1
|
Fiala GJ, Lücke J, Huber S. Pro- and antitumorigenic functions of γδ T cells. Eur J Immunol 2024; 54:e2451070. [PMID: 38803018 DOI: 10.1002/eji.202451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
γδ T cells are a subset of T cells that are characterized by the expression of a TCR-γδ instead of a TCR-αβ. Despite being outnumbered by their αβ T cell counterpart in many tissues, studies from the last 20 years underline their important and non-redundant roles in tumor and metastasis development. However, whether a γδ T cell exerts pro- or antitumorigenic effects seems to depend on a variety of factors, many of them still incompletely understood today. In this review, we summarize mechanisms by which γδ T cells exert these seemingly contradictory effector functions in mice and humans. Furthermore, we discuss the current view on inducing and inhibiting factors of γδ T cells during cancer development.
Collapse
Affiliation(s)
- Gina J Fiala
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Bettin L, Darbellay J, van Kessel J, Dhar N, Gerdts V. Porcine γδ T cells express cytotoxic cell-associated markers and display killing activity but are not selectively cytotoxic against PRRSV- or swIAV-infected macrophages. Front Immunol 2024; 15:1434011. [PMID: 39144143 PMCID: PMC11321972 DOI: 10.3389/fimmu.2024.1434011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.
Collapse
MESH Headings
- Animals
- Swine
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Cytotoxicity, Immunologic
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Porcine Reproductive and Respiratory Syndrome/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Biomarkers
- Orthomyxoviridae Infections/immunology
- Perforin/metabolism
- Perforin/immunology
- Intraepithelial Lymphocytes/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Hu W, Zhang X, Sheng H, Liu Z, Chen Y, Huang Y, He W, Luo G. The mutual regulation between γδ T cells and macrophages during wound healing. J Leukoc Biol 2024; 115:840-851. [PMID: 37493223 DOI: 10.1093/jleuko/qiad087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophages are the main cells shaping the local microenvironment during wound healing. As the prime T cells in the skin, γδ T cells participate in regulating microenvironment construction, determining their mutual regulation helps to understand the mechanisms of wound healing, and explore innovative therapeutic options for wound repair. This review introduced their respective role in wound healing firstly, and then summarized the regulatory effect of γδ T cells on macrophages, including chemotaxis, polarization, apoptosis, and pyroptosis. Last, the retrograde regulation on γδ T cells by macrophages was also discussed. The main purpose is to excavate novel interventions for treating wound and provide new thought for further research.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, Second Affiliated Hospital, Third Military Medical University (Army Medical University), XinQiao District, Chongqing 400037, China
| | - Zhongyang Liu
- Department of Plastic Surgery, First Affiliated Hospital, Zhengzhou University, ErQi District, Zhengzhou, Henan 450000, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| |
Collapse
|
4
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Lin P, Yan Y, Zhang Z, Dong Q, Yi J, Li Q, Zhang A, Kong X. The γδ T cells dual function and crosstalk with intestinal flora in treating colorectal cancer is a promising area of study. Int Immunopharmacol 2023; 123:110733. [PMID: 37579540 DOI: 10.1016/j.intimp.2023.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
The occurrence of colorectal cancer (CRC) is highly prevalent and severely affects human health, with the third-greatest occurrence and the second-greatest rate of death globally. Current CRC treatments, including surgery, radiotherapy, and chemotherapy, do not significantly improve CRC patients' survival rate and quality of life, so it is essential to develop new treatment strategies. Adoptive cell therapy and other immunotherapy came into being. Currently, there has been an especially significant emphasis on γδ T cells as being the primary recipient of adoptive cell therapy. The present investigation found that γδ T cells possess the capability to trigger cytotoxicity in CRC cells, secrete cytokines, recruit immune cells for the purpose of destroying cancer cells, and inhibit the progress of CRC indirectly. Nevertheless, It is possible for γδ T cells to initiate a storm of inflammatory factors and inhibit the immune response to promote the advancement of CRC. This review demonstrates a close association between the γδ T cell initiation pathway and their close association with the intestinal flora. It has been observed that the intestinal flora performs a vital function in facilitating the stimulation and functioning of γδ T cells. The tumor-fighting effect is mainly regulated by desulphurizing Vibrio and lactic acid bacteria. In contrast, the regulation of tumor-promoting impact is closely related to Clostridia and ETBF. This review systematically combs γδ T cell dual function and their relationship to intestinal flora, which offers a conceptual framework for the γδ T cell application for CRC therapies.
Collapse
Affiliation(s)
- Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ze Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S, Shi T. The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine 2023; 162:156108. [PMID: 36527892 DOI: 10.1016/j.cyto.2022.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been a promising, emerging treatment for various cancers. Gamma delta (γδ) T cells own a T cell receptor composed of γ- and δ- chain and act as crucial players in the anti-tumor immune effect. Currently, Vγ9Vδ2 T cells, the predominate γδ T cell subset in human peripheral blood, has been shown to exert multiple biological functions. In addition, a growing body of evidence notes that Vγ9Vδ2 T cells interact with tumor cells in many ways, such as TCR-mediated nonpeptidic-phosphorylated phosphoantigens (pAgs) recognization, NKG2D/NKG2D ligand (NKG2DL) pathway, Fas-FasL axis and antibody-dependent cellular cytotoxicity (ADCC) as well as exosome. More importantly, clinical studies with Vγ9Vδ2 T cells in cancers have propelled several clinical applications to investigate their safety and efficacy. Herein, this review summarized the underlying ways and mechanisms of interplay cancer cells and Vγ9Vδ2 T cells, which may help us to generate new strategies for tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China; Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
8
|
Corsale AM, Di Simone M, Lo Presti E, Dieli F, Meraviglia S. γδ T cells and their clinical application in colon cancer. Front Immunol 2023; 14:1098847. [PMID: 36793708 PMCID: PMC9923022 DOI: 10.3389/fimmu.2023.1098847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
In recent years, research has focused on colorectal cancer to implement modern treatment approaches to improve patient survival. In this new era, γδ T cells constitute a new and promising candidate to treat many types of cancer because of their potent killing activity and their ability to recognize tumor antigens independently of HLA molecules. Here, we focus on the roles that γδ T cells play in antitumor immunity, especially in colorectal cancer. Furthermore, we provide an overview of small-scale clinical trials in patients with colorectal cancer employing either in vivo activation or adoptive transfer of ex vivo expanded γδ T cells and suggest possible combinatorial approaches to treat colon cancer.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR)I, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D.) University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
10
|
Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Defying convention in the time of COVID-19: Insights into the role of γδ T cells. Front Immunol 2022; 13:819574. [PMID: 36032159 PMCID: PMC9403327 DOI: 10.3389/fimmu.2022.819574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.
Collapse
|
11
|
Lymphocyte subsets in the peripheral blood are disturbed in systemic sclerosis patients and can be changed by immunosuppressive medication. Rheumatol Int 2021; 42:1373-1381. [PMID: 34694439 PMCID: PMC9287253 DOI: 10.1007/s00296-021-05034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
Systemic sclerosis (SSc) is a severe chronic disease with a broad spectrum of clinical manifestations. SSc displays disturbed lymphocyte homeostasis. Immunosuppressive medications targeting T or B cells can improve disease manifestations. SSc clinical manifestations and immunosuppressive medication in itself can cause changes in lymphocyte subsets. The aim of this study was to investigate peripheral lymphocyte homeostasis in SSc with regards to the immunosuppression and to major organ involvement. 44 SSc patients and 19 healthy donors (HD) were included. Immunophenotyping of peripheral whole blood by fluorescence-activated cell sorting was performed. Cytokine secretions of stimulated B cell cultures were measured. SSc patients without immunosuppression compared to HD displayed lower γδ T cells, lower T helper cells (CD3+/CD4+), lower transitional B cells (CD19+/CD38++/CD10+/IgD+), lower pre-switched memory B cells (CD19+/CD27+/IgD+), and lower post-switched memory B cells (CD19+/CD27+/IgD−). There was no difference in the cytokine production of whole B cell cultures between SSc and HD. Within the SSc cohort, mycophenolate intake was associated with lower T helper cells and lower NK cells (CD56+/CD3−). The described differences in peripheral lymphocyte subsets between SSc and HD generate further insight in SSc pathogenesis. Lymphocyte changes under effective immunosuppression indicate how lymphocyte homeostasis in SSc might be restored.
Collapse
|
12
|
Giri S, Lal G. Differentiation and functional plasticity of gamma-delta (γδ) T cells under homeostatic and disease conditions. Mol Immunol 2021; 136:138-149. [PMID: 34146759 DOI: 10.1016/j.molimm.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Gamma-delta (γδ) T cells are a heterogeneous population of immune cells, which constitute <5% of total T cells in mice lymphoid tissue and human peripheral blood. However, they comprise a higher proportion of T cells in the epithelial and mucosal barrier, where they perform immune functions, help in tissue repair, and maintaining homeostasis. These tissues resident γδ T cells possess properties of innate and adaptive immune cells which enables them to perform a variety of functions during homeostasis and disease. Emerging data suggest the involvement of γδ T cells during transplant rejection and survival. Interestingly, several functions of γδ T cells can be modulated through their interaction with other immune cells. This review provides an overview of development, differentiation plasticity into regulatory and effector phenotypes of γδ T cells during homeostasis and various diseases.
Collapse
Affiliation(s)
- Shilpi Giri
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
13
|
Kakimi K, Matsushita H, Masuzawa K, Karasaki T, Kobayashi Y, Nagaoka K, Hosoi A, Ikemura S, Kitano K, Kawada I, Manabe T, Takehara T, Ebisudani T, Nagayama K, Nakamura Y, Suzuki R, Yasuda H, Sato M, Soejima K, Nakajima J. Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J Immunother Cancer 2020; 8:jitc-2020-001185. [PMID: 32948652 PMCID: PMC7511646 DOI: 10.1136/jitc-2020-001185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Not all non-small cell lung cancer (NSCLC) patients possess drug-targetable driver mutations, and response rates to immune checkpoint blockade therapies also remain unsatisfactory. Therefore, more effective treatments are still needed. Here, we report the results of a phase 2 clinical trial of adoptive cell therapy using zoledronate-expanded autologous Vγ9Vδ2 T-cells for treatment-refractory NSCLC. METHODS NSCLC patients who had undergone at least two regimens of standard chemotherapy for unresectable disease or had had at least one treatment including chemotherapy or radiation for recurrent disease after surgery were enrolled in this open-label, single-arm, multicenter, phase 2 study. After preliminary testing of Vγ9Vδ2 T-cell proliferation, autologous peripheral blood mononuclear cells were cultured with zoledronate and IL-2 to expand the Vγ9Vδ2 T-cells. Cultured cells (>1×109) were intravenously administered every 2 weeks for six injections. The primary endpoint of this study was progression-free survival (PFS), and secondary endpoints included overall survival (OS), best objective response rate (ORR), disease control rate (DCR), safety and immunomonitoring. Clinical efficacy was defined as median PFS significantly >4 months. RESULTS Twenty-five patients (20 adenocarcinoma, 4 squamous cell carcinoma and 1 large cell carcinoma) were enrolled. Autologous Vγ9Vδ2 T-cell therapy was administered to all 25 patients, of which 16 completed the foreseen course of 6 injections of cultured cells. Median PFS was 95.0 days (95% CI 73.0 to 132.0 days); median OS was 418.0 days (179.0-479.0 days), and best overall responses were 1 partial response, 16 stable disease (SD) and 8 progressive disease. ORR and DCR were 4.0% (0.1%-20.4%) and 68.0% (46.5%-85.1%), respectively. Severe adverse events developed in nine patients, mostly associated with disease progression. In one patient, pneumonitis and inflammatory responses resulted from Vγ9Vδ2 T-cell infusions, together with the disappearance of a massive tumor. CONCLUSIONS Although autologous Vγ9Vδ2 T-cell therapy was well tolerated and may have an acceptable DCR, this trial did not meet its primary efficacy endpoint. TRIAL REGISTRATION NUMBER UMIN000006128.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Hosoi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiaki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc, Ibaraki-Shi, Osaka, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Soejima
- Clinical and Translational Research Center, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Lo Presti E, Dieli F, Fourniè JJ, Meraviglia S. Deciphering human γδ T cell response in cancer: Lessons from tumor-infiltrating γδ T cells. Immunol Rev 2020; 298:153-164. [PMID: 32691450 DOI: 10.1111/imr.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
The finding that γδ T cells are present among tumor-infiltrating lymphocytes in humans suggests they participate in tumor immune surveillance, but their relevance is unclear because the relative abundance of tumor-infiltrating γδ T cells correlates with positive or negative, or even do not correlate with prognosis. This likely depends on the fact that tumor-infiltrating γδ T cells may play substantially different effector or regulatory functions, and correlation with patient's prognosis relies on distinct γδ T cell subsets in the context of the tumor. There is interest to exploit γδ T cells in tumor immunotherapy, but to make this approach successful there is urgent need to fully understand the biological functions of γδ T cells and of how they can be manipulated in vivo and ex vivo to safely provide benefit to the host. This review focuses on our previous and ongoing studies of tumor-infiltrating γδ T lymphocytes in different types of human cancer. Moreover, we discuss the interaction of tumor-infiltrating γδ T cells with other cells and molecules present in the tumor microenvironment, and their clinical relevance on the ground, that deep knowledge in this field can be used further for better immunotherapeutic intervention in cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Jean Jacques Fourniè
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Toulouse University, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France.,Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Mann BT, Sambrano E, Maggirwar SB, Soriano-Sarabia N. Boosting the Immune System for HIV Cure: A γδ T Cell Perspective. Front Cell Infect Microbiol 2020; 10:221. [PMID: 32509594 PMCID: PMC7248175 DOI: 10.3389/fcimb.2020.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The major barrier to HIV cure is a population of long-lived cells that harbor latent but replication-competent virus, are not eliminated by antiretroviral therapy (ART), and remain indistinguishable from uninfected cells. However, ART does not cure HIV infection, side effects to treatment still occur, and the steady global rate of new infections makes finding a sustained ART-free HIV remission or cure for HIV-seropositive individuals urgently needed. Approaches aimed to cure HIV are mostly based on the "shock and kill" method that entails the use of a drug compound to reactivate latent virus paired together with strategies to boost or supplement the existing immune system to clear reactivated latently infected cells. Traditionally, these strategies have utilized CD8+ cytotoxic lymphocytes (CTL) but have been met with a number of challenges. Enhancing innate immune cell populations, such as γδ T cells, may provide an alternative route to HIV cure. γδ T cells possess anti-viral and cytotoxic capabilities that have been shown to directly inhibit HIV infection and specifically eliminate reactivated, latently infected cells in vitro. Most notably, their access to immune privileged anatomical sites and MHC-independent antigen recognition may circumvent many of the challenges facing CTL-based strategies. In this review, we discuss the role of γδ T cells in normal immunity and HIV infection as well as their current use in strategies to treat cancer. We present this information as means to speculate about the utilization of γδ T cells for HIV cure strategies and highlight some of the fundamental gaps in knowledge that require investigation.
Collapse
Affiliation(s)
| | | | | | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
16
|
Lo Presti E, Corsale AM, Dieli F, Meraviglia S. γδ cell-based immunotherapy for cancer. Expert Opin Biol Ther 2019; 19:887-895. [PMID: 31220420 DOI: 10.1080/14712598.2019.1634050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Cancer immunotherapy relies on the development of an efficient and long-lasting anti-tumor response, generally mediated by cytotoxic T cells. γδ T cells possess distinctive features that justify their use in cancer immunotherapy. Areas covered: Here we will review our current knowledge on the functions of human γδ T cells that may be relevant in tumor immunity and the most recent advances in our understanding of how these functions are regulated in the tumor microenvironment. We will also discuss the major achievements and limitations of γδ T cell-based immunotherapy of cancer. Expert opinion: Several small-scale clinical trials have been conducted in cancer patients using either in vivo activation of γδ T cells or adoptive transfer of ex vivo-expanded γδ T cells. Both strategies are safe and give some clinical benefit to patients, thus providing a proof of principle for their utilization in addition to conventional therapies. However, low objective response rates have been obtained in both settings and therefore larger and well-controlled trials are needed. Discovering the factors which influence the success of γδ T cell-based immunotherapy will lead to a better understanding of their mechanism of action and to harness these cells for effective and durable anti-tumor responses.
Collapse
Affiliation(s)
- Elena Lo Presti
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Anna Maria Corsale
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Serena Meraviglia
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| |
Collapse
|
17
|
Distinct phenotype and function of circulating Vδ1+ and Vδ2+ γδT-cells in acute and chronic hepatitis B. PLoS Pathog 2019; 15:e1007715. [PMID: 30998783 PMCID: PMC6490945 DOI: 10.1371/journal.ppat.1007715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 04/30/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) persists with global and virus-specific T-cell dysfunction, without T-cell based correlates of outcomes. To determine if γδT-cells are altered in HBV infection relative to clinical status, we examined the frequency, phenotype and function of peripheral blood Vδ1+ and Vδ2+γδT-cells by multi-parameter cytometry in a clinically diverse North American cohort of chronic hepatitis B (CHB), acute hepatitis B (AHB) and uninfected control subjects. We show that circulating γδT-cells were comprised predominantly of CD3hiCD4- Vδ2+γδT-cells with frequencies that were 2–3 fold higher among Asian than non-Asian Americans and inversely correlated with age, but without differences between CHB, AHB and control subjects. However, compared to control subjects, CHB was associated with increased TbethiEomesdim phenotype in Vδ2+γδT-cells whereas AHB was associated with increased TbethiEomesdim phenotype in Vδ1+γδT-cells, with significant correlations between Tbet/Eomes expression in γδT-cells with their expression of NK and T-cell activation and regulatory markers. As for effector functions, IFNγ/TNF responses to phosphoantigens or PMA/Ionomycin in Vδ2+γδT-cells were weaker in AHB but preserved in CHB, without significant differences for Vδ1+γδT-cells. Furthermore, early IFNγ/TNF responses in Vδ2+ γδT-cells to brief PMA/Ionomycin stimulation correlated inversely with serum ALT but not HBV DNA. Accordingly, IFNγ/TNF responses in Vδ2+γδT-cells were weaker in patients with CHB with hepatitis flare compared to those without hepatitis flares, and this functional deficit persisted beyond clinical resolution of CHB flare. We conclude that circulating γδT-cells show distinct activation and differentiatiation in acute and chronic HBV infection as part of lymphoid stress surveillance with potential role in clinical outcomes. We examined circulating γδT-cells in a North American cohort with chronic hepatitis B (CHB) and acute hepatitis B (AHB) compared to uninfected control subjects. While frequencies and composition of circulating γδT-cells were preserved in AHB and CHB, γδT-cells showed distinct and innate phenotypes based on the expression of Tbet/Eomes in association with various NK/T-cell markers. Notably, IFNγ/TNF responses to phosphoantigens and PMA/Ionomycin were preserved in CHB, but weaker in AHB compared to uninfected control subjects, in association with NKG2A/CD94 but not PD1. Furthermore, early IFNγ/TNF responses in Vδ2+ γδT-cells to brief PMA/Ionomycin stimulation showed significant inverse correlations with serum alanine aminotransferase, a measure of hepatocellular injury, and were persistently deficient in CHB subjects with hepatitis flare compared to those without such flares. Finally, Vδ2+ γδT-cells were significantly enriched for TbethiEomesdim phenotype in associations with their expression of NK and T-cell activation and regulatory markers, suggesting a role for Tbet in γδT-cell differentiation and function. We conclude that circulating γδT-cells show distinct activation and differentiation in acute and chronic HBV infection as part of lymphoid stress surveillance with potential role in clinical outcomes.
Collapse
|
18
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
19
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
20
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
21
|
Lo Presti E, Pizzolato G, Corsale AM, Caccamo N, Sireci G, Dieli F, Meraviglia S. γδ T Cells and Tumor Microenvironment: From Immunosurveillance to Tumor Evasion. Front Immunol 2018; 9:1395. [PMID: 29963061 PMCID: PMC6013569 DOI: 10.3389/fimmu.2018.01395] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
γδ T cells possess cytotoxic antitumor activity mediated by production of proinflammatory cytokines, direct cytotoxic activity, and regulation of the biological functions of other cell types. Hence, these features have prompted the development of therapeutic strategies in which γδ T cells agonists or ex vivo-expanded γδ T cells are administered to tumor patients. Several studies have shown that γδ T cells are an important component of tumor-infiltrating lymphocytes in patients affected by different types of cancer and a recent analysis of ~18,000 transcriptomes from 39 human tumors identified tumor-infiltrating γδ T cells as the most significant favorable cancer-wide prognostic signature. However, the complex and intricate interactions between tumor cells, tumor microenvironment (TME), and tumor-infiltrating immune cells results in a balance between tumor-promoting and tumor-controlling effects, and γδ T cells functions are often diverted or impaired by immunosuppressive signals originating from the TME. This review focuses on the dangerous liason between γδ T cells and tumoral microenvironment and raises the possibility that strategies capable to reduce the immunosuppressive environment and increase the cytotoxic ability of γδ T cells may be the key factor to improve their utilization in tumor immunotherapy.
Collapse
Affiliation(s)
- Elena Lo Presti
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy
| | - Gabriele Pizzolato
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy.,Department of Biomedical Sciences, Humanitas Università, Rozzano, Italy
| | - Anna Maria Corsale
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy
| | - Nadia Caccamo
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy
| | - Guido Sireci
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy
| | - Francesco Dieli
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy
| | - Serena Meraviglia
- Department of Biopathology, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
22
|
Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F, Meraviglia S. Current Advances in γδ T Cell-Based Tumor Immunotherapy. Front Immunol 2017; 8:1401. [PMID: 29163482 PMCID: PMC5663908 DOI: 10.3389/fimmu.2017.01401] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023] Open
Abstract
γδ T cells are a minor population (~5%) of CD3 T cells in the peripheral blood, but abound in other anatomic sites such as the intestine or the skin. There are two major subsets of γδ T cells: those that express Vδ1 gene, paired with different Vγ elements, abound in the intestine and the skin, and recognize the major histocompatibility complex (MHC) class I-related molecules such as MHC class I-related molecule A, MHC class I-related molecule B, and UL16-binding protein expressed on many stressed and tumor cells. Conversely, γδ T cells expressing the Vδ2 gene paired with the Vγ9 chain are the predominant (50-90%) γδ T cell population in the peripheral blood and recognize phosphoantigens (PAgs) derived from the mevalonate pathway of mammalian cells, which is highly active upon infection or tumor transformation. Aminobisphosphonates (n-BPs), which inhibit farnesyl pyrophosphate synthase, a downstream enzyme of the mevalonate pathway, cause accumulation of upstream PAgs and therefore promote γδ T cell activation. γδ T cells have distinctive features that justify their utilization in antitumor immunotherapy: they do not require MHC restriction and are less dependent that αβ T cells on co-stimulatory signals, produce cytokines with known antitumor effects as interferon-γ and tumor necrosis factor-α and display cytotoxic and antitumor activities in vitro and in mouse models in vivo. Thus, there is interest in the potential application of γδ T cells in tumor immunotherapy, and several small-sized clinical trials have been conducted of γδ T cell-based immunotherapy in different types of cancer after the application of PAgs or n-BPs plus interleukin-2 in vivo or after adoptive transfer of ex vivo-expanded γδ T cells, particularly the Vγ9Vδ2 subset. Results from clinical trials testing the efficacy of any of these two strategies have shown that γδ T cell-based therapy is safe, but long-term clinical results to date are inconsistent. In this review, we will discuss the major achievements and pitfalls of the γδ T cell-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Gabriele Pizzolato
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Humanitas University, Rozzano-Milano, Italy
| | - Eliana Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gianfranco Cocorullo
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gaspare Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 2017; 7:10541. [PMID: 28874817 PMCID: PMC5585170 DOI: 10.1038/s41598-017-10940-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy for the management of solid tumor malignancies. In ovarian cancer, this is in part due to an immunosuppressive cytokine and cellular tumor microenvironment which suppresses adoptively transferred T cells. We engineered an armored CAR T cell capable of constitutive secretion of IL-12, and delineate the mechanisms via which these CAR T cells overcome a hostile tumor microenvironment. In this report, we demonstrate enhanced proliferation, decreased apoptosis and increased cytotoxicity in the presence of immunosuppressive ascites. In vivo, we show enhanced expansion and CAR T cell antitumor efficacy, culminating in improvement in survival in a syngeneic model of ovarian peritoneal carcinomatosis. Armored CAR T cells mediated depletion of tumor associated macrophages and resisted endogenous PD-L1-induced inhibition. These findings highlight the role of the inhibitory microenvironment and how CAR T cells can be further engineered to maintain efficacy.
Collapse
Affiliation(s)
- Oladapo O Yeku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Mythili Koneru
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - David Spriggs
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
24
|
Xue C, Wen M, Bao L, Li H, Li F, Liu M, Lv Q, An Y, Zhang X, Cao B. Vγ4 +γδT Cells Aggravate Severe H1N1 Influenza Virus Infection-Induced Acute Pulmonary Immunopathological Injury via Secreting Interleukin-17A. Front Immunol 2017; 8:1054. [PMID: 28912779 PMCID: PMC5583159 DOI: 10.3389/fimmu.2017.01054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022] Open
Abstract
The influenza A (H1N1) pdm09 virus remains a critical global health concern and causes high levels of morbidity and mortality. Severe acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the major outcomes among severely infected patients. Our previous study found that interleukin (IL)-17A production by humans or mice infected with influenza A (H1N1) pdm09 substantially contributes to ALI and subsequent morbidity and mortality. However, the cell types responsible for IL-17A production during the early stage of severe influenza A (H1N1) pdm09 infection remained unknown. In this study, a mouse model of severe influenza A (H1N1) pdm09 infection was established. Our results show that, in the lungs of infected mice, the percentage of γδT cells, but not the percentages of CD4+Th and CD8+Tc cells, gradually increased and peaked at 3 days post-infection (dpi). Further analysis revealed that the Vγ4+γδT subset, but not the Vγ1+γδT subset, was significantly increased among the γδT cells. At 3 dpi, the virus induced significant increases in IL-17A in the bronchoalveolar lavage fluid (BALF) and serum. IL-17A was predominantly secreted by γδT cells (especially the Vγ4+γδT subset), but not CD4+Th and CD8+Tc cells at the early stage of infection, and IL-1β and/or IL-23 were sufficient to induce IL-17A production by γδT cells. In addition to secreting IL-17A, γδT cells secreted interferon (IFN)-γ and expressed both an activation-associated molecule, natural killer group 2, member D (NKG2D), and an apoptosis-associated molecule, FasL. Depletion of γδT cells or the Vγ4+γδT subset significantly rescued the virus-induced weight loss and improved the survival rate by decreasing IL-17A secretion and reducing immunopathological injury. This study demonstrated that, by secreting IL-17A, lung Vγ4+γδT cells, at least, in part mediated influenza A (H1N1) pdm09-induced immunopathological injury. This mechanism might serve as a promising new target for the prevention and treatment of ALI induced by influenza A (H1N1) pdm09.
Collapse
Affiliation(s)
- Chunxue Xue
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Mingjie Wen
- Department of Immunology, The Research Centre of Microbiome, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Liu
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Qi Lv
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunqing An
- Department of Immunology, The Research Centre of Microbiome, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, The Research Centre of Microbiome, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.,Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Li Y, Huang Z, Yan R, Liu M, Bai Y, Liang G, Zhang X, Hu X, Chen J, Huang C, Liu B, Luo G, Wu J, He W. Vγ4 γδ T Cells Provide an Early Source of IL-17A and Accelerate Skin Graft Rejection. J Invest Dermatol 2017; 137:2513-2522. [PMID: 28733202 DOI: 10.1016/j.jid.2017.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023]
Abstract
Activated γδ T cells have been shown to accelerate allograft rejection. However, the precise role of skin-resident γδ T cells and their subsets-Vγ5 (epidermis), Vγ1, and Vγ4 (dermis)-in skin graft rejection have not been identified. Here, using a male to female skin transplantation model, we demonstrated that Vγ4 T cells, rather than Vγ1 or Vγ5 T cells, accelerated skin graft rejection and that IL-17A was essential for Vγ4 T-cell-mediated skin graft rejection. Moreover, we found that Vγ4 T cells were required for early IL-17A production in the transplanted area, both in skin grafts and in the host epidermis around grafts. Additionally, the chemokine (C-C motif) ligand 20-chemokine receptor 6 pathway was essential for recruitment of Vγ4 T cells to the transplantation area, whereas both IL-1β and IL-23 induced IL-17A production from infiltrating cells. Lastly, Vγ4 T-cell-derived IL-17A promoted the accumulation of mature dendritic cells in draining lymph nodes to subsequently regulate αβ T-cell function after skin graft transplantation. Taken together, our data reveal that Vγ4 T cells accelerate skin graft rejection by providing an early source of IL-17A.
Collapse
Affiliation(s)
- Yashu Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhenggen Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Rongshuai Yan
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Meixi Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Bai
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guangping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jian Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Baoyi Liu
- Department of Orthopedic, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
26
|
Xia W, Han S, Bao Z, Fangyuan J, Ping W. The effect of activated Mϕ1 on γδT cell-mediated killing of gastric cancer cells in vitro. Oncol Lett 2016; 12:3368-3372. [PMID: 27900006 PMCID: PMC5103955 DOI: 10.3892/ol.2016.5066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/18/2016] [Indexed: 01/30/2023] Open
Abstract
A clear understanding of the interactions between classically activated macrophages (Mϕ1) and γδT cells may improve current therapeutic approaches, including that of immunotherapy for treating certain types of cancer. The present study aimed to expand the current knowledge by showing the effect of culture supernatants of Mϕ1 on the proliferation, cell surface marker expression and tumor suppression effects of γδT cells, and by exploring the potential mechanisms involved. In vitro, Mϕ1 were cultured by GM-CSF and IFN-γ. The isopentenyl pyrophosphate method was used to amplify human peripheral blood γδT cells. The surface markers of macrophages and γδT cells were detected by flow cytometry. The proliferation of γδT cells induced by the culture supernatants of Mϕ1 was investigated using the MTT assay. The lactate dehydrogenase method was used to detect the cytotoxicity of γδT cells on the SGC-7901 gastric cancer cell line. Ten days after cultivation, the percentage of γδT cells from the repertoire of naive cells, expanded from 4.21 to 91.27%. The percentage of cells expressing CD44 was 94%. The percentage of CD68 on cultured Mϕ1 was increased from 17.7 to 73.2%. The culture supernatants of Mϕ1 increased the proliferation of γδT cells compared with the control group (33.8% vs. 0, P<0.01). The culture supernatants of Mϕ1 increased the cytotoxicity of γδT cells compared with the control group (70.18 vs. 47.25%, P<0.01). In conclusion, the supernatant of cultured Mϕ1 promotes the proliferation of γδT cells and their cytotoxic effect on the SGC-7901 gastric cancer cell line.
Collapse
Affiliation(s)
- Wu Xia
- Department of Digestion, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Sun Han
- Department of Digestion, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhang Bao
- Department of Digestion, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Jia Fangyuan
- Department of Digestion, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wu Ping
- Department of Digestion, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
27
|
Impaired Cell Cycle Regulation in a Natural Equine Model of Asthma. PLoS One 2015; 10:e0136103. [PMID: 26292153 PMCID: PMC4546272 DOI: 10.1371/journal.pone.0136103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022] Open
Abstract
Recurrent airway obstruction (RAO) is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs). We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE) was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.
Collapse
|
28
|
γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice. PLoS One 2015; 10:e0131236. [PMID: 26135595 PMCID: PMC4489797 DOI: 10.1371/journal.pone.0131236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.
Collapse
|
29
|
Lo Presti E, Dieli F, Meraviglia S. Tumor-Infiltrating γδ T Lymphocytes: Pathogenic Role, Clinical Significance, and Differential Programing in the Tumor Microenvironment. Front Immunol 2014; 5:607. [PMID: 25505472 PMCID: PMC4241840 DOI: 10.3389/fimmu.2014.00607] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
There is increasing clinical evidence indicating that the immune system may either promote or inhibit tumor progression. Several studies have demonstrated that tumors undergoing remission are largely infiltrated by T lymphocytes [tumor-infiltrating lymphocytes (TILs)], but on the other hand, several studies have shown that tumors may be infiltrated by TILs endowed with suppressive features, suggesting that TILs are rather associated with tumor progression and unfavorable prognosis. γδ T lymphocytes are an important component of TILs that may contribute to tumor immunosurveillance, as also suggested by promising reports from several small phase-I clinical trials. Typically, γδ T lymphocytes perform effector functions involved in anti-tumor immune responses (cytotoxicity, production of IFN-γ and TNF-α, and dendritic cell maturation), but under appropriate conditions they may divert from the typical Th1-like phenotype and polarize to Th2, Th17, and Treg cells thus acquiring the capability to inhibit anti-tumor immune responses and promote tumor growth. Recent studies have shown a high frequency of γδ T lymphocytes infiltrating different types of cancer, but the nature of this association and the exact mechanisms underlying it remain uncertain and whether or not the presence of tumor-infiltrating γδ T lymphocytes is a definite prognostic factor remains controversial. In this paper, we will review studies of tumor-infiltrating γδ T lymphocytes from patients with different types of cancer, and we will discuss their clinical relevance. Moreover, we will also discuss on the complex interplay between cancer, tumor stroma, and γδ T lymphocytes as a major determinant of the final outcome of the γδ T lymphocyte response. Finally, we propose that targeting γδ T lymphocyte polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo , Palermo , Italy ; Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy
| | - Franceso Dieli
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo , Palermo , Italy ; Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo , Palermo , Italy ; Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy
| |
Collapse
|
30
|
Gustafsson K, Anderson J, Fisher JPH, Yan M. Regeneration of stalled immune responses to transformed and infected cells using γδ T cells. Drug Discov Today 2014; 19:787-793. [PMID: 24681060 PMCID: PMC4437461 DOI: 10.1016/j.drudis.2014.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Manipulation of the human immune system is becoming more of a therapeutic focus as a treatment option or complement. Prominent examples are the increasing use of monoclonal antibodies in combating malignant tumours, and the numerous adoptive immunotherapy trials underway. One important aspect of any use of the human immune system in this regard is to harness the power of professional antigen-presenting cells (pAPC), that is, dendritic cells (DC), to direct immune responses. Here, we review how recent findings regarding the biology of γδT cells have revealed that they, surprisingly, could serve as convenient tools for this purpose, in that they combine innate cytotoxic cell and pAPC functions in one cell type, with potential benefits in cancer immunotherapy and infectious disease.
Collapse
Affiliation(s)
- Kenth Gustafsson
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - John Anderson
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jonathan P H Fisher
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mengyong Yan
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Molecular Haematology and Cancer Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
31
|
Kearns MT, Barthel L, Bednarek JM, Yunt ZX, Henson PM, Janssen WJ. Fas ligand-expressing lymphocytes enhance alveolar macrophage apoptosis in the resolution of acute pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 2014; 307:L62-70. [PMID: 24838751 DOI: 10.1152/ajplung.00273.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apoptosis of alveolar macrophages and their subsequent clearance by neighboring phagocytes are necessary steps in the resolution of acute pulmonary inflammation. We have recently identified that activation of the Fas death receptor on the cell surface of macrophages drives macrophage apoptosis. However, the source of the cognate ligand for Fas (FasL) responsible for induction of alveolar macrophage apoptosis is not defined. Given their known role in the resolution of inflammation and ability to induce macrophage apoptosis ex vivo, we hypothesized that T lymphocytes represented a critical source of FasL. To address this hypothesis, C57BL/6J and lymphocyte-deficient (Rag-1(-/-)) mice were exposed to intratracheal lipopolysaccharide to induce pulmonary inflammation. Furthermore, utilizing mice expressing nonfunctional FasL, we adoptively transferred donor lymphocytes into inflamed lymphocyte-deficient mice to characterize the effect of lymphocyte-derived FasL on alveolar macrophage apoptosis in the resolution of inflammation. Herein, evidence is presented that lymphocytes expressing FasL enhance alveolar macrophage apoptosis during the resolution of LPS-induced inflammation. Moreover, lymphocyte induction of alveolar macrophage apoptosis results in contraction of the alveolar macrophage pool, which occurs in a FasL-dependent manner. Specifically, FasL-expressing CD8(+) T lymphocytes potently induce alveolar macrophage apoptosis and contraction of the alveolar macrophage pool. Together, these studies identify a novel role for CD8(+) T lymphocytes in the resolution of acute pulmonary inflammation.
Collapse
Affiliation(s)
- Mark T Kearns
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado;
| | - Lea Barthel
- Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado; and
| | | | - Zulma X Yunt
- Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado; and
| | - Peter M Henson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado; Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado; and
| |
Collapse
|
32
|
Fujihara Y, Takato T, Hoshi K. Macrophage-Inducing FasL on Chondrocytes Forms Immune Privilege in Cartilage Tissue Engineering, Enhancing In Vivo Regeneration. Stem Cells 2014; 32:1208-19. [DOI: 10.1002/stem.1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/01/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Yuko Fujihara
- Department of Cartilage and Bone Regeneration (Fujisoft); Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Tsuyoshi Takato
- Department of Oral and Maxillofacial Surgery; The University of Tokyo Hospital; Tokyo Japan
| | - Kazuto Hoshi
- Department of Cartilage and Bone Regeneration (Fujisoft); Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| |
Collapse
|
33
|
Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol 2013; 33:537-58. [PMID: 24354324 DOI: 10.3109/08830185.2013.863306] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gamma-delta T cells (γδ T cells) are an unique group of lymphocytes and play an important role in bridging the gap between innate and adaptive immune systems under homeostatic condition as well as during infection and inflammation. They are predominantly localized into the mucosal and epithelial sites, but also exist in other peripheral tissues and secondary lymphoid organs. γδ T cells can produce cytokines and chemokines to regulate the migration of other immune cells, can bring about lysis of infected or stressed cells by secreting granzymes, provide help to B cells and induce IgE production, can present antigen to conventional T cells, activate antigen presenting cells (APC) maturation, and are also known to produce growth factors that regulate the stromal cell function. γδ T cells spontaneously produce IFN-γ and IL-17 cytokines compared to delayed differentiation of Th1 and Th17 cells. In this review, we discussed the current knowledge about the mechanism of γδ T cell function including its mode of antigen recognition, and differentiation into various subsets of γδ T cells. We also explored how γδ T cells interact with different types of innate and adaptive immune cells, and how these interactions shape the immune response highlighting the plasticity and role of these cells-protective or pathogenic under inflammatory and tolerogenic conditions.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
34
|
Yin S, Zhang J, Mao Y, Hu Y, Cui L, Kang N, He W. Vav1-phospholipase C-γ1 (Vav1-PLC-γ1) pathway initiated by T cell antigen receptor (TCRγδ) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during γδT cell cytotoxicity. J Biol Chem 2013; 288:26448-62. [PMID: 23897818 DOI: 10.1074/jbc.m113.484600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
T cell antigen receptor γδ (TCRγδ) and natural killer group 2, member D (NKG2D) are two crucial receptors for γδT cell cytotoxicity. Compelling evidences suggest that γδT cell cytotoxicity is TCRγδ-dependent and can be co-stimulated by NKG2D. However, the molecular mechanism of underlying TCRγδ-dependent activation of γδT cells remains unclear. In this study we demonstrated that TCRγδ but not NKG2D engagement induced lytic granule polarization and promoted γδT cell cytotoxicity. TCRγδ activation alone was sufficient to trigger Vav1-dependent phospholipase C-γ1 signaling, resulting in lytic granule polarization and effective killing, whereas NKG2D engagement alone failed to trigger cytotoxicity-related signaling to overcome the inhibitory effect of Cbl-b; therefore, NKG2D engagement alone could not induce effective killing. However, NKG2D ligation augmented the activation of γδT cell cytotoxicity through the Vav1-phospholipase C-γ1 pathway. Vav1 overexpression or Cbl-b knockdown not only enhanced TCRγδ activation-initiated killing but also enabled NKG2D activation alone to induce γδT cell cytotoxicity. Taken together, our results suggest that the activation of γδT cell cytotoxicity requires a strong activation signal to overcome the inhibitory effect of Cbl-b. Our finding provides new insights into the molecular mechanisms underlying the initiation of γδT cell cytotoxicity and likely implications for optimizing γδT cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Shanshan Yin
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Peking Union Medical College, National Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Li H, Xiang Z, Feng T, Li J, Liu Y, Fan Y, Lu Q, Yin Z, Yu M, Shen C, Tu W. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells. Cell Mol Immunol 2013; 10:159-64. [PMID: 23353835 DOI: 10.1038/cmi.2012.70] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their underlying mechanisms. We found that PAM could selectively activate and expand human Vγ9Vδ2-T cells. PAM-expanded human Vγ9Vδ2-T cells efficiently killed influenza virus-infected lung alveolar epithelial cells and inhibited virus replication. The cytotoxic activity of PAM-expanded Vγ9Vδ2-T cells was dependent on cell-to-cell contact and required NKG2D activation. Perforin-granzyme B, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-Fas ligand (FasL) pathways were involved in their cytotoxicity. Our study suggests that targeting γδ-T cells by PAM can potentially offer an alternative option for the treatment of influenza virus.
Collapse
Affiliation(s)
- Hong Li
- Joint Research Center of West China Second University Hospital of Sichuan University and Department of Paediatrics and Adolescent Medicine of University of Hong Kong, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang T. Role of γδ T cells in West Nile virus-induced encephalitis: friend or foe? J Neuroimmunol 2011; 240-241:22-7. [PMID: 22078709 DOI: 10.1016/j.jneuroim.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/23/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023]
Abstract
West Nile virus (WNV)-induced encephalitis has been a public health concern in North America over the past decade. No therapeutics or vaccines are available for human use. Studies in animal models have provided important information for investigations of WNV pathogenesis and the host immune response in humans. This article will give an overview of the role of γδ T cells, one of the non-classical T cell subsets in the murine model of WNV encephalitis.
Collapse
Affiliation(s)
- Tian Wang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
37
|
Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C, Henson PM. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 2011; 184:547-60. [PMID: 21471090 DOI: 10.1164/rccm.201011-1891oc] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RATIONALE During acute lung injury (ALI) the macrophage pool expands markedly as inflammatory monocytes migrate from the circulation to the airspaces. As inflammation resolves, macrophage numbers return to preinjury levels and normal tissue structure and function are restored. OBJECTIVES To determine the fate of resident and recruited macrophages during the resolution of ALI in mice and to elucidate the mechanisms responsible for macrophage removal. METHODS ALI was induced in mice using influenza A (H1N1; PR8) infection and LPS instillation. Dye labeling techniques, bone marrow transplantation, and surface immunophenotyping were used to distinguish resident and recruited macrophages during inflammation and to study the role of Fas in determining macrophage fate during resolving ALI. MEASUREMENTS AND MAIN RESULTS During acute and resolving lung injury from influenza A and LPS, a high proportion of the original resident alveolar macrophages persisted. In contrast, recruited macrophages exhibited robust accumulation in early inflammation, followed by a progressive decline in their number. This decline was mediated by apoptosis with local phagocytic clearance. Recruited macrophages expressed high levels of the death receptor Fas and were rapidly depleted from the airspaces by Fas-activating antibodies. In contrast, macrophage depletion was inhibited in mice treated with Fas-blocking antibodies and in chimeras with Fas-deficient bone marrow. Caspase-8 inhibition prevented macrophage apoptosis and delayed the resolution of ALI. CONCLUSIONS These findings indicate that Fas-induced apoptosis of recruited macrophages is essential for complete resolution of ALI.
Collapse
Affiliation(s)
- William J Janssen
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hao J, Dong S, Xia S, He W, Jia H, Zhang S, Wei J, O'Brien RL, Born WK, Wu Z, Wang P, Han J, Hong Z, Zhao L, Yin Z. Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production. THE JOURNAL OF IMMUNOLOGY 2011; 187:4979-86. [PMID: 21987661 DOI: 10.4049/jimmunol.1101389] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been demonstrated that the two main subsets of peripheral γδ T cells, Vγ1 and Vγ4, have divergent functions in many diseases models. Recently, we reported that Vγ4 γδ T cells played a protective role in tumor immunity through eomesodermin-controlled mechanisms. However, the precise roles of Vγ1 γδ T cells in tumor immunity, especially whether Vγ1 γδ T cells have any interaction with Vγ4 γδ T cells, remain unknown. We demonstrated in this paper that Vγ1 γδ T cells suppressed Vγ4 γδ T cell-mediated antitumor function both in vitro and in vivo, and this suppression was cell contact independent. Using neutralizing anti-IL-4 Ab or IL-4(-/-) mice, we determined the suppressive factor derived from Vγ1 γδ T cells was IL-4. Indeed, treatment of Vγ4 γδ T cells with rIL-4 significantly reduced expression levels of NKG2D, perforin, and IFN-γ. Finally, Vγ1 γδ T cells produced more IL-4 and expressed significantly higher level of GATA-3 upon Th2 priming in comparison with Vγ4 γδ T cells. Therefore, to our knowledge, our results established for the first time a negative regulatory role of Vγ1 γδ T cells in Vγ4 γδ T cell-mediated antitumor immunity through cell contact-independent and IL-4-mediated mechanisms. Selective depletion of this suppressive subset of γδ T cells may be beneficial for tumor immune therapy.
Collapse
Affiliation(s)
- Jianlei Hao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao H, Xi X, Cui L, He W. CDR3δ -grafted γ9δ2T cells mediate effective antitumor reactivity. Cell Mol Immunol 2011; 9:147-54. [PMID: 21909128 DOI: 10.1038/cmi.2011.28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell-transfer therapy (ACT) has been reported to suppress growing tumors and to overcome tumor escape in animal models. As a candidate ACT effector, γ9δ2T cells can be activated and expanded in vitro and in vivo and display strong antitumor activity against colorectal, lung, prostate, ovarian and renal cell carcinomas. However, it is difficult to obtain a large enough number of γδT cells to meet the need for immunotherapy that can overcome the cancer patients' immune suppressive tumor microenvironment. In previous studies, our lab confirmed that γ9δ2T cells recognized tumor cells via the CDR3δ region of the γδ-T-cell receptor (TCR). We constructed full-length human peripheral blood mononuclear cell (PBMC)-derived γ9 and δ2 chains in which the CDR3 region was replaced by an ovarian epithelial carcinoma (OEC)-derived CDR3. We transferred the CDR3δ-grafted γ9δ2TCR into peripheral blood lymphocytes (PBLs) to develop genetically modified γ9δ2T cells. In vitro studies have shown that these CDR3δ-grafted γ9δ2T cells can produce cytokines after stimulation with tumor cell extracts and exhibit cytotoxicity towards tumor cells, including human OEC and cervical adenocarcinoma. CDR3δ-grafted γ9δ2T cells adoptively transferred into nude mice bearing a human OEC cell line demonstrated significant antitumor effects. These results indicate that CDR3δ-grafted γ9δ2T cells might be candidates for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
40
|
Iovino F, Meraviglia S, Spina M, Orlando V, Saladino V, Dieli F, Stassi G, Todaro M. Immunotherapy targeting colon cancer stem cells. Immunotherapy 2011; 3:97-106. [PMID: 21174560 DOI: 10.2217/imt.10.87] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last 10 years, cancer stem cells have interested the scientific community because this small tumorigenic population is also associated with tumor progression in human patients and specific targeting of cancer stem cells could be a strategy to eradicate cancers currently resistant to conventional therapy. Clinical studies have recently demonstrated that adding immune therapy to chemotherapy has survival benefits in comparison with chemotherapy alone that can sensitize tumors to immune cell-mediated killing (e.g., increasing sensitivity of tumor cells to subsequent cytotoxicity by T cells via upregulation of death receptors DR5 and Fas). However, loss of MHC molecules is often observed in cancer cells, rendering tumor cells resistant to CD8 T-cell-mediated cytotoxicity. For this reason, we review the role of other T-cell subsets, such as γδ T and NK cells that are able to efficiently recognize and kill tumor cells and that could be used in passive or active immunotherapy in cancer stem cell eradication.
Collapse
Affiliation(s)
- Flora Iovino
- Department of Surgical & Oncological Sciences, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vγ9Vδ2 T cells as a promising innovative tool for immunotherapy of hematologic malignancies. Oncol Rev 2010. [DOI: 10.1007/s12156-010-0054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Characterization of avian γδ T-cell subsets after Salmonella enterica serovar Typhimurium infection of chicks. Infect Immun 2010; 79:822-9. [PMID: 21078853 DOI: 10.1128/iai.00788-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian γδ T lymphocytes are frequently found in blood and organs and are assumed to be crucial to the immune defense against Salmonella infections of chicks. To elucidate the so-far-unknown immunological features of subpopulations of avian γδ T cells in the course of infection, day-old chicks were infected orally with Salmonella enterica serovar Typhimurium. Until 11 days after infection, the occurrence as well as transcription of the CD8 antigen and immunologically relevant protein genes of CD8α(-) and CD8α(+high) (CD8αα(+) CD8αβ(+)) γδ cells were analyzed using flow cytometry and quantitative real-time reverse transcription-PCR (RT-PCR) with blood, spleen, thymus, and cecum samples. After infection, an increased percentage of CD8α(+high) γδ T lymphocytes was found in blood, in spleen, and, with the highest values and most rapidly, in cecum. Within the CD8α(+high) subset, a significant rise in the number of CD8αα(+) cells was accompanied by enhanced CD8α antigen expression and reduced gene transcription of the CD8β chain. CD8αα(+) and CD8αβ(+) cells showed elevated transcription for Fas, Fas ligand (FasL), interleukin-2 receptor α (IL-2Rα), and gamma interferon (IFN-γ). While the highest fold changes in mRNA levels were observed in CD8αβ(+) cells, the mRNA expression rates of CD8αβ(+) cells never significantly exceeded those of the CD8αα(+) cells. In conclusion, both CD8α(+high) γδ T-cell subpopulations (CD8αα(+) and CD8αβ(+)) might be a potential source of IFN-γ in Salmonella-infected chicks. However, due to their prominent frequency in blood and organs after infection, the avian CD8αα(+) γδ T-cell subset seems to be unique and of importance in the course of Salmonella Typhimurium infection of very young chicks.
Collapse
|
43
|
Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:467-78. [PMID: 20539306 DOI: 10.1038/nri2781] [Citation(s) in RCA: 741] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gammadelta T cells have several innate cell-like features that allow their early activation following recognition of conserved stress-induced ligands. Here we review recent observations revealing the ability of gammadelta T cells to rapidly produce cytokines that regulate pathogen clearance, inflammation and tissue homeostasis in response to tissue stress. These studies provide insights into how they acquire these properties, through both developmental programming in the thymus and functional polarization in the periphery. Innate features of gammadelta T cells underlie their non-redundant role in several physiopathological contexts and are therefore being exploited in the design of new immunotherapeutic approaches.
Collapse
|
44
|
He W, Hao J, Dong S, Gao Y, Tao J, Chi H, Flavell R, O'Brien RL, Born WK, Craft J, Han J, Wang P, Zhao L, Wu J, Yin Z. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin. THE JOURNAL OF IMMUNOLOGY 2010; 185:126-33. [PMID: 20525896 DOI: 10.4049/jimmunol.0903767] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that gammadelta T cells played an important role in tumor immune surveillance by providing an early source of IFN-gamma. The precise role of different subsets of gammadelta T cells in the antitumor immune response, however, is unknown. Vgamma1 and Vgamma4 gammadelta T cells are the principal subsets of peripheral lymphoid gammadelta T cells and they might play distinct roles in tumor immunity. In support of this, we observed that reconstitution of TCRdelta(-/-) mice with Vgamma4, but not Vgamma1, gammadelta T cells restored the antitumor response. We also found that these effects were exerted by the activated (CD44(high)) portion of Vgamma4 gammadelta T cells. We further determined that IFN-gamma and perforin are critical elements in the Vgamma4-mediated antitumor immune response. Indeed, CD44(high) Vgamma4 gammadelta T cells produced significantly more IFN-gamma and perforin on activation, and showed greater cytolytic activity than did CD44(high) Vgamma1 gammadelta T cells, apparently due to the high level of eomesodermin (Eomes) in these activated Vgamma4 gammadelta T cells. Consistently, transfection of dominant-negative Eomes in Vgamma4 gammadelta T cells diminished the level of IFN-gamma secretion, indicating a critical role of Eomes in the effector function of these gammadelta T cells. Our results thus reveal distinct functions of Vgamma4 and Vgamma1 gammadelta T cells in antitumor immune response, and identify a protective role of activated Vgamma4 gammadelta T cells, with possible implications for tumor immune therapy.
Collapse
Affiliation(s)
- Weifeng He
- Chongqing Key Laboratory for Diseases Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shi G, Ramaswamy M, Vistica BP, Cox CA, Tan C, Wawrousek EF, Siegel RM, Gery I. Unlike Th1, Th17 cells mediate sustained autoimmune inflammation and are highly resistant to restimulation-induced cell death. THE JOURNAL OF IMMUNOLOGY 2009; 183:7547-56. [PMID: 19890052 DOI: 10.4049/jimmunol.0900519] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Both Th1 and Th17 T cell subsets can mediate inflammation, but the kinetics of the pathogenic processes mediated by these two subsets have not been investigated. Using an experimental system in which TCR-transgenic Th1 or Th17 cells specific for hen egg lysozyme induce ocular inflammation in recipient mice expressing eye-restricted hen egg lysozyme, we found important differences in the in vivo behavior of these two subsets. Th1 cells initially proliferated considerably faster and invaded the eye more quickly than their Th17 counterparts, but then disappeared rapidly. By contrast, Th17 cells accumulated and remained the majority of the infiltrating CD4(+) cells in the eye for as long as 25 days after transfer, mediating more long-lasting pathological changes. Unlike Th1, Th17 cells were highly resistant to restimulation-induced apoptosis, a major pathway by which autoimmune and chronically restimulated Th1 cells are eliminated. Th17 cells had reduced Fas ligand production and resistance to Fas-induced apoptosis, relative to Th1 cells, despite similar surface expression of Fas. Th17-induced ocular inflammation also differed from Th1-induced inflammation by consisting of more neutrophils, whereas Th1-induced disease had higher proportions of CD8 cells. Taken together, our data show that pathogenic processes triggered by Th17 lag behind those induced by Th1, but then persist remarkably longer, apparently due to the relative resistance of Th17 cells to restimulation-induced cell death. The long-lasting inflammation induced by Th17 cells is in accord with these cells being involved in chronic conditions in humans.
Collapse
Affiliation(s)
- Guangpu Shi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan PL, Lam KT, Peiris JSM, Lau YL, Tu W. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 2009; 200:858-65. [PMID: 19656068 PMCID: PMC7110194 DOI: 10.1086/605413] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BackgroundInfluenza virus is a cause of substantial annual morbidity and mortality worldwide. The potential emergence of a new pandemic strain (eg, avian influenza virus) is a major concern. Currently available vaccines and anti-influenza drugs have limited effectiveness for influenza virus infections, especially for new pandemic strains. Therefore, there is an acute need to develop alternative strategies for influenza therapy. γδ T cells have potent antiviral activities against different viruses, but no data are available concerning their antiviral activity against influenza viruses MethodsIn this study, we used virus-infected primary human monocyte-derived macrophages (MDMs) to examine the antiviral activity of phosphoantigen isopentenyl pyrophosphate (IPP)–expanded human Vγ9Vδ2 T cells against influenza viruses ResultsVγ9Vδ2 T cells were selectively activated and expanded by IPP from peripheral blood mononuclear cells. IPP-expanded Vγ9Vδ2 T cells efficiently killed MDMs infected with human (H1N1) or avian (H9N2 or H5N1) influenza virus and significantly inhibited viral replication. The cytotoxicity of Vγ9Vδ2 T cells against influenza virus–infected MDMs was dependent on NKG2D activation and was mediated by Fas–Fas ligand and perforin–granzyme B pathways ConclusionOur findings suggest a potentially novel therapeutic approach to seasonal, zoonotic avian, and pandemic influenza—the use of phosphoantigens to activate γδ T cells against influenza virus infections
Collapse
Affiliation(s)
- Gang Qin
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Special Administrative Region, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
O'Brien RL, Taylor MA, Hartley J, Nuhsbaum T, Dugan S, Lahmers K, Aydintug MK, Wands JM, Roark CL, Born WK. Protective role of gammadelta T cells in spontaneous ocular inflammation. Invest Ophthalmol Vis Sci 2009; 50:3266-74. [PMID: 19151391 PMCID: PMC2701479 DOI: 10.1167/iovs.08-2982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A role for gammadelta T cells in immunoregulation has been shown in a number of studies, but in the absence of infection or induced disease, mice lacking gammadelta T cells generally appear to be healthy. That certain mice lacking gammadelta T cells often spontaneously develop keratitis, characterized by a progressive and destructive inflammation of the cornea is reported here. METHODS The keratitis developing in these mice was characterized in terms of prevalence in males versus females, age of onset, and histologic features. Attempts were made to understand the underlying causes of the disease by removing alphabeta T cells, altering sex hormones, and reconstituting gammadelta T cells. RESULTS The development of keratitis in these mice depended on the C57BL/10 genetic background, and was much more common among females than males. The incidence of the disease increased with age, exceeding 80% in females greater than 18 weeks old. Evidence that the keratitis in these mice is at least partly autoimmune in nature, and that despite its prevalence in females, male hormones do not protect against the disease is presented. CONCLUSIONS These findings indicate an important role for gammadelta T cells in maintaining immune balance in the eye. The mice described in this study represent a potential new small animal model of keratitis.
Collapse
Affiliation(s)
- Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Born WK, Roark CL, Jin N, Wands JM, Kemal Aydintug M, Huang Y, Chain JL, Hahn YS, Simonian PL, Fontenot AP, O'Brien RL. Role of γδ T Cells in Lung Inflammation. ACTA ACUST UNITED AC 2009; 2:143-150. [PMID: 26550059 PMCID: PMC4634705 DOI: 10.2174/1874226200902010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The resident population of γδ T cells in the normal lung is small but during lung inflammation, γδ T cells can increase dramatically. Histological analysis reveals diverse interactions between γδ T cells and other pulmonary leukocytes. Studies in animal models show that γδ T cells play a role in allergic lung inflammation where they can protect normal lung function, that they also are capable of resolving infection-induced pulmonary inflammation, and that they can help preventing pulmonary fibrosis. Lung inflammation threatens vital lung functions. Protection of the lung tissues and their functions during inflammation is the net-effect of opposing influences of specialized subsets of γδ T cells as well as interactions of these cells with other pulmonary leukocytes.
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Christina L Roark
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Niyun Jin
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - J M Wands
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - M Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Yafei Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Jennifer L Chain
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Youn-Soo Hahn
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-711 and 240, Korea
| | - Philip L Simonian
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
49
|
Tramonti D, Rhodes K, Martin N, Dalton JE, Andrew E, Carding SR. gammadeltaT cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation. J Pathol 2008; 216:262-70. [PMID: 18767021 DOI: 10.1002/path.2412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infection of gammadeltaT cell-deficient (TcRdelta-/-) mice with the intracellular bacterium Listeria monocytogenes (Lm) results in an exacerbated inflammatory response characterized by the accumulation of activated macrophages and necrotic liver lesions. Here we investigated whether changes in chemokine production by Lm-elicited macrophages contribute to this abnormal inflammatory response. In response to Lm infection, activated macrophages accumulate in the primary sites of infection in TcRdelta-/- mice and express high amounts of mRNA encoding the chemokines CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CXCL2 (MIP-2) and CXCL10 (IP-10). In the infected tissues of TcRdelta-/- the number of chemokine-synthesizing macrophages was higher than in wild-type (WT) mice, with the amount of MIP-1alpha and MIP-1beta secreted by individual macrophages in the spleen of TcRdelta-/- mice also being significantly higher than in WT mice. By contrast, protease activity and NO production in individual splenic macrophages of Lm-infected TcRdelta-/- and WT mice were comparable. Pathogen-elicited macrophages in TcRdelta-/- mice also expressed high levels of the CCL3 and CCL4 receptor, CCR5. In macrophage-gammadeltaT cell co-cultures, chemokine-producing macrophages were killed by cytotoxic Vgamma1+ T cells in a Fas-FasL-dependent manner consistent with the high levels of chemokine-producing macrophages seen in infected TcRdelta-/- mice being due to the absence of Vgamma1+ T cells. Together these findings highlight the importance of gammadeltaT cells in regulating macrophage anti-microbial responses.
Collapse
Affiliation(s)
- D Tramonti
- Research Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS29JT, UK
| | | | | | | | | | | |
Collapse
|
50
|
Saitoh A, Narita M, Watanabe N, Tochiki N, Satoh N, Takizawa J, Furukawa T, Toba K, Aizawa Y, Shinada S, Takahashi M. Anti-tumor cytotoxicity of γδ T cells expanded from peripheral blood cells of patients with myeloma and lymphoma. Med Oncol 2007; 25:137-47. [DOI: 10.1007/s12032-007-9004-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/16/2007] [Indexed: 11/29/2022]
|