Ferreira FM, Gonçalves ANA, Sosa-Ochoa WH, da Matta VLR, Gomes CMC, Zúniga C, Corbett CEP, Jeffares DC, Nakaya HI, Silveira FT, Laurenti MD. Molecular Insights into Cell-Mediated Immunity in Atypical Non-Ulcerated Cutaneous Leishmaniasis. Microorganisms 2025; 13:413. [PMID: 40005779 PMCID: PMC11858551 DOI: 10.3390/microorganisms13020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Leishmania (Leishmania) infantum chagasi infections range from asymptomatic (AS) to severe visceral leishmaniasis (VL). One of the manifestations is an atypical non-ulcerated cutaneous leishmaniasis (NUCL), which occurs in some locations of Central America with few cases of VL. We conducted a transcriptomic analysis of cell-mediated immunity (CMI) on blood samples from NUCL, AS, VL patients from Amapala, Honduras, and healthy controls. RNA-seq revealed a similar perturbation of gene expression in NUCL and AS. Eight gene signatures of CMI were found in NUCL involved in CD8+ T lymphocyte infiltration, reactive oxygen species generation, PD-1 receptor ligand, inflammasome assembly, chemotaxis, complement receptor and suppressor immune cell infiltration. NUCL was distinguished from VL by its up-regulation of differently expressed genes (DEGs) related to T lymphocyte exhaustion, adhesion and transmigration of leukocytes, and down-regulation of oxidative stress genes. In contrast, VL exhibited up-regulated DEGs involved in antigen cross-presentation, and similar to VL from Brazil, down-regulated DEGs involved in innate immunity. Corroborating the transcriptome findings, both the Leishmanin skin test, and the immunopathology of NUCL skin lesion defined NUCL as a proinflammatory condition, intermediate between the AS and VL clinical outcomes. That condition may be the underlying element for the benign nature of the NUCL.
Collapse
Affiliation(s)
- Luís Fábio S. Batista
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - Carmen M. Sandoval Pacheco
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - Gabriela V. Araujo Flores
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - Frederico M. Ferreira
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - André N. A. Gonçalves
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil
| | - Wilfredo H. Sosa-Ochoa
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras;
| | - Vânia L. R. da Matta
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - Claudia M. C. Gomes
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - Concepción Zúniga
- Department of Health Surveillance, National Autonomous University of Honduras, Tegucigalpa 05005, Honduras
| | - Carlos E. P. Corbett
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| | - Daniel C. Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York YO31 5DD, UK;
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05620, Brazil
| | | | - Márcia D. Laurenti
- Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil (C.M.C.G.); (M.D.L.)
| |
Collapse
|
2
|
Gilles A, Hu L, Virdis F, Sant’Angelo DB, Dimitrova N, Hedrick JA, Denzin LK. The MHC Class II Antigen-Processing and Presentation Pathway Is Dysregulated in Type 1 Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1630-1642. [PMID: 37811896 PMCID: PMC10872857 DOI: 10.4049/jimmunol.2300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Peptide loading of MHC class II (MHCII) molecules is facilitated by HLA-DM (DM), which catalyzes CLIP release, stabilizes empty MHCII, and edits the MHCII-bound peptide repertoire. HLA-DO (DO) binds to DM and modulates its activity, resulting in an altered set of peptides presented at the cell surface. MHCII-peptide presentation in individuals with type 1 diabetes (T1D) is abnormal, leading to a breakdown in tolerance; however, no direct measurement of the MHCII pathway activity in T1D patients has been performed. In this study, we measured MHCII Ag-processing pathway activity in humans by determining MHCII, MHCII-CLIP, DM, and DO levels by flow cytometry for peripheral blood B cells, dendritic cells, and monocytes from 99 T1D patients and 97 controls. Results showed that MHCII levels were similar for all three APC subsets. In contrast, MHCII-CLIP levels, independent of sex, age at blood draw, disease duration, and diagnosis age, were significantly increased for all three APCs, with B cells showing the largest increase (3.4-fold). DM and DO levels, which usually directly correlate with MHCII-CLIP levels, were unexpectedly identical in T1D patients and controls. Gene expression profiling on PBMC RNA showed that DMB mRNA was significantly elevated in T1D patients with residual C-peptide. This resulted in higher levels of DM protein in B cells and dendritic cells. DO levels were also increased, suggesting that the MHCII pathway maybe differentially regulated in individuals with residual C-peptide. Collectively, these studies show a dysregulation of the MHCII Ag-processing pathway in patients with T1D.
Collapse
Affiliation(s)
- Ambroise Gilles
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, Current address: Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Lan Hu
- Oncology Informatics & Genomics, Philips North America, Cambridge, MA, 02141
| | - Francesca Virdis
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, Current address: Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - Derek B. Sant’Angelo
- Child Health Institute of New Jersey, Department of Pediatrics and Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and Graduate School of Biomedical Sciences, The State University of NJ, New Brunswick, NJ, 08901
| | - Nevenka Dimitrova
- Oncology Informatics and Genomics, Philips North America, Valhalla, NY 10598, Current address: Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| | | | - Lisa K. Denzin
- Child Health Institute of New Jersey, Department of Pediatrics and Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and Graduate School of Biomedical Sciences, The State University of NJ, New Brunswick, NJ, 08901
| |
Collapse
|
3
|
Song N, Welsh RA, Sadegh-Nasseri S. Proper development of long-lived memory CD4 T cells requires HLA-DO function. Front Immunol 2023; 14:1277609. [PMID: 37908352 PMCID: PMC10613709 DOI: 10.3389/fimmu.2023.1277609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction HLA-DO (DO) is an accessory protein that binds DM for trafficking to MIIC and has peptide editing functions. DO is mainly expressed in thymic medulla and B cells. Using biochemical experiments, our lab has discovered that DO has differential effects on editing peptides of different sequences: DO increases binding of DM-resistant peptides and reduces the binding of DM-sensitive peptides to the HLA-DR1 molecules. In a separate line of work, we have established that appropriate densities of antigen presentation by B cells during the contraction phase of an infection, induces quiescence in antigen experienced CD4 T cells, as they differentiate into memory T cells. This quiescence phenotype helps memory CD4 T cell survival and promotes effective memory responses to secondary Ag challenge. Methods Based on our mechanistic understanding of DO function, it would be expected that if the immunodominant epitope of antigen is DM-resistant, presentation of decreased densities of pMHCII by B cells would lead to faulty development of memory CD4 T cells in the absence of DO. We explored the effects of DO on development of memory CD4 T cells and B cells utilizing two model antigens, H5N1-Flu Ag bearing DM-resistant, and OVA protein, which has a DM-sensitive immunodominant epitope and four mouse strains including two DO-deficient Tg mice. Using Tetramers and multiple antibodies against markers of memory CD4 T cells and B cells, we tracked memory development. Results We found that immunized DR1+DO-KO mice had fewer CD4 memory T cells and memory B cells as compared to the DR1+DO-WT counterpart and had compromised recall responses. Conversely, OVA specific memory responses elicited in HA immunized DR1+DO-KO mice were normal. Conclusion These results demonstrate that in the absence of DO, the presentation of cognate foreign antigens in the DO-KO mice is altered and can impact the proper development of memory cells. These findings provide new insights on vaccination design leading to better immune memory responses.
Collapse
|
4
|
Shapiro IE, Bassani-Sternberg M. The impact of immunopeptidomics: From basic research to clinical implementation. Semin Immunol 2023; 66:101727. [PMID: 36764021 DOI: 10.1016/j.smim.2023.101727] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.
Collapse
Affiliation(s)
- Ilja E Shapiro
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland.
| |
Collapse
|
5
|
Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol Cell Proteomics 2022; 21:100204. [DOI: 10.1016/j.mcpro.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
|
6
|
Welsh RA, Sadegh-Nasseri S. The love and hate relationship of HLA-DM/DO in the selection of immunodominant epitopes. Curr Opin Immunol 2020; 64:117-123. [PMID: 32599219 PMCID: PMC7762731 DOI: 10.1016/j.coi.2020.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Successful activation of CD4 T cells is centered around the ability of antigen presenting cells to successfully process, select Class II immunodominant epitopes from exogenous antigens and to present it to cognate T cells. To achieve this, newly synthesized MHC-II molecules are transferred to a specialized compartment which contain both exogenous antigens and the Class II processing machinery. Here in a process known as 'editing,' the Class II accessory molecule DM (HLA-DM human; murine H2-M) facilitates the loading and selection of exogenous peptides to MHC class II molecules thereby assuring proper selection of immunodominant epitopes. A second Class II accessory molecule, DO (HLA-DO human; murine H2-O), mainly present in B cells and thymic epithelium also contributes to the selection of immunodominant epitopes. Yet, despite a wealth of mechanistic insights into how DM functions, understanding the contributions of DO to epitope selection has proven to be highly challenging. In this review, we have attempted to discuss published in vitro and in vivo data during the past three years with insights into the biology of DO.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
7
|
Welsh RA, Song N, Foss CA, Boronina T, Cole RN, Sadegh-Nasseri S. Lack of the MHC class II chaperone H2-O causes susceptibility to autoimmune diseases. PLoS Biol 2020; 18:e3000590. [PMID: 32069316 PMCID: PMC7028248 DOI: 10.1371/journal.pbio.3000590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
DO (HLA-DO, in human; murine H2-O) is a highly conserved nonclassical major histocompatibility complex class II (MHC II) accessory molecule mainly expressed in the thymic medulla and B cells. Previous reports have suggested possible links between DO and autoimmunity, Hepatitis C (HCV) infection, and cancer, but the mechanism of how DO contributes to these diseases remains unclear. Here, using a combination of various in vivo approaches, including peptide elution, mixed lymphocyte reaction, T-cell receptor (TCR) deep sequencing, tetramer-guided naïve CD4 T-cell precursor enumeration, and whole-body imaging, we report that DO affects the repertoire of presented self-peptides by B cells and thymic epithelium. DO induces differential effects on epitope presentation and thymic selection, thereby altering CD4 T-cell precursor frequencies. Our findings were validated in two autoimmune disease models by demonstrating that lack of DO increases autoreactivity and susceptibility to autoimmune disease development.
Collapse
Affiliation(s)
- Robin A. Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nianbin Song
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Catherine A. Foss
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Santambrogio L, Berendam SJ, Engelhard VH. The Antigen Processing and Presentation Machinery in Lymphatic Endothelial Cells. Front Immunol 2019; 10:1033. [PMID: 31134089 PMCID: PMC6513971 DOI: 10.3389/fimmu.2019.01033] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Until a few years ago, lymphatic vessels and lymphatic endothelial cells (LEC) were viewed as part of a passive conduit for lymph and immune cells to reach lymph nodes (LN). However, recent work has shown that LEC are active immunological players whose interaction with dendritic cells and T cells is of important immunomodulatory relevance. While the immunological interaction between LEC and other immune cells has taken a center stage, molecular analysis of LEC antigen processing and presentation machinery is still lagging. Herein we review the current knowledge of LEC MHC I and MHC II antigen processing and presentation pathways, Including the role of LEC in antigen phagocytosis, classical, and non-classical MHC II presentation, proteasome processing and MHC I presentation, and cross-presentation. The ultimate goal is to provide an overview of the LEC antigen processing and presentation machinery that constitutes the molecular basis for their role in MHC I and MHC II-restricted immune responses.
Collapse
Affiliation(s)
- Laura Santambrogio
- Department of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Stella J Berendam
- Department of Microbiology, Immunology and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Victor H Engelhard
- Department of Microbiology, Immunology and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
9
|
Nanaware PP, Jurewicz MM, Leszyk JD, Shaffer SA, Stern LJ. HLA-DO Modulates the Diversity of the MHC-II Self-peptidome. Mol Cell Proteomics 2019; 18:490-503. [PMID: 30573663 PMCID: PMC6398211 DOI: 10.1074/mcp.ra118.000956] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
Presentation of antigenic peptides on MHC-II molecules is essential for tolerance to self and for initiation of immune responses against foreign antigens. DO (HLA-DO in humans, H2-O in mice) is a nonclassical MHC-II protein that has been implicated in control of autoimmunity and regulation of neutralizing antibody responses to viruses. These effects likely are related to a role of DO in selecting MHC-II epitopes, but previous studies examining the effect of DO on presentation of selected CD4 T cell epitopes have been contradictory. To understand how DO modulates MHC-II antigen presentation, we characterized the full spectrum of peptides presented by MHC-II molecules expressed by DO-sufficient and DO-deficient antigen-presenting cells in vivo and in vitro using quantitative mass spectrometry approaches. We found that DO controlled the diversity of the presented peptide repertoire, with a subset of peptides presented only when DO was expressed. Antigen-presenting cells express another nonclassical MHC-II protein, DM, which acts as a peptide editor by preferentially catalyzing the exchange of less stable MHC-II peptide complexes, and which is inhibited when bound to DO. Peptides presented uniquely in the presence of DO were sensitive to DM-mediated exchange, suggesting that decreased DM editing was responsible for the increased diversity. DO-deficient mice mounted CD4 T cell responses against wild-type antigen-presenting cells, but not vice versa, indicating that DO-dependent alterations in the MHC-II peptidome could be recognized by circulating T cells. These data suggest that cell-specific and regulated expression of HLA-DO serves to fine-tune MHC-II peptidomes, in order to enhance self-tolerance to a wide spectrum of epitopes while allowing focused presentation of immunodominant epitopes during an immune response.
Collapse
Affiliation(s)
- Padma P Nanaware
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mollie M Jurewicz
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - John D Leszyk
- §Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
| | - Scott A Shaffer
- §Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
- ¶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Lawrence J Stern
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
- ¶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
10
|
Welsh R, Song N, Sadegh-Nasseri S. What to do with HLA-DO/H-2O two decades later? Immunogenetics 2019; 71:189-196. [PMID: 30683973 PMCID: PMC6377320 DOI: 10.1007/s00251-018-01097-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
The main objective of antigen processing is to orchestrate the selection of immunodominant epitopes for recognition by CD4 T cells. To achieve this, MHC class II molecules have evolved with a flexible peptide-binding groove in need of a bound peptide. Newly synthesized MHC-II molecules bind a class II invariant chain (Ii) upon synthesis and are shuttled to a specialized compartment, where they encounter exogenous antigens. Ii serves multiple functions, one of which is to maintain the shape of the MHC-II groove so that it can readily bind exogenous antigens upon dissociation of the Ii peptide in MHC- II compartment. MIIC contains processing enzymes, one or both accessory molecules, HLA-DM/H2-M (DM) and HLA-DO/H2-O (DO), and optimal denaturing conditions. In a process known as "editing," DM facilitates the dissociation of the invariant chain peptide, CLIP, for exchange with exogenous antigens. Despite the availability of mechanistic insights into DM functions, understanding how DO contributes to epitope selection has proven to be more challenging. The current dogma assumes that DO inhibits DM, whereas an opposing model suggests that DO fine-tunes the epitope selection process. Understanding which of these, or potentially other models of DO function is important, as DO variants have been linked to autoimmunity, cancer, and the generation of broadly neutralizing antibodies to viruses. This review therefore attempts to evaluate experimental evidence in support of these hypotheses, with an emphasis on the less discussed model, and to explore intriguing questions about the importance of DO in biology.
Collapse
Affiliation(s)
- Robin Welsh
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Nianbin Song
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
12
|
Zapata L, Pich O, Serrano L, Kondrashov FA, Ossowski S, Schaefer MH. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol 2018; 19:67. [PMID: 29855388 PMCID: PMC5984361 DOI: 10.1186/s13059-018-1434-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background Natural selection shapes cancer genomes. Previous studies used signatures of positive selection to identify genes driving malignant transformation. However, the contribution of negative selection against somatic mutations that affect essential tumor functions or specific domains remains a controversial topic. Results Here, we analyze 7546 individual exomes from 26 tumor types from TCGA data to explore the portion of the cancer exome under negative selection. Although we find most of the genes neutrally evolving in a pan-cancer framework, we identify essential cancer genes and immune-exposed protein regions under significant negative selection. Moreover, our simulations suggest that the amount of negative selection is underestimated. We therefore choose an empirical approach to identify genes, functions, and protein regions under negative selection. We find that expression and mutation status of negatively selected genes is indicative of patient survival. Processes that are most strongly conserved are those that play fundamental cellular roles such as protein synthesis, glucose metabolism, and molecular transport. Intriguingly, we observe strong signals of selection in the immunopeptidome and proteins controlling peptide exposition, highlighting the importance of immune surveillance evasion. Additionally, tumor type-specific immune activity correlates with the strength of negative selection on human epitopes. Conclusions In summary, our results show that negative selection is a hallmark of cell essentiality and immune response in cancer. The functional domains identified could be exploited therapeutically, ultimately allowing for the development of novel cancer treatments. Electronic supplementary material The online version of this article (10.1186/s13059-018-1434-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Zapata
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Oriol Pich
- Evolutionary Genomics Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Luis Serrano
- Design of Biological Systems Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Fyodor A Kondrashov
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Stephan Ossowski
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | - Martin H Schaefer
- Design of Biological Systems Group, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
13
|
Zhang Z, Yan C, Li B, Li L. Potential biological functions of microvesicles derived from adenoid cystic carcinoma. Oncol Lett 2018; 15:7900-7908. [PMID: 29725477 PMCID: PMC5920383 DOI: 10.3892/ol.2018.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/28/2017] [Indexed: 02/05/2023] Open
Abstract
Microvesicles (MVs) are secreted by multiple types of tumor cell and are involved in tumor progression and metastasis. The aim of the present study was to explore the effects of MVs derived from salivary adenoid cystic carcinoma (SACC) and to investigate their potential involvement in the pathogenesis of perineural invasion of SACC. MVs were isolated from ACCs cells, and differential gene expression profiles of these MVs were compared with their donor cells to speculate on their biological functions. Several candidate genes were validated using reverse transcription-quantitative polymerase chain reaction analysis. The effects of ACCs MVs on rat Schwann cells (RSC96 cells), which are the principal glia of the peripheral nervous system, were then evaluated by phospho-antibody array performed on RSC96 cells transduced with ACCs MVs. The results indicated that ACCs cells may produce MVs. Microarray-based expression profiles between ACCs cells and their MVs identified 1,355 genes involved in cell adhesion, development and the regulation of apoptosis. In addition, the extracellular signal-regulated protein kinase signal pathway in RSC96 cells may be induced by ACCs-derived MVs. These results may help to elucidate the mechanisms underlying perineural invasion in SACC, and to determine a promising anti-tumor biological therapeutic target.
Collapse
Affiliation(s)
- Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chaoran Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
14
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Denzin LK, Khan AA, Virdis F, Wilks J, Kane M, Beilinson HA, Dikiy S, Case LK, Roopenian D, Witkowski M, Chervonsky AV, Golovkina TV. Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-classical MHC Class II Gene H2-Ob. Immunity 2017; 47:310-322.e7. [PMID: 28813660 PMCID: PMC5568092 DOI: 10.1016/j.immuni.2017.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/23/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.
Collapse
Affiliation(s)
- Lisa K Denzin
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Aly A Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Francesca Virdis
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Jessica Wilks
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Melissa Kane
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Helen A Beilinson
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Stanislav Dikiy
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Laure K Case
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Michele Witkowski
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | - Tatyana V Golovkina
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung SC, Mellins ED. The Other Function: Class II-Restricted Antigen Presentation by B Cells. Front Immunol 2017; 8:319. [PMID: 28386257 PMCID: PMC5362600 DOI: 10.3389/fimmu.2017.00319] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Mature B lymphocytes (B cells) recognize antigens using their B cell receptor (BCR) and are activated to become antibody-producing cells. In addition, and integral to the development of a high-affinity antibodies, B cells utilize the specialized major histocompatibility complex class II (MHCII) antigen presentation pathway to process BCR-bound and internalized protein antigens and present selected peptides in complex with MHCII to CD4+ T cells. This interaction influences the fate of both types of lymphocytes and shapes immune outcomes. Specific, effective, and optimally timed antigen presentation by B cells requires well-controlled intracellular machinery, often regulated by the combined effects of several molecular events. Here, we delineate and summarize these events in four steps along the antigen presentation pathway: (1) antigen capture and uptake by B cells; (2) intersection of internalized antigen/BCRs complexes with MHCII in peptide-loading compartments; (3) generation and regulation of MHCII/peptide complexes; and (4) exocytic transport for presentation of MHCII/peptide complexes at the surface of B cells. Finally, we discuss modulation of the MHCII presentation pathway across B cell development and maturation to effector cells, with an emphasis on the shaping of the MHCII/peptide repertoire by two key antigen presentation regulators in B cells: HLA-DM and HLA-DO.
Collapse
Affiliation(s)
- Lital N Adler
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Wei Jiang
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Claudia Macaubas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Shu-Chen Hung
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Jiang W, Strohman MJ, Somasundaram S, Ayyangar S, Hou T, Wang N, Mellins ED. pH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity. Sci Rep 2015; 5:17333. [PMID: 26610428 PMCID: PMC4661524 DOI: 10.1038/srep17333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/28/2015] [Indexed: 11/14/2022] Open
Abstract
The peptide-exchange catalyst, HLA-DM, and its inhibitor, HLA-DO control endosomal generation of peptide/class II major histocompatibility protein (MHC-II) complexes; these complexes traffic to the cell surface for inspection by CD4+ T cells. Some evidence suggests that pH influences DO regulation of DM function, but pH also affects the stability of polymorphic MHC-II proteins, spontaneous peptide loading, DM/MHC-II interactions and DM catalytic activity, imposing challenges on approaches to determine pH effects on DM-DO function and their mechanistic basis. Using optimized biochemical methods, we dissected pH-dependence of spontaneous and DM-DO-mediated class II peptide exchange and identified an MHC-II allele-independent relationship between pH, DO/DM ratio and efficient peptide exchange. We demonstrate that active, free DM is generated from DM-DO complexes at late endosomal/lysosomal pH due to irreversible, acid-promoted DO destruction rather than DO/DM molecular dissociation. Any soluble DM that remains in complex with DO stays inert. pH-exposure of DM-DO in cell lysates corroborates such a pH-regulated mechanism, suggesting acid-activated generation of functional DM in DO-expressing cells.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael J Strohman
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | | | - Sashi Ayyangar
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Tieying Hou
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Nan Wang
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
|
19
|
Denzin LK. Inhibition of HLA-DM Mediated MHC Class II Peptide Loading by HLA-DO Promotes Self Tolerance. Front Immunol 2013; 4:465. [PMID: 24381574 PMCID: PMC3865790 DOI: 10.3389/fimmu.2013.00465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/03/2013] [Indexed: 12/05/2022] Open
Abstract
Major histocompatibility class II (MHCII) molecules are loaded with peptides derived from foreign and self-proteins within the endosomes and lysosomes of antigen presenting cells (APCs). This process is mediated by interaction of MHCII with the conserved, non-polymorphic MHCII like molecule HLA-DM (DM). DM activity is directly opposed by HLA-DO (DO), another conserved, non-polymorphic MHCII like molecule. DO is an MHCII substrate mimic. Binding of DO to DM prevents MHCII from binding to DM, thereby inhibiting peptide loading. Inhibition of DM function enables low stability MHC complexes to survive and populate the surface of APCs. As a consequence, DO promotes the display of a broader pool of low abundance self-peptides. Broadening the peptide repertoire theoretically reduces the likelihood of inadvertently acquiring a density of self-ligands that is sufficient to activate self-reactive T cells. One function of DO, therefore, is to promote T cell tolerance by shaping the visible image of self. Recent data also shows that DO influences the adaptive immune response by controlling B cell entry into the germinal center reaction. This review explores the data supporting these concepts.
Collapse
Affiliation(s)
- Lisa K Denzin
- Department of Pediatrics, Robert Wood Johnson Medical School, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, NJ , USA
| |
Collapse
|
20
|
Clement CC, Santambrogio L. The lymph self-antigen repertoire. Front Immunol 2013; 4:424. [PMID: 24379811 PMCID: PMC3864156 DOI: 10.3389/fimmu.2013.00424] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/20/2013] [Indexed: 01/26/2023] Open
Abstract
The lymphatic fluid originates from the interstitial fluid which bathes every parenchymal organ and reflects the “omic” composition of the tissue from which it originates in its physiological or pathological signature. Several recent proteomic analyses have mapped the proteome-degradome and peptidome of this immunologically relevant fluid pointing to the lymph as an important source of tissue-derived self-antigens. A vast array of lymph-circulating peptides have been mapped deriving from a variety of processing pathways including caspases, cathepsins, MMPs, ADAMs, kallikreins, calpains, and granzymes, among others. These self peptides can be directly loaded on circulatory dendritic cells and expand the self-antigenic repertoire available for central and peripheral tolerance.
Collapse
Affiliation(s)
- Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine , New York, NY , USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine , New York, NY , USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| |
Collapse
|
21
|
Laing B, Han DY, Ferguson LR. Candidate genes involved in beneficial or adverse responses to commonly eaten brassica vegetables in a New Zealand Crohn's disease cohort. Nutrients 2013; 5:5046-64. [PMID: 24352087 PMCID: PMC3875924 DOI: 10.3390/nu5125046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Crohn’s disease (CD) is one of the two manifestations of inflammatory bowel disease. Particular foods are thought with CD to exacerbate their illness. Vegetables, especially Brassicaceae, are often shunned by people with CD because of the negative effects they are alleged to have on their symptoms. Brassicaceae supply key nutrients which are necessary to meet recommended daily intakes. We sought to identify the candidate genes involved in the beneficial or adverse effects of Brassicaceae most commonly eaten, as reported by the New Zealand adults from the “Genes and Diet in Inflammatory Bowel disease Study” based in Auckland. An analysis of associations between the single nucleotide polymorphisms (SNPs) and the beneficial or adverse effects of the ten most commonly eaten Brassicaceae was carried out. A total of 37 SNPs were significantly associated with beneficial effects (p = 0.00097 to 0.0497) and 64 SNPs were identified with adverse effects (p = 0.0000751 to 0.049). After correcting for multiple testing, rs7515322 (DIO1) and rs9469220 (HLA) remained significant. Our findings show that the tolerance of some varieties of Brassicaceae may be shown by analysis of a person’s genotype.
Collapse
Affiliation(s)
- Bobbi Laing
- Discipline of Nutrition, School of Medical Sciences, Auckland University, 85 Park Road, Grafton Campus, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
22
|
Yin L, Stern LJ. HLA-DM Focuses on Conformational Flexibility Around P1 Pocket to Catalyze Peptide Exchange. Front Immunol 2013; 4:336. [PMID: 24146666 PMCID: PMC3797982 DOI: 10.3389/fimmu.2013.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022] Open
Abstract
Peptides presented by major histocompatibility complex class II (MHCII) molecules to CD4+ T cells play a central role in the initiation of adaptive immunity. This antigen presentation process is characterized by the proteolytic cleavage of foreign and self proteins, and loading of the resultant peptides onto MHCII molecules. Loading and exchange of antigenic peptides is catalyzed by a non-classical MHCII molecule, HLA-DM. The impact of HLA-DM on epitope selection has been appreciated for a long time. However, the molecular mechanism by which HLA-DM mediates peptide exchange remains elusive. Here, we review recent efforts in elucidating how HLA-DM works, highlighted by two recently solved co-structures of HLA-DM bound to HLA-DO (a natural inhibitor of HLA-DM), or to HLA-DR1 (a common MHCII). In light of these efforts, a model for HLA-DM action in which HLA-DM utilizes conformational flexibility around the P1 pocket of the MHCII-peptide complex to catalyze peptide exchange is proposed.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | | |
Collapse
|
23
|
Poluektov YO, Kim A, Hartman IZ, Sadegh-Nasseri S. HLA-DO as the optimizer of epitope selection for MHC class II antigen presentation. PLoS One 2013; 8:e71228. [PMID: 23951115 PMCID: PMC3738515 DOI: 10.1371/journal.pone.0071228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing.
Collapse
Affiliation(s)
- Yuri O. Poluektov
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Isamu Z. Hartman
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
25
|
HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat Struct Mol Biol 2012; 20:90-8. [PMID: 23222639 PMCID: PMC3537886 DOI: 10.1038/nsmb.2460] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/25/2012] [Indexed: 12/03/2022]
Abstract
MHCII proteins bind peptide antigens in endosomal compartments of antigen-presenting cells. The non-classical MHCII protein HLA-DM chaperones peptide-free MHCII against inactivation and catalyzes peptide exchange on loaded MHCII. Another non-classical MHCII protein, HLA-DO, binds HLA-DM and influences the repertoire of peptides presented by MHCII proteins. However, the mechanism by which HLA-DO functions is unclear. Here we use x-ray crystallography, enzyme kinetics and mutagenesis approaches to investigate human HLA-DO structure and function. In complex with HLA-DM, HLA-DO adopts a classical MHCII structure, with alterations near the alpha subunit 310 helix. HLA-DO binds to HLA-DM at the same sites implicated in MHCII interaction, and kinetic analysis demonstrates that HLA-DO acts as a competitive inhibitor. These results show that HLA-DO inhibits HLA-DM function by acting as a substrate mimic and place constraints on possible functional roles for HLA-DO in antigen presentation.
Collapse
|
26
|
Phipps-Yonas H, Semik V, Hastings KT. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity. Eur J Immunol 2012; 43:65-74. [PMID: 23012103 DOI: 10.1002/eji.201242379] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 09/02/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4(+) T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We sought to determine whether GILT's reductase activity regulates CatS expression and function. Confocal microscopy confirmed that GILT and CatS colocalized within lysosomes of B cells. GILT expression posttranscriptionally decreased the steady-state protein expression of CatS in primary B cells and B-cell lines. GILT did not substantially alter the expression of other lysosomal proteins, including H2-M, H2-O, or CatL. GILT's reductase active site was necessary for diminished CatS protein levels, and GILT expression decreased the half-life of CatS, suggesting that GILT-mediated reduction of protein disulfide bonds enhances CatS degradation. GILT expression decreased the proteolysis of a CatS selective substrate. This study illustrates a physiologic mechanism that regulates CatS and has implications for fine tuning MHC class II-restricted Ag processing and for the development of CatS inhibitors, which are under investigation for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Hannah Phipps-Yonas
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | | |
Collapse
|
27
|
Erwin-Cohen R, Porter A, Pittman P, Rossi C, Dasilva L. Host responses to live-attenuated Venezuelan equine encephalitis virus (TC-83): comparison of naïve, vaccine responder and nonresponder to TC-83 challenge in human peripheral blood mononuclear cells. Hum Vaccin Immunother 2012; 8:1053-65. [PMID: 22617845 DOI: 10.4161/hv.20300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a positive-strand RNA Alphavirus endemic in Central and South America, and the causative agent of fatal encephalitis in humans. In an effort to better understand the mechanisms of infection, including differences between people who produce a neutralizing antibody response to the vaccine and those who do not, we performed whole genome transcriptional analysis in human PBMCs exposed in vitro to the live-attenuated vaccine strain of VEEV, TC-83. We compared the molecular responses in cells from three groups of individuals: naïve; previously vaccinated individuals who developed a neutralizing antibody response to the vaccine (responders); and those who did not develop a neutralizing antibody response to the vaccine (nonresponders). Overall, the changes in gene expression were more intense for the naïve group after TC-83 challenge and least potent in the nonresponder group. The main canonical pathways revealed the involvement of interferon and interferon-induced pathways, as well as toll-like receptors TLR- and interleukin (IL)-12-related pathways. HLA class II genotype and suppression of transcript expression for TLR2, TLR4 and TLR8 in the nonresponder group may help explain the lack of vaccine response in this study group. Because TL3 and TLR7 transcripts were elevated in all study groups, these factors may be indicators of the infection and not the immunological state of the individuals. Biomarkers were identified that differentiate between the vaccine responder and the vaccine nonresponder groups. The identified biomarkers were contrasted against transcripts that were unique to the naïve population alone upon induction with TC-83. Biomarker analysis allowed for the discernment between the naïve (innate) responses; the responder (recall) responses; and the nonresponder (alternative) changes to gene transcription that were caused by infection with TC-83. The study also points to the existence of HLA haplotypes that may discriminate between vaccine low- and high-responder phenotypes.
Collapse
Affiliation(s)
- Rebecca Erwin-Cohen
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Center for Aerobiological Sciences, 1425 Porter Street, Room 821, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
28
|
Porter GW, Yi W, Denzin LK. TLR agonists downregulate H2-O in CD8alpha- dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:4151-60. [PMID: 21918198 DOI: 10.4049/jimmunol.1003137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide loading of MHC class II (MHCII) molecules is catalyzed by the nonclassical MHCII-related molecule H2-M. H2-O, another MHCII-like molecule, associates with H2-M and modulates H2-M function. The MHCII presentation pathway is tightly regulated in dendritic cells (DCs), yet how the key modulators of MHCII presentation, H2-M and H2-O, are affected in different DC subsets in response to maturation is unknown. In this study, we show that H2-O is markedly downregulated in vivo in mouse CD8α(-) DCs in response to a broad array of TLR agonists. In contrast, CD8α(+) DCs only modestly downregulated H2-O in response to TLR agonists. H2-M levels were slightly downmodulated in both CD8α(-) and CD8α(+) DCs. As a consequence, H2-M/H2-O ratios significantly increased for CD8α(-) but not for CD8α(+) DCs. The TLR-mediated downregulation was DC specific, as B cells did not show significant H2-O and H2-M downregulation. TLR4 signaling was required to mediate DC H2-O downregulation in response to LPS. Finally, our studies showed that the mechanism of H2-O downregulation was likely due to direct protein degradation of H2-O as well as downregulation of H2-O mRNA levels. The differential H2-O and H2-M modulation after DC maturation supports the proposed roles of CD8α(-) DCs in initiating CD4-restricted immune responses by optimal MHCII presentation and of CD8α(+) DCs in promoting immune tolerance via presentation of low levels of MHCII-peptide.
Collapse
Affiliation(s)
- Gavin W Porter
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
29
|
Hou T, Macmillan H, Chen Z, Keech CL, Jin X, Sidney J, Strohman M, Yoon T, Mellins ED. An insertion mutant in DQA1*0501 restores susceptibility to HLA-DM: implications for disease associations. THE JOURNAL OF IMMUNOLOGY 2011; 187:2442-52. [PMID: 21775680 DOI: 10.4049/jimmunol.1100255] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HLA-DM (DM) catalyzes CLIP release, stabilizes MHC class II molecules, and edits the peptide repertoire presented by class II. Impaired DM function may have profound effects on Ag presentation events in the thymus and periphery that are critical for maintenance of self-tolerance. The associations of the HLA-DQ2 (DQ2) allele with celiac disease and type 1 diabetes mellitus have been appreciated for a long time. The explanation for these associations, however, remains unknown. We previously found that DQ2 is a poor substrate for DM. In this study, to further characterize DQ2-DM interaction, we introduced point mutations into DQ2 on the proposed DQ2-DM interface to restore the sensitivity of DQ2 to DM. The effects of mutations were investigated by measuring the peptide dissociation and exchange rate in vitro, CLIP and DQ2 expression on the cell surface, and the presentation of α-II-gliadin epitope (residues 62-70) to murine, DQ2-restricted T cell hybridomas. We found that the three α-chain mutations (α+53G, α+53R, or αY22F) decreased the intrinsic stability of peptide-class II complex. More interestingly, the α+53G mutant restored DQ2 sensitivity to DM, likely due to improved interaction with DM. Our data also suggest that α-II-gliadin 62-70 is a DM-suppressed epitope. The DQ2 resistance to DM changes the fate of this peptide from a cryptic to an immunodominant epitope. Our findings elucidate the structural basis for reduced DQ2-DM interaction and have implications for mechanisms underlying disease associations of DQ2.
Collapse
Affiliation(s)
- Tieying Hou
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ling F, Wei LQ, Wang T, Wang HB, Zhuo M, Du HL, Wang JF, Wang XN. Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Immunogenetics 2011; 63:155-166. [PMID: 21132285 PMCID: PMC7080152 DOI: 10.1007/s00251-010-0498-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolgus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolgus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolgus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolgus macaque but will also increase the value of this species as a model for biomedical research.
Collapse
Affiliation(s)
- Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Li-qiong Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Tao Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Hai-bo Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Min Zhuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Hong-li Du
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Ju-fang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Xiao-ning Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
31
|
Rinderknecht CH, Roh S, Pashine A, Belmares MP, Patil NS, Lu N, Truong P, Hou T, Macaubas C, Yoon T, Wang N, Busch R, Mellins ED. DM influences the abundance of major histocompatibility complex class II alleles with low affinity for class II-associated invariant chain peptides via multiple mechanisms. Immunology 2010; 131:18-32. [PMID: 20408893 PMCID: PMC2966754 DOI: 10.1111/j.1365-2567.2010.03282.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/27/2022] Open
Abstract
DM catalyses class II-associated invariant chain peptide (CLIP) release, edits the repertoire of peptides bound to major histocompatibility complex (MHC) class II molecules, affects class II structure, and thereby modulates binding of conformation-sensitive anti-class II antibodies. Here, we investigate the ability of DM to enhance the cell surface binding of monomorphic antibodies. We show that this enhancement reflects increases in cell surface class II expression and total cellular abundance, but notably these effects are selective for particular alleles. Evidence from analysis of cellular class II levels after cycloheximide treatment and from pulse-chase experiments indicates that DM increases the half-life of affected alleles. Unexpectedly, the pulse-chase experiments also revealed an early effect of DM on assembly of these alleles. The allelically variant feature that correlates with susceptibility to these DM effects is low affinity for CLIP; DM-dependent changes in abundance are reduced by invariant chain (CLIP) mutants that enhance CLIP binding to class II. We found evidence that DM mediates rescue of peptide-receptive DR0404 molecules from inactive forms in vitro and evidence suggesting that a similar process occurs in cells. Thus, multiple mechanisms, operating along the biosynthetic pathway of class II molecules, contribute to DM-mediated increases in the abundance of low-CLIP-affinity alleles.
Collapse
|
32
|
H2-O, a MHC class II-like protein, sets a threshold for B-cell entry into germinal centers. Proc Natl Acad Sci U S A 2010; 107:16607-12. [PMID: 20807742 DOI: 10.1073/pnas.1004664107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon antigen (Ag) encounter, B cells require T-cell help to enter the germinal center (GC). They obtain this help by presenting Ag-derived peptides on MHC class II (MHCII) for recognition by the T-cell receptor (TCR) of CD4(+) T cells. Peptides are loaded onto MHCII in endosomal compartments in a process catalyzed by the MHCII-like protein H2-M (HLA-DM in humans). This process is modulated by another MHCII-like protein, H2-O (HLA-DO in humans). H2-O is a biochemical inhibitor of peptide loading onto MHCII; however, on the cellular level, it has been shown to have varying effects on Ag presentation. Thus, the function of H2-O in the adaptive immune response remains unclear. Here, we examine the effect of H2-O expression on the ability of Ag-specific B cells to enter the GC. We show that when Ag specific WT and H2-O(-/-) B cells are placed in direct competition, H2-O(-/-) B cells preferentially populate the GC. This advantage is confined to Ag-specific B cells and is due to their superior ability to obtain Ag-specific T-cell help when T-cell help is limiting. Overall, our work shows that H2-O expression reduces the ability of B cells to gain T-cell help and participate in the GC reaction.
Collapse
|
33
|
Yi W, Seth NP, Martillotti T, Wucherpfennig KW, Sant'Angelo DB, Denzin LK. Targeted regulation of self-peptide presentation prevents type I diabetes in mice without disrupting general immunocompetence. J Clin Invest 2010; 120:1324-36. [PMID: 20200448 DOI: 10.1172/jci40220] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 01/06/2010] [Indexed: 01/06/2023] Open
Abstract
Peptide loading of MHC class II (MHCII) molecules is directly catalyzed by the MHCII-like molecule HLA-DM (DM). Another MHCII-like molecule, HLA-DO (DO), associates with DM, thereby modulating DM function. The biological role of DO-mediated regulation of DM activity in vivo remains unknown; however, it has been postulated that DO expression dampens presentation of self antigens, thereby preventing inappropriate T cell activation that ultimately leads to autoimmunity. To test the idea that DO modulation of the MHCII self-peptide repertoire mediates self tolerance, we generated NOD mice that constitutively overexpressed DO in DCs (referred to herein as NOD.DO mice). NOD mice are a mouse model for type 1 diabetes, an autoimmune disease mediated by the destruction of insulin-secreting pancreatic beta cells. Our studies showed that diabetes development was completely blocked in NOD.DO mice. Similar to NOD mice, NOD.DO animals selected a diabetogenic T cell repertoire, and the numbers and function of Tregs were normal. Indeed, immune system function in NOD.DO mice was equivalent to that in NOD mice. NOD.DO DCs, however, presented an altered MHCII-bound self-peptide repertoire, thereby preventing the activation of diabetogenic T cells and subsequent diabetes development. These studies show that DO expression can shape the overall MHCII self-peptide repertoire to promote T cell tolerance.
Collapse
Affiliation(s)
- Woelsung Yi
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Exploring the diabetogenicity of the HLA-B18-DR3 CEH: independent association with T1D genetic risk close to HLA-DOA. Genes Immun 2009; 10:596-600. [PMID: 19458622 DOI: 10.1038/gene.2009.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to identify additional diabetes susceptibility markers in the MHC that could be responsible for the differential diabetogenicity of different HLA-DR3 CEHs. High-resolution SNP genotyping of the MHC was carried out in 15 type 1 diabetes (T1D) patients and 39 non-diabetic controls, homozygous for DR3-DQ2 and with one copy of the A(*)30-B(*)18-MICA(*)4-F1C30-DRB1(*)0301-DQB1(*)0201-DPB1(*)0202 HLA haplotype. Significantly associated SNPs were replicated in an independent sample of 554 T1D patients and 841 controls without HLA matching. Electrophoretic mobility shift assay was used to show a functional effect of an associated SNP. Seven SNPs showed evidence of association in the initial discovery experiment. Upon replication, only rs419434 (upstream HLA-DOA gene) remained significant. A functional variant (rs432375) in complete LD with rs419434 was shown to affect USF-1 binding and could be responsible for the association signal in the region. We have identified a new susceptibility locus within the MHC with a modest contribution to T1D (OR=1.93; CI: 1.52-2.44; P=10(-8)) that is independent of HLA-DRB1 locus.
Collapse
|
35
|
Deshaies F, Diallo DA, Fortin JS, O'Rourke HM, Pezeshki AM, Bellemare-Pelletier A, Raby N, Bédard N, Brunet A, Denzin LK, Thibodeau J. Evidence for a human leucocyte antigen-DM-induced structural change in human leucocyte antigen-DObeta. Immunology 2008; 127:408-17. [PMID: 19019088 DOI: 10.1111/j.1365-2567.2008.02984.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human leucocyte antigen (HLA)-DO is a non-classical major histocompatibility complex class II molecule which modulates the function of HLA-DM and the loading of antigenic peptides on molecules such as HLA-DR. The bulk of HLA-DO associates with HLA-DM and this interaction is critical for HLA-DO egress from the endoplasmic reticulum. HLA-DM assists the early steps of HLA-DO maturation presumably through the stabilization of the interactions between the N-terminal regions of the alpha and beta chains. To evaluate a possible role for HLA-DM in influencing the conformation of HLA-DO, we made use of a monoclonal antibody, Mags.DO5, that was raised against HLA-DO/DM complexes. Using transfected cells expressing mismatched heterodimers between HLA-DR and -DO chains, we found that the epitope for Mags.DO5 is located on the DObeta chain and that Mags.DO5 reactivity was increased upon cotransfection with HLA-DM. Our results suggest that HLA-DM influences the folding of HLA-DO in the endoplasmic reticulum. A mutant HLA-DO showing reduced capacity for endoplasmic reticulum egress was better recognized by Mags.DO5 in the presence of HLA-DM. On the other hand, an HLA-DO mutant capable of endoplasmic reticulum egress on its own was efficiently recognized by Mags.DO5, irrespective of the presence of HLA-DM. Taken together, our results suggest that HLA-DM acts as a private chaperone, directly assisting the folding of HLA-DO to promote egress from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Francis Deshaies
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fallang LE, Roh S, Holm A, Bergseng E, Yoon T, Fleckenstein B, Bandyopadhyay A, Mellins ED, Sollid LM. Complexes of two cohorts of CLIP peptides and HLA-DQ2 of the autoimmune DR3-DQ2 haplotype are poor substrates for HLA-DM. THE JOURNAL OF IMMUNOLOGY 2008; 181:5451-5461. [PMID: 18832702 DOI: 10.4049/jimmunol.181.8.5451] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atypical invariant chain (Ii) CLIP fragments (CLIP2) have been found in association with HLA-DQ2 (DQ2) purified from cell lysates. We mapped the binding register of CLIP2 (Ii 96-104) to DQ2 and found proline at the P1 position, in contrast to the canonical CLIP1 (Ii 83-101) register with methionine at P1. CLIP1/2 peptides are the predominant peptide species, even for DQ2 from HLA-DM (DM)-expressing cells. We hypothesized that DQ2-CLIP1/2 might be poor substrates for DM. We measured DM-mediated exchange of CLIP and other peptides for high-affinity indicator peptides and found it is inefficient for DQ2. DM-DQ-binding and DM chaperone effects on conformation and levels of DQ are also reduced for DQ2, compared with DQ1. We suggest that the unusual interaction of DQ2 with Ii and DM may provide a basis for the known disease associations of DQ2.
Collapse
Affiliation(s)
- Lars-Egil Fallang
- Centre for Immune Regulation and Institute of Immunology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | - Sujin Roh
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Anders Holm
- Centre for Immune Regulation and Institute of Immunology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | - Elin Bergseng
- Centre for Immune Regulation and Institute of Immunology, Rikshospitalet University Hospital, N-0027 Oslo, Norway
| | - Taejin Yoon
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Burkhard Fleckenstein
- Centre for Immune Regulation and Institute of Immunology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | - Ludvig M Sollid
- Centre for Immune Regulation and Institute of Immunology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway.,Centre for Immune Regulation and Institute of Immunology, Rikshospitalet University Hospital, N-0027 Oslo, Norway
| |
Collapse
|
37
|
Chen X, Jensen PE. MHC class II antigen presentation and immunological abnormalities due to deficiency of MHC class II and its associated genes. Exp Mol Pathol 2008; 85:40-4. [PMID: 18547561 PMCID: PMC2568888 DOI: 10.1016/j.yexmp.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/02/2008] [Indexed: 11/24/2022]
Abstract
Antigen presentation by Major Histocompatibility Complex (MHC) class II molecules plays an important role in controlling immunity and autoimmunity. Multiple co-factors including the invariant chain (Ii), HLA-DM and HLA-DO are involved in this process. While the role for Ii and DM has been well defined, the biological function of DO remains obscure. Our data indicate that DO inhibits presentation of endogenous self-antigens and that developmentally-regulated DO expression enables antigen presenting cells to preferentially present different sources of peptide antigens at different stages of development. Disruption of this regulatory mechanism can result in not only immunodeficiency but also autoimmunity. Despite the fact that deletion of each of the three genes in experimental animals is associated with profound immunological abnormalities, no corresponding human diseases have been reported. This discrepancy suggests the possibility that primary immunodeficiencies due to a genetic defect of Ii, DM and DO in humans are under diagnosed or diagnosed as "common variable immunodeficiency", a category of immunodeficiency of heterogeneous or undefined etiology. Clinical tests for any of these potential genetic defects are not yet available. We propose the use of multi-color flow cytometry in conjunction with intracellular staining to detect expression of Ii, DM, DO in peripheral blood B cells as a convenient reliable screening test to identify individuals with defects in antigen presentation.
Collapse
Affiliation(s)
- Xinjian Chen
- Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
38
|
Fallas JL, Yi W, Draghi NA, O'Rourke HM, Denzin LK. Expression Patterns of H2-O in Mouse B Cells and Dendritic Cells Correlate with Cell Function. THE JOURNAL OF IMMUNOLOGY 2007; 178:1488-97. [PMID: 17237397 DOI: 10.4049/jimmunol.178.3.1488] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the endosomes of APCs, the MHC class II-like molecule H2-M catalyzes the exchange of class II-associated invariant chain peptides (CLIP) for antigenic peptides. H2-O is another class II-like molecule that modulates the peptide exchange activity of H2-M. Although the expression pattern of H2-O in mice has not been fully evaluated, H2-O is expressed by thymic epithelial cells, B cells, and dendritic cells (DCs). In this study, we investigated H2-O, H2-M, and I-A(b)-CLIP expression patterns in B cell subsets during B cell development and activation. H2-O was first detected in the transitional 1 B cell subset and high levels were maintained in marginal zone and follicular B cells. H2-O levels were down-regulated specifically in germinal center B cells. Unexpectedly, we found that mouse B cells may have a pool of H2-O that is not associated with H2-M. Additionally, we further evaluate H2-O and H2-M interactions in mouse DCs, as well as H2-O expression in bone marrow-derived DCs. We also evaluated H2-O, H2-M, I-A(b), and I-A(b)-CLIP expression in splenic DC subsets, in which H2-O expression levels varied among the splenic DC subsets. Although it has previously been shown that H2-O modifies the peptide repertoire, H2-O expression did not alter DC presentation of a number of endogenous and exogenous Ags. Our further characterization of H2-O expression in DCs, as well as the identification of a potential free pool of H2-O in mouse splenic B cells, suggest that H2-O may have a yet to be elucidated role in immune responses.
Collapse
Affiliation(s)
- Jennifer L Fallas
- Cell Biology and Genetics Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
39
|
Shih FF, Racz J, Allen PM. Differential MHC class II presentation of a pathogenic autoantigen during health and disease. THE JOURNAL OF IMMUNOLOGY 2006; 176:3438-48. [PMID: 16517712 DOI: 10.4049/jimmunol.176.6.3438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose-6-phosphate isomerase (GPI) is the target autoantigen recognized by KRN T cells in the K/BxN model of rheumatoid arthritis. T cell reactivity to this ubiquitous Ag results in the recruitment of anti-GPI B cells and subsequent immune complex-mediated arthritis. Because all APCs have the capacity to process and present this autoantigen, it is unclear why systemic autoimmunity with polyclonal B cell activation does not ensue. To this end, we examined how GPI is presented by B cells relative to other immunologically relevant APCs such as dendritic cells (DCs) and macrophages in the steady state, during different phases of arthritis development, and after TLR stimulation. Although all APCs can process and present the GPI:I-A(g7) complex, they do so with different efficiencies. DCs are the most potent at baseline and become progressively more potent with disease development correlating with immune complex uptake. Interestingly, in vivo and in vitro maturation of DCs did not enhance GPI presentation, suggesting that DCs use mechanisms to regulate the presentation of self-peptides. Non-GPI-specific B cells are the weakest APCs (100-fold less potent than DCs) and fail to productively engage KRN T cells at steady state and during arthritis. However, the ability to stimulate KRN T cells is strongly enhanced in B cells after TLR ligation and provides a mechanism whereby polyclonal B cells may be activated in the wake of an acute infection.
Collapse
Affiliation(s)
- Fei F Shih
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
40
|
Chen X, Reed-Loisel LM, Karlsson L, Jensen PE. H2-O Expression in Primary Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3548-56. [PMID: 16517723 DOI: 10.4049/jimmunol.176.6.3548] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H2-O is a nonpolymorphic class II molecule whose biological role remains to be determined. H2-O modulates H2-M function, and it has been generally believed to be expressed only in B lymphocytes and thymic medullary epithelial cells, but not in dendritic cells (DCs). In this study, we report identification of H2-O expression in primary murine DCs. Similar to B cells, H2-O is associated with H2-M in DCs, and its expression is differentially regulated in DC subsets as well as during cell maturation and activation. Primary bone marrow DCs and plasmacytoid DCs in the spleen and lymph nodes express MHC class II and H2-M, but not the inhibitor H2-O. In contrast, myeloid DCs in secondary lymphoid organs express both H2-M and H2-O. In CD8alphaalpha(+) DCs, the ratio of H2-O to H2-M is higher than in CD8alphaalpha(-) DCs. In DCs generated from GM-CSF- and IL-4-conditioned bone marrow cultures, H2-O expression is not detected regardless of the maturation status of the cells. Administration of LPS induces in vivo activation of myeloid DCs, and this activation is associated with down-regulation of H2-O expression. Primary splenic DCs from H2-O(-/-) and H2-O(+/+) mice present exogenous protein Ags to T cell hybridomas similarly well, but H2-O(-/-) DCs induce stronger allogeneic CD4 T cell response than the H2-O(+/+) DCs in mixed leukocyte reactions. Our results suggest that H2-O has a broader role than previously appreciated in regulating Ag presentation.
Collapse
Affiliation(s)
- Xinjian Chen
- Department of Pathology, School of Medicine, University of Utah, 5C124, 30 North 1900 East, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|
41
|
Hornell TMC, Burster T, Jahnsen FL, Pashine A, Ochoa MT, Harding JJ, Macaubas C, Lee AW, Modlin RL, Mellins ED. Human Dendritic Cell Expression of HLA-DO Is Subset Specific and Regulated by Maturation. THE JOURNAL OF IMMUNOLOGY 2006; 176:3536-47. [PMID: 16517722 DOI: 10.4049/jimmunol.176.6.3536] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of HLA-DO (DO) in cells that express HLA-DM (DM) results in an altered repertoire of MHC class II/peptide complexes, indicating that DO modulates DM function. Human and murine B cells and thymic epithelial cells express DO, while monocytes/macrophages do not. Monocyte-derived dendritic cells (DC) also have been found to be DO-negative, leading to the assumption that DC do not express DO. In this study, we report that, in fact, certain types of human primary DC express DO. These include Langerhans cells (LC) and some subtypes of circulating blood DC. Specifically, the majority of BDCA-3(+) DC, a small subset of uncertain function, are DO(+), while smaller proportions of CD11c(+), BDCA-1(+) (myeloid) DC, at most a minority of CD123(+)/BDCA-2(+) (plasmacytoid) DC, and no detectable CD16(+) (myeloid) DC, express DO. Immunohistochemistry of human tonsil sections demonstrates that tonsillar interdigitating DC are also DO(+). In a subset of immature LC with higher DO expression, an increased fraction of surface DR molecules carry CLIP peptides, indicating that DO functions as a DM inhibitor in these cells. LC expression of DO is down-regulated by maturation stimuli. DM levels also decrease under these conditions, but the DM:DO ratio generally increases. In the myeloid cell types tested, DO expression correlates with levels of DObeta, but not DOalpha, implying that modulation of DObeta regulates DO dimer abundance in these cells. The range of APC types shown to express DO suggests a broader role for DO in immune function than previously appreciated.
Collapse
Affiliation(s)
- Tara M C Hornell
- Department of Pediatrics, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moon SM, Gu H, Ryu HJ, Kim JJ, Kim HT, Han BG, Kimm K, Lee JK, Oh B. Identification of four novel HLA-DOA alleles, DOA*010106, DOA*0102, DOA*0103, and DOA*0104N, by sequence-based typing*. ACTA ACUST UNITED AC 2005; 66:242-5. [PMID: 16101837 DOI: 10.1111/j.1399-0039.2005.00446.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DOA sequences are currently known to have identical protein sequences. However, in this study, we report four novel allele types of human leucocyte antigen-DOA, including one synonymous and three non- synonymous amino acid changes from the Korean population. DOA*010106 has identical protein sequence with previously known DOA*010103 except one nucleotide difference at codon 45 (TCG-->TCA). In contrast, DOA*0102 and DOA*0103 have a sequence change at codon 99 (CTG-->GTG) and codon 105 (CGC-->TGC), causing non-synonymous amino acid changes, Leu99Val and Arg105Cys, respectively. In addition, DOA*0104N has a sequence deletion at codon 36 (CCC-->CC-), resulting in a frame shift leading to a stop codon at codon 62.
Collapse
Affiliation(s)
- S-M Moon
- National Genome Research Institute, National Institute of Health, Eunpyung-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TMC, Mellins ED. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 2005; 207:242-60. [PMID: 16181341 DOI: 10.1111/j.0105-2896.2005.00306.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.
Collapse
Affiliation(s)
- Robert Busch
- Division of Pediatric Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94705, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Peptide loading of major histocompatibility class II molecules is catalyzed in late endosomal and lysosomal compartments of cells by the catalytic action of human leukocyte antigen (HLA)-DM (H-2M in mice). In B cells, dendritic cells and thymic epithelial cells, the peptide loading of class II molecules is modified by the expression of the non-classical class II molecule, HLA-DO (H-2O in mice). Collectively, studies to date support that DO/H-2O expression inhibits the presentation of antigens acquired by cells via fluid phase endocytosis. However, in B cells, the expression of H-2O promotes the presentation of antigens internalized by the B-cell receptor. In this review, we summarize the literature pertaining to DO assembly, transport, and function, with an emphasis on the function of DO/H-2O.
Collapse
Affiliation(s)
- Lisa K Denzin
- Sloan-Kettering Institute, Immunology Program, Memorial Sloan-Kettering Cancer Center, NY 10021, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
The presentation of antigenic peptides by MHC class II molecules is essential for activation of CD4+ T cells. The formation of most peptide-MHC-class-II complexes is influenced by the actions of two specialized accessory proteins--DM and DO--located in the endosomal/lysosomal system where peptide loading occurs. DM removes class-II-associated invariant-chain peptide (CLIP) from newly synthesized class II molecules, but by now it is clearly established that this is only a special case of the general peptide-editing function of DM. Recent data have begun to explain the molecular basis for the editing activity. The other accessory protein, DO, modulates DM activity in vitro, but the physiological importance of DO is unclear. New evidence from several laboratories has provided clues that may soon change this.
Collapse
Affiliation(s)
- Lars Karlsson
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|