1
|
Salt inducible kinases 2 and 3 are required for thymic T cell development. Sci Rep 2021; 11:21550. [PMID: 34732767 PMCID: PMC8566462 DOI: 10.1038/s41598-021-00986-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Salt Inducible Kinases (SIKs), of which there are 3 isoforms, are established to play roles in innate immunity, metabolic control and neuronal function, but their role in adaptive immunity is unknown. To address this gap, we used a combination of SIK knockout and kinase-inactive knock-in mice. The combined loss of SIK1 and SIK2 activity did not block T cell development. Conditional knockout of SIK3 in haemopoietic cells, driven by a Vav-iCre transgene, resulted in a moderate reduction in the numbers of peripheral T cells, but normal B cell numbers. Constitutive knockout of SIK2 combined with conditional knockout of SIK3 in the haemopoietic cells resulted in a severe reduction in peripheral T cells without reducing B cell number. A similar effect was seen when SIK3 deletion was driven via CD4-Cre transgene to delete at the DP stage of T cell development. Analysis of the SIK2/3 Vav-iCre mice showed that thymocyte number was greatly reduced, but development was not blocked completely as indicated by the presence of low numbers CD4 and CD8 single positive cells. SIK2 and SIK3 were not required for rearrangement of the TCRβ locus, or for low level cell surface expression of the TCR complex on the surface of CD4/CD8 double positive thymocytes. In the absence of both SIK2 and SIK3, progression to mature single positive cells was greatly reduced, suggesting a defect in negative and/or positive selection in the thymus. In agreement with an effect on negative selection, increased apoptosis was seen in thymic TCRbeta high/CD5 positive cells from SIK2/3 knockout mice. Together, these results show an important role for SIK2 and SIK3 in thymic T cell development.
Collapse
|
2
|
Saroz Y, Kho DT, Glass M, Graham ES, Grimsey NL. Cannabinoid Receptor 2 (CB 2) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes. ACS Pharmacol Transl Sci 2019; 2:414-428. [PMID: 32259074 DOI: 10.1021/acsptsci.9b00049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Cannabinoid receptor 2 (CB2) is a promising therapeutic target for immunological modulation. There is, however, a deficit of knowledge regarding CB2 signaling and function in human primary immunocompetent cells. We applied an experimental paradigm which closely models the in situ state of human primary leukocytes (PBMC; peripheral blood mononuclear cells) to characterize activation of a number of signaling pathways in response to a CB2-selective ligand (HU308). We observed a "lag" phase of unchanged cAMP concentration prior to development of classically expected Gαi-mediated inhibition of cAMP synthesis. Application of G protein inhibitors revealed that this apparent lag was a result of counteraction of Gαi effects by concurrent Gαs activation. Monitoring downstream signaling events showed that activation of p38 was mediated by Gαi, whereas ERK1/2 and Akt phosphorylation were mediated by Gαi-coupled βγ. Activation of CREB integrated multiple components; Gαs and βγ mediated ∼85% of the response, while ∼15% was attributed to Gαi. Responses to HU308 had an important functional outcome-secretion of interleukins 6 (IL-6) and 10 (IL-10). IL-2, IL-4, IL-12, IL-13, IL-17A, MIP-1α, and TNF-α were unaffected. IL-6/IL-10 induction had a similar G protein coupling profile to CREB activation. All response potencies were consistent with that expected for HU308 acting via CB2. Additionally, signaling and functional effects were completely blocked by a CB2-selective inverse agonist, giving additional evidence for CB2 involvement. This work expands the current paradigm regarding cannabinoid immunomodulation and reinforces the potential utility of CB2 ligands as immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Yurii Saroz
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Dan T Kho
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Euan Scott Graham
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, Centre for Brain Research, Faculty of Medical and Health Sciences, and Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
3
|
Tsai HC, Velichko S, Lee S, Wu R. Cholera toxin enhances interleukin-17A production in both CD4 + and CD8 + cells via a cAMP/protein kinase A-mediated interleukin-17A promoter activation. Immunology 2018; 154:500-509. [PMID: 29377102 DOI: 10.1111/imm.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin (CT) is a bacterial component that increases intracellular cAMP levels in host cells and suppresses T-cell activation. Recently, CT was reported to induce T helper type 17-skewing dendritic cells and activate interleukin-17A (IL-17A) production in CD4+ T cells through a cAMP-dependent pathway. However, the underlying mechanism by which cAMP regulates IL-17A production in T cells is not completely defined. In this study, we took advantage of a small molecule protein kinase A (PKA) inhibitor (H89) and different cAMP analogues: a PKA-specific activator (N6-benzoyl-adenosine-cAMP), an exchange protein activated by cAMP-specific activator (Rp-8-chlorophenylthio-2'-O-methyl cAMP), and a PKA inhibitor (Rp-8-bromo-cAMP), to elucidate the signalling cascade of cAMP in IL-17A regulation in T cells. We found that CT induced IL-17A production and IL-17A promoter activity in activated CD4+ T cells through a cAMP/PKA pathway. Moreover, this regulation was via cAMP-response element binding protein (CREB) -mediated transcriptional activation by using the transfection of an IL-17A promoter-luciferase reporter construct and CREB small interfering RNA in Jurkat cells. Also, we showed that CREB bound to the CRE motif located at -183 of the IL-17A promoter in vitro. Most interestingly, not only in CD4+ T cells, CT also enhanced cAMP/PKA-dependent IL-17A production and CREB phosphorylation in CD8+ T cells. In conclusion, our data suggest that CT induces an IL-17A-dominated immune microenvironment through the cAMP/PKA/CREB signalling pathway. Our study also highlights the potentials of CT and cAMP in modulating T helper type 17 responses in vivo.
Collapse
Affiliation(s)
- Hsing-Chuan Tsai
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Sharlene Velichko
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA
| | - Shanshan Lee
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA
| | - Reen Wu
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Xue G, Zippelius A, Wicki A, Mandala M, Tang F, Massi D, Hemmings BA. Integrated Akt/PKB Signaling in Immunomodulation and Its Potential Role in Cancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv171. [DOI: 10.1093/jnci/djv171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
|
5
|
Linker RA, Lee DH, Flach AC, Litke T, van den Brandt J, Reichardt HM, Lingner T, Bommhardt U, Sendtner M, Gold R, Flügel A, Lühder F. Thymocyte-derived BDNF influences T-cell maturation at the DN3/DN4 transition stage. Eur J Immunol 2015; 45:1326-38. [PMID: 25627579 DOI: 10.1002/eji.201444985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/18/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival, regeneration, and plasticity. Emerging evidence also indicates an essential role for BDNF outside the nervous system, for instance in immune cells. We therefore investigated the impact of BDNF on T cells using BDNF knockout (KO) mice and conditional KO mice lacking BDNF specifically in this lymphoid subset. In both settings, we observed diminished T-cell cellularity in peripheral lymphoid organs and an increase in CD4(+) CD44(+) memory T cells. Analysis of thymocyte development revealed diminished total thymocyte numbers, accompanied by a significant increase in CD4/CD8 double-negative (DN) thymocytes due to a partial block in the transition from the DN3 to the DN4 stage. This was neither due to increased thymocyte apoptosis nor defects in the expression of the TCR-β chain or the pre-TCR. In contrast, pERK but not pAKT levels were diminished in DN3 BDNF-deficient thymocytes. BDNF deficiency in T cells did not result in gross deficits in peripheral acute immune responses nor in changes of the homeostatic proliferation of peripheral T cells. Taken together, our data reveal a critical autocrine and/or paracrine role of T-cell-derived BDNF in thymocyte maturation involving ERK-mediated TCR signaling pathways.
Collapse
Affiliation(s)
- Ralf A Linker
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany.,Department of Neurology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - De-Hyung Lee
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany.,Department of Neurology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Anne-Christine Flach
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| | - Tanja Litke
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| | - Jens van den Brandt
- Institute for Cellular and Molecular Immunology, University of Göttingen, Medical School, Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University of Göttingen, Medical School, Göttingen, Germany
| | - Thomas Lingner
- DNA Microarray and Deep-Sequencing Facility, Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ursula Bommhardt
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-Guericke University, Magdeburg, Germany
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ralf Gold
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany.,Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Alexander Flügel
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, University of Göttingen Medical School, Göttingen, Germany
| |
Collapse
|
6
|
van der Weerd K, van Hagen PM, Schrijver B, Heuvelmans SJWM, Hofland LJ, Swagemakers SMA, Bogers AJJC, Dik WA, Visser TJ, van Dongen JJM, van der Lelij AJ, Staal FJT. Thyrotropin acts as a T-cell developmental factor in mice and humans. Thyroid 2014; 24:1051-61. [PMID: 24635198 DOI: 10.1089/thy.2013.0396] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using gene expression profiling, we detected differential thyrotropin receptor (TSH-R) expression during human T-cell development in the thymus. This expression pattern indicated a potential role for the TSH-R within the thymus, independent of its function in the thyroid gland. Here, we demonstrate that TSH-R expression is thymus-specific within the immune system. TSH was able to bind and activate the TSH-R present on thymocytes, thereby activating calcium signaling and cyclic adenosine monophosphate signaling pathways. Mice lacking functional TSH-R expression (hyt/hyt mice) were shown to have lower frequencies of DP and SP thymocytes compared to their heterozygous littermates. Moreover, addition of TSH to co-cultures of human thymocytes enhanced T-cell development. Thus, TSH acts as a previously unrecognized growth factor for developing T cells, with potential clinical use to enhance thymic output and thereby the functional T-cell repertoire in the periphery. The direct effects of TSH on thymocytes may also explain the thus far enigmatic thymic hyperplasia in Graves' disease.
Collapse
Affiliation(s)
- Kim van der Weerd
- 1 Department of Immunology, Erasmus University Medical Center , Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pasquinelli V, Rovetta AI, Alvarez IB, Jurado JO, Musella RM, Palmero DJ, Malbrán A, Samten B, Barnes PF, García VE. Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to Mycobacterium tuberculosis. J Infect Dis 2012; 207:340-50. [PMID: 23125442 DOI: 10.1093/infdis/jis672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immune control of Mycobacterium tuberculosis depends on interferon γ (IFN-γ)-producing CD4(+) lymphocytes. Previous studies have shown that T cells from patients with tuberculosis produce less IFN-γ, compared with healthy donors, in response to mycobacterial antigens, although IFN-γ responses to mitogens are preserved. In this work, we found that M. tuberculosis-induced IFN-γ production by human T cells correlated with phosphorylation of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38. Moreover, the majority of IFN-γ-producing T cells expressed signaling lymphocyte activation molecule (SLAM), and SLAM activation further increased ERK phosphorylation. Interestingly, patients with tuberculosis had delayed activation of ERK and p38, and this was most marked in patients with the poorest IFN-γ responses (ie, low responders). Besides, SLAM signaling failed to phosphorylate ERK in low responders. Our findings suggest that activation of p38 and ERK, in part through SLAM, mediates T-cell IFN-γ production in response to M. tuberculosis, a pathway that is defective in patients with tuberculosis.
Collapse
Affiliation(s)
- Virginia Pasquinelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Biológica, Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6413-9. [PMID: 21084670 PMCID: PMC5519339 DOI: 10.4049/jimmunol.1001829] [Citation(s) in RCA: 618] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CREB is a transcription factor that regulates diverse cellular responses, including proliferation, survival, and differentiation. CREB is induced by a variety of growth factors and inflammatory signals and subsequently mediates the transcription of genes containing a cAMP-responsive element. Several immune-related genes possess this cAMP-responsive element, including IL-2, IL-6, IL-10, and TNF-α. In addition, phosphorylated CREB has been proposed to directly inhibit NF-κB activation by blocking the binding of CREB binding protein to the NF-κB complex, thereby limiting proinflammatory responses. CREB also induces an antiapoptotic survival signal in monocytes and macrophages. In T and B cells, CREB activation promotes proliferation and survival and differentially regulates Th1, Th2, and Th17 responses. Finally, CREB activation is required for the generation and maintenance of regulatory T cells. This review summarizes current advances involving CREB in immune function--a role that is continually being defined.
Collapse
Affiliation(s)
- Andy Y. Wen
- Division of Pediatric Critical Care, University of California Los Angeles, Los Angeles, CA, 90095
| | - Kathleen M. Sakamoto
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, 90095
| | - Lloyd S. Miller
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
9
|
Vav1 couples the T cell receptor to cAMP response element activation via a PKC-dependent pathway. Cell Signal 2010; 22:944-54. [PMID: 20138987 DOI: 10.1016/j.cellsig.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/21/2022]
Abstract
The transcription factor cAMP-responsive element binding protein (CREB) is a regulator of the expression of several genes important for lymphocyte activation and proliferation. However, the proximal signaling events leading to activation of CREB in T cells upon antigen receptor stimulation remain unknown. Here we identify a role for Vav1 in the activation of the cAMP response element (CRE), the binding site for CREB. T cell receptor (TCR)/CD28 - induced costimulation of Jurkat T cells expressing Vav1 but not a GEF-deficient mutant showed increased CRE activation (7.2+/-2.4 fold over control), whereas Vav1 downregulation by siRNA reduced activation of CRE by 2.6+/-1.3 fold. Inhibition of PKC and MEK but not p38 could reduce Vav1-mediated CRE activation, suggesting that Vav1 transmits TCR and CD28 signals to activation of CRE via PKC and ERK signaling pathways. As a consequence, downregulation of Vav1 impaired the expression of several CRE-containing genes like cyclin D1, INFgamma and IL-2, whereas overexpression of Vav1 enhanced CRE-dependent gene expression. Furthermore, cAMP-induced CRE-dependent transcription and gene expression was also modulated by Vav1, but did not require activation of PKC and the GEF function of Vav1. Our data provide insights into the signal transduction events regulating CRE-mediated gene expression in T cells, which affects T cell development, proliferation and activation. We identify Vav1 as an essential component of TCR-induced CRE activation and gene expression, which underlines the central role for Vav1 as key player for TCR signal transduction and gene expression.
Collapse
|
10
|
Ishida M, Mitsui T, Yamakawa K, Sugiyama N, Takahashi W, Shimura H, Endo T, Kobayashi T, Arita J. Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am J Physiol Endocrinol Metab 2007; 293:E1529-37. [PMID: 17925456 DOI: 10.1152/ajpendo.00028.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic hormones, including dopamine, regulate critical functions of pituitary cells via the cAMP-protein kinase A (PKA) pathway. The PKA-downstream transcription factor cAMP response element (CRE)-binding protein (CREB) is an integrating molecule that is also activated by many other protein kinase pathways. We investigated the involvement of CREB in the regulation of cell proliferation and the PRL promoter of rat lactotrophs in primary cell culture. Recombinant adenoviruses were used for efficient gene delivery into pituitary cells. Bromocriptine, a dopaminergic agonist known to decrease intracellular cAMP concentrations, caused inhibition of PRL promoter activity and lactotroph proliferation, which was accompanied by decreases in CRE-mediated transcription and CREB phosphorylation in lactotrophs. Expression of a dominant-negative form of CREB (MCREB), which was effective in suppressing CRE-mediated transcription induced by the adenylate cyclase activator forskolin, inhibited basal and forskolin-induced PRL promoter activity and PRL mRNA expression. MCREB expression lowered basal proliferative levels and blocked forskolin-induced proliferation of lactotrophs. Insulin-like growth factor I (IGF-I), a potent mitogen in lactotrophs, did not affect intracellular cAMP concentrations but transiently increased lactotroph CREB phosphorylation. MCREB expression also inhibited IGF-I-induced lactotroph proliferation. These results suggest that CREB is involved in the regulation of cell proliferation and the PRL promoter in normal lactotrophs and that dopamine inhibition of these lactotroph functions is at least in part due to inhibition of the cAMP-PKA-CREB pathway.
Collapse
Affiliation(s)
- Maho Ishida
- Dept. of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, Univ. of Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kaiser M, Wiggin GR, Lightfoot K, Arthur JSC, Macdonald A. MSK regulate TCR-induced CREB phosphorylation but not immediate early gene transcription. Eur J Immunol 2007; 37:2583-95. [PMID: 17668895 DOI: 10.1002/eji.200636606] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stimulation of the T cell receptor activates the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) cascades. We demonstrate that TCR stimulation also activates the mitogen- and stress-activated kinases (MSK) downstream of ERK1/2 and p38 in both a T cell line and primary peripheral T cells. MSK1/2-knockout mice were found to have normal numbers of T cells in the thymus, and development of these cells appeared unaffected. Using naive T cells and T lymphoblasts from MSK1/2-knockout mice, it was found that MSK was the kinase responsible for phosphorylation of the transcription factor CREB in response to TCR stimulation. Phosphorylation of CREB by MSK has been linked to the transcription of nur77, nor1 and c-fos downstream of MAPK signalling in various cell types. In T cells, the TCR-dependent transcription of these genes was found to require a MAPK-dependent but MSK-independent signalling pathway. Nevertheless, the number of T cells present in the spleens of MSK1/2-knockout mice and the IL-2-induced proliferation of these cells was reduced compared to wild-type mice. This correlated to a reduction in the TCR-induced up-regulation of the IL-2 receptor CD25 and a requirement for MSK in IL-2-induced CREB phosphorylation.
Collapse
Affiliation(s)
- Madlen Kaiser
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, UK
| | | | | | | | | |
Collapse
|
12
|
Nakagawa R, Mason SM, Michie AM. Determining the role of specific signaling molecules during lymphocyte development in vivo: instant transgenesis. Nat Protoc 2007; 1:1185-93. [PMID: 17406401 DOI: 10.1038/nprot.2006.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A common method of determining the role of specific signaling molecules during lymphocyte development is to generate a transgenic mouse. This procedure, while informative, is time consuming, expensive and ultimately does not guarantee a defined answer. Here we present a protocol in which the in vivo effects of a gene of interest on both B and T lymphocyte development may be determined simultaneously in a relatively short time period. This is achieved by introducing a defined gene, such as a wild-type or mutated signaling molecule, into a lymphoid progenitor population by retroviral infection. The retrovirus generates a bicistronic message encoding the gene of interest and GFP, thus enabling identification of retrovirally transduced cells in subsequent lymphocyte lineages. The cells are then introduced into mice deficient for recombinase activating gene 1 (Rag-/- mice), thus allowing the development of donor-derived B and T lymphocytes in vivo. Using this technique, results can be obtained within 3-8 weeks.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Division of Cancer Sciences and Molecular Pathology, Section of Experimental Haematology, Royal Infirmary, 10 Alexandra Parade, University of Glasgow, Scotland G31 2ER, UK
| | | | | |
Collapse
|
13
|
Nakagawa R, Soh JW, Michie AM. Subversion of protein kinase C alpha signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Res 2006; 66:527-34. [PMID: 16397269 DOI: 10.1158/0008-5472.can-05-0841] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived mature B cells with the distinctive phenotype CD19(hi) CD5+ CD23+ IgM(lo), which are refractory to apoptosis. An increased level of apoptosis has been observed on treatment of human B-CLL cells with protein kinase C (PKC) inhibitors, suggesting that this family of protein kinases mediate survival signals within B-CLL cells. Therefore, to investigate the ability of individual PKC isoforms to transform developing B cells, we stably expressed plasmids encoding PKC mutants in fetal liver-derived hematopoietic progenitor cells (HPC) from wild-type mice and then cultured them in B-cell generation systems in vitro and in vivo. Surprisingly, we noted that expression of a plasmid-encoding dominant-negative PKC alpha (PKC alpha-KR) in HPCs and subsequent culture both in vitro and in vivo resulted in the generation of a population of cells that displayed an enhanced proliferative capacity over untransfected cells and phenotypically resemble human B-CLL cells. In the absence of growth factors and stroma, these B-CLL-like cells undergo cell cycle arrest and, consistent with their ability to escape growth factor withdrawal-induced apoptosis, exhibited elevated levels of Bcl-2 expression. These studies therefore identify a unique oncogenic trigger for the development of a B-CLL-like disease resulting from the subversion of PKC alpha signaling. Our findings uncover novel avenues not only for the study of the induction of leukemic B cells but also for the development of therapeutic drugs to combat PKC alpha-regulated transformation events.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Division of Immunology, Infection and Inflammation, Western Infirmary, University of Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|
14
|
Hsieh YC, Chen YH, Jao HC, Hsu HK, Huang LJ, Hsu C. Role of cAMP-response element-binding protein phosphorylation in hepatic apoptosis under protein kinase C alpha suppression during sepsis. Shock 2006; 24:357-63. [PMID: 16205321 DOI: 10.1097/01.shk.0000183045.20974.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that a decrease in protein kinase C (PKC) alpha levels contributes to hepatic failure and/or apoptosis during sepsis, and suppression of PKCalpha plays a critical role in triggering caspase-dependent apoptosis, which can modulate expression of Bcl-xL. However, the underlying molecular mechanism remains uncertain. In the present study, we examined whether a decrease in the nuclear PKCalpha levels causes hepatic apoptosis via modulation of cAMP-response element-binding protein (CREB) or nuclear factor-kappaB (NFkappaB), the crucial factors regulating the expression of prosurvival Bcl-xL. For polymicrobial sepsis induction, a cecal ligation and puncture model was used; at 9 or 18 h after CLP, experiments were terminated, referring as early or late sepsis, respectively. Additionally, PKCalpha was suppressed by stable transfection of antisense PKCalpha plasmid into a Clone-9 rat hepatic epithelial cell. The results showed that the nuclear PKCalpha was significantly decreased in the liver during sepsis, which was accompanied by decreases in phospho-CREB content, DNA-binding activity of CREB, and Bcl-xL expression. Likewise, the binding activity of NFkappaB increased significantly, which was associated with a decrease in cytosolic inhibitory-kappaBalpha content. The in vitro suppression of PKCalpha also resulted in decreases in the phospho-CREB content and DNA-binding activity, which were accompanied by down-regulation of Bcl-xL and apoptosis, but no significant alteration in NFkappaB-binding activity. The in vivo and in vitro results suggest that the suppression of PKCalpha results in a decreased CREB phosphorylation and subsequent down-regulation of Bcl-xL, which may contribute to the hepatic apoptosis during sepsis.
Collapse
Affiliation(s)
- Ya-Ching Hsieh
- Department of Physiology, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Riz I, Hawley RG. G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia. Oncogene 2005; 24:5561-75. [PMID: 15897879 PMCID: PMC2408753 DOI: 10.1038/sj.onc.1208727] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The HOX11/TLX1 homeobox gene is aberrantly expressed in a subset of T-cell acute lymphoblastic leukemia (T-ALL). Here, we employed oligonucleotide microarrays to compare the expression profiles of the K3P and Sil leukemic cell lines originating from patients with HOX11+ T-ALL to that of Jurkat cells, which originated from a distinct subtype of T-ALL (TAL1+). To distinguish potential HOX11 target genes from those characteristic of the stage of HOX11 leukemic arrest, we also performed gene expression analysis on Jurkat cells, genetically engineered to express exogenous HOX11. The resulting HOX11 gene expression signature, which was validated for representative signaling pathways by transient transfection of reporter constructs, was characterized by elevated expression of transcriptional programs involved in cell proliferation, including those regulated by E2F, c-Myc and cAMP response element-binding protein. We subsequently showed that ectopic HOX11 expression resulted in hyperphosphorylation of the retinoblastoma protein (Rb), which correlated with inhibition of the major Rb serine/threonine phosphatase PP1. HOX11 also inhibited PP2A serine/threonine phosphatase activity concomitant with stimulation of the AKT/PKB signaling cascade. These results suggest that transcriptional deregulation of G1/S growth-control genes, mediated in large part through blockade of PP1/PP2A phosphatase activity, plays an important role in HOX11 pathobiology.
Collapse
Affiliation(s)
| | - Robert G. Hawley
- Correspondence: R.G. Hawley, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Suite 419, 2300 Eye Street, NW, Washington, DC 20037, USA. Phone: (202) 994−3511, Fax: (202) 994−8885. E-mail:
| |
Collapse
|
16
|
Michie AM, Nakagawa R. The link between PKCalpha regulation and cellular transformation. Immunol Lett 2005; 96:155-62. [PMID: 15585319 DOI: 10.1016/j.imlet.2004.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 08/24/2004] [Accepted: 08/25/2004] [Indexed: 02/04/2023]
Abstract
Protein kinase Calpha (PKCalpha) is a serine/threonine protein kinase that has been implicated in the regulation of a variety of cellular functions such as proliferation, differentiation and apoptosis in response to a diverse range of stimuli. In order to execute these biological events PKCalpha activity is modulated by, and functionally interacts with, a number of proto-oncogenes, therefore it is perhaps unsurprising that dysregulation of PKCalpha is associated with a diverse range of cancers. Recently, PKCalpha has become a target for a number of anti-cancer therapies. The purpose of this review is to describe how PKCalpha regulates key biological events, to gain an insight into how PKCalpha-mediated cellular transformation may occur. In this way, it may be possible to design therapeutic tools to combat cancers specifically associated with PKCalpha dysfunction.
Collapse
Affiliation(s)
- Alison M Michie
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, Scotland, UK.
| | | |
Collapse
|