1
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
2
|
Zhou W, Ryan A, Janosko CP, Shoger KE, Haugh JM, Gottschalk RA, Deiters A. Isoform-specific optical activation of kinase function reveals p38-ERK signaling crosstalk. RSC Chem Biol 2023; 4:765-773. [PMID: 37799579 PMCID: PMC10549237 DOI: 10.1039/d2cb00157h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Evolution has diversified the mammalian proteome by the generation of protein isoforms that originate from identical genes, e.g., through alternative gene splicing or post-translational modifications, or very similar genes found in gene families. Protein isoforms can have either overlapping or unique functions and traditional chemical, biochemical, and genetic techniques are often limited in their ability to differentiate between isoforms due to their high similarity. This is particularly true in the context of highly dynamic cell signaling cascades, which often require acute spatiotemporal perturbation to assess mechanistic details. To that end, we describe a method for the selective perturbation of the individual protein isoforms of the mitogen-activated protein kinase (MAPK) p38. The genetic installation of a photocaging group at a conserved active site lysine enables the precise light-controlled initiation of kinase signaling, followed by investigation of downstream events. Through optical control, we have identified a novel point of crosstalk between two major signaling cascades: the p38/MAPK pathway and the extracellular signal-regulated kinase (ERK)/MAPK pathway. Specifically, using the photoactivated p38 isoforms, we have found the p38γ and p38δ variants to be positive regulators of the ERK signaling cascade, while confirming the p38α and p38β variants as negative regulators.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh NC 27606 USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
3
|
Ganguly P, Macleod T, Wong C, Harland M, McGonagle D. Revisiting p38 Mitogen-Activated Protein Kinases (MAPK) in Inflammatory Arthritis: A Narrative of the Emergence of MAPK-Activated Protein Kinase Inhibitors (MK2i). Pharmaceuticals (Basel) 2023; 16:1286. [PMID: 37765094 PMCID: PMC10537904 DOI: 10.3390/ph16091286] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38-MAPK) is a crucial signaling pathway closely involved in several physiological and cellular functions, including cell cycle, apoptosis, gene expression, and responses to stress stimuli. It also plays a central role in inflammation and immunity. Owing to disparate p38-MAPK functions, it has thus far formed an elusive drug target with failed clinical trials in inflammatory diseases due to challenges including hepatotoxicity, cardiac toxicity, lack of efficacy, and tachyphylaxis, which is a brief initial improvement with rapid disease rebound. To overcome these limitations, downstream antagonism of the p38 pathway with a MAPK-activated protein kinase (MAPKAPK, also known as MK2) blockade has demonstrated the potential to abrogate inflammation without the prior recognized toxicities. Such MK2 inhibition (MK2i) is associated with robust suppression of key pro-inflammatory cytokines, including TNFα and IL-6 and others in experimental systems and in vitro. Considering this recent evidence regarding MK2i in inflammatory arthritis, we revisit the p38-MAPK pathway and discuss the literature encompassing the challenges of p38 inhibitors with a focus on this pathway. We then highlight how novel MK2i strategies, although encouraging in the pre-clinical arena, may either show evidence for efficacy or the lack of efficacy in emergent human trials data from different disease settings.
Collapse
Affiliation(s)
| | | | | | | | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
4
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
5
|
Activity of isoflavone biochanin A in chronic experimental toxoplasmosis: impact on inflammation. Parasitol Res 2022; 121:2405-2414. [PMID: 35710847 PMCID: PMC9279236 DOI: 10.1007/s00436-022-07571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/03/2022] [Indexed: 11/07/2022]
Abstract
Toxoplasma gondii is a worldwide prevalent parasite. The infection has been linked to variable inflammatory effects including neuroinflammation. Biochanin A (BCA) is an isoflavone, known for its anti-inflammatory and anti-oxidative properties. In this study, we examined the effect of BCA on the brain and liver inflammatory lesions in a murine model with chronic toxoplasmosis. Mice were divided in to six groups: non-infected control, non-infected BCA-treated, and four infected groups with Toxoplasmagondii Me49-type II cystogenic strain: infected control, BCA (50 mg/kg/day)-treated, combined BCA/cotrimoxazole-treated and cotrimoxazole (370 mg/kg/day) alone-treated. Gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) was evaluated by quantitative real-time PCR in the brain and liver tissues. In the infected control group, an upregulation of TNF-α and IL-1β mRNA expression levels was found. However, a downregulation of iNOS expression was detected in the brain of infected control mice. In both BCA- and combined-treated groups, the brain and liver tissues showed significantly reduced inflammatory lesions compared to the infected control mice with inhibited TNF-α and IL-1β mRNA levels. The iNOS expression levels in the brain tissues of BCA group were significantly higher than the levels of the infected control group. BCA alone or combined significantly reduced T. gondii cyst count in the brain tissues. In conclusion, the anti-inflammatory activity of BCA was demonstrated in the brain tissues of mice with chronic toxoplasmosis with decreased TNF-α and IL-1β expression levels and increased iNOS expression levels.
Collapse
|
6
|
Pereira-Suárez AL, Galván-Ramírez MDLL, Rodríguez-Pérez LR, López-Pulido EI, Hernández-Silva CD, Ramírez-López IG, Morales Amaya GV, Lopez Cabrera LD, Muñoz-Valle JF, Ramírez-de-Arellano A. 17β-estradiol modulates the expression of hormonal receptors on THP-1 T. gondii-infected macrophages and monocytes in an AKT and ERK-dependent manner. Mol Biochem Parasitol 2021; 247:111433. [PMID: 34822916 DOI: 10.1016/j.molbiopara.2021.111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Toxoplasma gondii (T. gondii) is a parasite common in pregnancy. Monocytes and macrophages are a significant immunologic barrier against T. gondii by boosting up inflammation. This outcome is highly regulated by signaling pathways such as MAPK (ERK1/2) and PI3K (AKT), necessary in cell growth and proliferation. It may be associated with the hormonal receptors' modulation by T. gondii (Estrogen Receptor (ER)-α, ERβ, G Protein-coupled ER (GPER), and Prolactin Receptor (PRLR)), as previously reported by our research group. 17β-estradiol also activates MAPK and PI3K; however, its combined effect in THP-1 monocytes and macrophages, infected with T. gondii, has not yet been evaluated. This study aimed to evaluate the combined effect of 17β-estradiol in the activation of signaling pathways using a model of THP-1 monocytes and macrophages infected with T. gondii. THP-1 monocytes were cultured and differentiated into macrophages. Inhibition of AKT and ERK1/2 was performed with specific inhibitors. Stimuli were performed with 17β-estradiol (10 nM), T. gondii (20,000 tachyzoites), and both conditions for 48 h. Proteins were extracted and quantified, and Western Blot assays were performed. 17β-estradiol performed activation of ERK1/2 and AKT in T. gondii-infected macrophages. 17β-estradiol modulated the expression of hormonal receptors in infected cells: increases the PRLR and PrgR in T. gondii-infected macrophages and decreases the PRLR and ERα in T. gondii-infected monocytes. As for GPER, its expression is abolished by T. gondii, and 17β-estradiol cannot restore it. Finally, the blockage of ERK and AKT pathways modified the expression of hormonal receptors. In conclusion, 17β-estradiol modifies the receptors of T. gondii-infected THP1 macrophages and monocytes in an ERK/AKT dependent manner.
Collapse
Affiliation(s)
- Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México; Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - María de la Luz Galván-Ramírez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Laura Rocío Rodríguez-Pérez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Edgar I López-Pulido
- Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Christian David Hernández-Silva
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Inocencia Guadalupe Ramírez-López
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Grecia Viridiana Morales Amaya
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Luis David Lopez Cabrera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México.
| |
Collapse
|
7
|
Ludtka C, Moore E, Allen JB. The Effects of Simulated Microgravity on Macrophage Phenotype. Biomedicines 2021; 9:biomedicines9091205. [PMID: 34572391 PMCID: PMC8472625 DOI: 10.3390/biomedicines9091205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
The effects of spaceflight, including prolonged exposure to microgravity, can have significant effects on the immune system and human health. Altered immune cell function can lead to adverse health events, though precisely how and to what extent a microgravity environment impacts these cells remains uncertain. Macrophages, a key immune cell, effect the inflammatory response as well as tissue remodeling and repair. Specifically, macrophage function can be dictated by phenotype that can exist between spectrums of M0 macrophage: the classically activated, pro-inflammatory M1, and the alternatively activated, pro-healing M2 phenotypes. This work assesses the effects of simulated microgravity via clinorotation on M0, M1, and M2 macrophage phenotypes. We focus on phenotypic, inflammatory, and angiogenic gene and protein expression. Our results show that across all three phenotypes, microgravity results in a decrease in TNF-α expression and an increase in IL-12 and VEGF expression. IL-10 was also significantly increased in M1 and M2, but not M0 macrophages. The phenotypic cytokine expression profiles observed may be related to specific gravisensitive signal transduction pathways previously implicated in microgravity regulation of macrophage gene and protein expression. Our results highlight the far-reaching effects that simulated microgravity has on macrophage function and provides insight into macrophage phenotypic function in microgravity.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Erika Moore
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Josephine B. Allen
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence:
| |
Collapse
|
8
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
9
|
Snyder LM, Denkers EY. From Initiators to Effectors: Roadmap Through the Intestine During Encounter of Toxoplasma gondii With the Mucosal Immune System. Front Cell Infect Microbiol 2021; 10:614701. [PMID: 33505924 PMCID: PMC7829212 DOI: 10.3389/fcimb.2020.614701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a major portal of entry for many pathogens, including the protozoan parasite Toxoplasma gondii. Billions of people worldwide have acquired T. gondii at some point in their life, and for the vast majority this has led to latent infection in the central nervous system. The first line of host defense against Toxoplasma is located within the intestinal mucosa. Appropriate coordination of responses by the intestinal epithelium, intraepithelial lymphocytes, and lamina propria cells results in an inflammatory response that controls acute infection. Under some conditions, infection elicits bacterial dysbiosis and immune-mediated tissue damage in the intestine. Here, we discuss the complex interactions between the microbiota, the epithelium, as well as innate and adaptive immune cells in the intestinal mucosa that induce protective immunity, and that sometimes switch to inflammatory pathology as T. gondii encounters tissues of the gut.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
10
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
11
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog 2020; 16:e1008586. [PMID: 32453782 PMCID: PMC7274473 DOI: 10.1371/journal.ppat.1008586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The murine innate immune response against Toxoplasma gondii is predominated by the interaction of TLR11/12 with Toxoplasma profilin. However, mice lacking Tlr11 or humans, who do not have functional TLR11 or TLR12, still elicit a strong innate immune response upon Toxoplasma infection. The parasite factors that determine this immune response are largely unknown. Herein, we investigated two dense granule proteins (GRAs) secreted by Toxoplasma, GRA15 and GRA24, for their role in stimulating the innate immune response in Tlr11-/- mice and in human cells, which naturally lack TLR11/TLR12. Our results show that GRA15 and GRA24 synergistically shape the early immune response and parasite virulence in Tlr11-/- mice, with GRA15 as the predominant effector. Nevertheless, acute virulence in Tlr11-/- mice is still dominated by allelic combinations of ROP18 and ROP5, which are effectors that determine evasion of the immunity-related GTPases. In human macrophages, GRA15 and GRA24 play a major role in the induction of IL12, IL18 and IL1β secretion. We further show that GRA15/GRA24-mediated IL12, IL18 and IL1β secretion activates IFNγ secretion by peripheral blood mononuclear cells (PBMCs), which controls Toxoplasma proliferation. Taken together, our study demonstrates the important role of GRA15 and GRA24 in activating the innate immune response in hosts lacking TLR11.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Macedo Tavares MN, Reis VP, Alves Rego CM, Paloschi MV, Santana HM, Ferreira e Ferreira AA, Souza Silva MD, Setúbal SS, Fortes-Dias CL, Zuliani JP. Crotalus neutralising factor and its role in human leukocyte modulation. Immunobiology 2020; 225:151932. [DOI: 10.1016/j.imbio.2020.151932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 11/26/2022]
|
13
|
Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16:e1008572. [PMID: 32413093 PMCID: PMC7255617 DOI: 10.1371/journal.ppat.1008572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
The apicomplexan Toxoplasma gondii induces strong protective immunity dependent upon recognition by Toll-like receptors (TLR)11 and 12 operating in conjunction with MyD88 in the murine host. However, TLR11 and 12 proteins are not present in humans, inspiring us to investigate MyD88-independent pathways of resistance. Using bicistronic IL-12-YFP reporter mice on MyD88+/+ and MyD88-/- genetic backgrounds, we show that CD11c+MHCII+F4/80- dendritic cells, F4/80+ macrophages, and Ly6G+ neutrophils were the dominant cellular sources of IL-12 in both wild type and MyD88 deficient mice after parasite challenge. Parasite dense granule protein GRA24 induces p38 MAPK activation and subsequent IL-12 production in host macrophages. We show that Toxoplasma triggers an early and late p38 MAPK phosphorylation response in MyD88+/+ and MyD88-/- bone marrow-derived macrophages. Using the uracil auxotrophic Type I T. gondii strain cps1-1, we demonstrate that the late response does not require active parasite proliferation, but strictly depends upon GRA24. By i. p. inoculation with cps1-1 and cps1-1:Δgra24, we identified unique subsets of chemokines and cytokines that were up and downregulated by GRA24. Finally, we demonstrate that cps1-1 triggers a strong host-protective GRA24-dependent Th1 response in the absence of MyD88. Our data identify GRA24 as a major mediator of p38 MAPK activation, IL-12 induction and protective immunity that operates independently of the TLR/MyD88 cascade.
Collapse
Affiliation(s)
- Heather L. Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lindsay M. Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
14
|
The p38 Pathway: From Biology to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21061913. [PMID: 32168915 PMCID: PMC7139330 DOI: 10.3390/ijms21061913] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
The p38 MAPK pathway is well known for its role in transducing stress signals from the environment. Many key players and regulatory mechanisms of this signaling cascade have been described to some extent. Nevertheless, p38 participates in a broad range of cellular activities, for many of which detailed molecular pictures are still lacking. Originally described as a tumor-suppressor kinase for its inhibitory role in RAS-dependent transformation, p38 can also function as a tumor promoter, as demonstrated by extensive experimental data. This finding has prompted the development of specific inhibitors that have been used in clinical trials to treat several human malignancies, although without much success to date. However, elucidating critical aspects of p38 biology, such as isoform-specific functions or its apparent dual nature during tumorigenesis, might open up new possibilities for therapy with unexpected potential. In this review, we provide an extensive description of the main biological functions of p38 and focus on recent studies that have addressed its role in cancer. Furthermore, we provide an updated overview of therapeutic strategies targeting p38 in cancer and promising alternatives currently being explored.
Collapse
|
15
|
Cui W, Wang C, Luo Q, Xing T, Shen J, Wang W. Toxoplasma gondii ROP16 I Deletion: The Exacerbated Impact on Adverse Pregnant Outcomes in Mice. Front Microbiol 2020; 10:3151. [PMID: 32082272 PMCID: PMC7005636 DOI: 10.3389/fmicb.2019.03151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/29/2019] [Indexed: 01/18/2023] Open
Abstract
Imbalance of Th1 and Th2 response at the maternal-fetal interface is considered as a radical event in the pathogenesis of immunity-related pregnant diseases. It has been demonstrated that the ROP16I, a rhoptry protein of Toxoplasma gondii, and the viable parasite with ROP16I may induce M2 macrophage polarization in host innate immunity and may be involved in the adverse pregnant outcomes. However, the mechanisms by which T. gondii-derived effectors subvert the immune tolerance in the pathology of pregnancy remain unclear. Here, we constructed the RH strain with ROP16I deletion (RHΔrop16) to explore the pathogenesis of abnormal pregnancy. We found that C57BL/6 mice infected with RHΔrop16 exhibited the increased resorption of fetuses and more severe adverse pathology of placentae at the early phase of gestation, as compared to the mice infected with RH wild type (RH WT) parasite. Additionally, RHΔrop16 strain infection significantly promoted M1 macrophage phenotypes of CD80 and CD86, and decreased CD206 expression of M2 macrophages, with upregulation of the iNOS and downregulation of the Arg-1 expression in placental homogenates. Simultaneously, the pro-inflammatory cytokines of IL-12 and TNF-α were elevated whereas the anti-inflammatory cytokine of TGF-β1 was dampened. Moreover, the p38α mitogen-activated protein kinase (p38α MAPK) was notably phosphorylated in placental macrophages infected with both RHΔrop16 and RH WT strains compared with the control. Taken together, our findings indicated that ROP16I deletion of type I RH strain may cause exacerbated adverse pregnant outcomes, which is attributable to subversion of the maternal immune tolerance due to the increased pro-inflammatory cytokines in the pregnant animals. The results also suggest that ROP16I might be a protective factor and other T. gondii-derived molecules might be involved in the M1-Th1 biased pathological process in aberrant pregnancy at the early phase of gestation.
Collapse
Affiliation(s)
- Wen Cui
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Cong Wang
- Department of Clinical Laboratory, The Second Hospital of Hefei, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Tian Xing
- The Key Laboratory of Oral Disease Research of Anhui, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Tong W, Chen X, Song X, Chen Y, Jia R, Zou Y, Li L, Yin L, He C, Liang X, Ye G, Lv C, Lin J, Yin Z. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med 2019; 19:1824-1834. [PMID: 32104238 PMCID: PMC7027153 DOI: 10.3892/etm.2019.8396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (Res) is a natural compound that possesses anti-inflammatory properties. However, the protective molecular mechanisms of Res against lipopolysaccharide (LPS)-induced inflammation have not been fully studied. In the present study, RAW264.7 cells were stimulated with LPS in the presence or absence of Res, and the subsequent modifications to the LPS-induced signaling pathways caused by Res treatment were examined. It was identified that Res decreased the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein MyD88, TIR domain-containing adapter molecule 2, which suggested that Res may inhibit the activation of the TLR4 signaling pathway. It suppressed the expression levels of total and phosphorylated TLR4, NF-κB inhibitor, p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2 and interferon (IFN) regulatory factor 3 (IRF3) proteins. Following treatment with Res or specific inhibitors, the production of pro-inflammatory mediators including tumor necrosis factor-α, interleukin (IL)-6, IL-8 and IFN-β were decreased and the expression of anti-inflammatory mediator IL-10 was increased. These results suggested that Res may inhibit the signaling cascades of NF-κB, MAPKs and IRF3, which modulate pro-inflammatory cytokines. In conclusion, Res exhibited a therapeutic effect on LPS-induced inflammation through suppression of the TLR4-NF-κB/MAPKs/IRF3 signaling cascades.
Collapse
Affiliation(s)
- Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiangxiu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Juchun Lin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
17
|
Ten Hoeve AL, Hakimi MA, Barragan A. Sustained Egr-1 Response via p38 MAP Kinase Signaling Modulates Early Immune Responses of Dendritic Cells Parasitized by Toxoplasma gondii. Front Cell Infect Microbiol 2019; 9:349. [PMID: 31681626 PMCID: PMC6797980 DOI: 10.3389/fcimb.2019.00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
As a response to a diverse array of external stimuli, early growth response protein 1 (Egr-1) plays important roles in the transcriptional regulation of inflammation and the cellular immune response. However, a number of intracellular pathogens colonize immune cells and the implication of Egr-1 in the host-pathogen interplay has remained elusive. Here, we have characterized the Egr-1 responses of primary murine and human dendritic cells (DCs) upon challenge with the obligate intracellular parasite Toxoplasma gondii. We report that live intracellular parasites induce a sustained high expression of Egr-1 in DCs, different from the immediate-early Egr-1 response to parasite lysates, inactivated parasites or LPS. Moreover, a distinct nuclear localization of elevated amounts of Egr-1 protein was detected in infected DCs, but not in by-stander DCs. The ERK1/2 MAPK signaling pathway mediated the canonical immediate-early Egr-1 response to soluble antigens in a MyD88/TLR-dependent fashion. In contrast, a non-canonical extended Egr-1 response that relied primarily on p38 MAPK signaling was induced by intracellular parasites and was exhibited similarly by MyD88-deficient and wildtype DCs. The extended phase Egr-1 response was dramatically reduced upon challenge of DCs with T. gondii parasites deficient in GRA24, a secreted p38-interacting protein. Further, Egr-1-silenced primary DCs maintained their migratory responses upon T. gondii challenge. Importantly, Egr-1 silencing led to elevated expression of co-stimulatory molecules (CD40, CD80) in Toxoplasma-infected DCs and in LPS-challenged immature DCs, indicating that Egr-1 responses suppressed maturation of DCs. Moreover, the IL-12 and IL-2 responses of Toxoplasma-challenged DCs were modulated in a GRA24-dependent fashion. Jointly, the data show that the Egr-1 responses of DCs to microbial external stimuli and intracellular stimuli can be selectively mediated by ERK1/2 or p38 MAPK signaling, and that Egr-1 can act as an intrinsic negative modulator of maturation in primary DCs.
Collapse
Affiliation(s)
- Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Bertelsen A, Elborn JS, Schock BC. Infection with Prevotella nigrescens induces TLR2 signalling and low levels of p65 mediated inflammation in Cystic Fibrosis bronchial epithelial cells. J Cyst Fibros 2019; 19:211-218. [PMID: 31607634 DOI: 10.1016/j.jcf.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Prevotella spp. are frequently identified in Cystic Fibrosis sputum. This study examined whether infection with Prevotella nigrescens, a frequently identified member of this species, contributes to inflammation in CF bronchial epithelial cells through activation of TLR- and NF-κB signalling pathways. CFBE41o- cells were infected with either P.nigrescens or Pseudomonas aeruginosa and incubated under anaerobic conditions for 4h. P.nigrescens activated TLR2 signalling but not TLR4 signalling while P.aeruginosa activated TLR4 signalling with a lesser effect on TLR2. P.aeruginosa induced significant IκBα phosphorylation 10min post infection with a return to control levels by 30min post infection. A significant induction in nuclear p65 DNA binding was observed at 2h post infection. In contrast, infection with P.nigrescens induced phosphorylation of IκBα 120min post infection, with significant induction in nuclear p65 DNA binding at 4h post infection only. Cytokine gene and protein responses were lower for P.nigrescens compared to P.aeruginosa. This study demonstrates the ability of a clinical P.nigrescens isolate to provoke a delayed NF-κB(p65) driven response through induction in TLR2 signalling and activation of sustained levels of IKKα.
Collapse
Affiliation(s)
- A Bertelsen
- Department of Veterinary Medicine, The University of Cambridge, Madingley Road, Cambridge, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - J S Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - B C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
19
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4+ T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.
Collapse
|
20
|
Richardson L, Dixon CL, Aguilera-Aguirre L, Menon R. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol Reprod 2018; 99:1100-1112. [PMID: 29893818 PMCID: PMC7190655 DOI: 10.1093/biolre/ioy135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Term and preterm parturition are associated with oxidative stress (OS)-induced p38 mitogen-activated protein kinase (p38MAPK)-mediated fetal tissue (amniochorion) senescence. p38MAPK activation is a complex cell- and stimulant-dependent process. Two independent pathways of OS-induced p38MAPK activation were investigated in amnion epithelial cells (AECs) in response to cigarette smoke extract (CSE: a validated OS inducer in fetal cells): (1) the OS-mediated oxidation of apoptosis signal-regulating kinase (ASK)-1 bound Thioredoxin (Trx[SH]2) dissociates this complex, creating free and activated ASK1-signalosome and (2) transforming growth factor-mediated activation of (TGF)-beta-activated kinase (TAK)1 and TGF-beta-activated kinase 1-binding protein (TAB)1. AECs isolated from normal term, not-in-labor fetal membranes increased p38MAPK in response to CSE and downregulated it in response to antioxidant N-acetylcysteine. In AECs, both Trx and ASK1 were localized; however, they remained dissociated and not complexed, regardless of conditions. Silencing either ASK1 or its downstream effectors (MKK3/6) did not affect OS-induced p38MAPK activation. Conversely, OS increased TGF-beta's release from AECs and increased phosphorylation of both p38MAPK and TAB1. Silencing of TAB1, but not TAK1, prevented p38MAPK activation, which is indicative of TAB1-mediated autophosphorylation of p38MAPK, an activation mechanism seldom seen. OS-induced p38MAPK activation in AECs is ASK1-Trx signalosome-independent and is mediated by the TGF-beta pathway. This knowledge will help to design strategies to reduce p38MAPK activation-associated pregnancy risks.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tx, 77550
| | - Christopher Luke Dixon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
21
|
Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh PO, Gerdes V, Hartstra A, de Brauw M, Perkins R, Nieuwdorp M, Bergström G, Bäckhed F. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018; 175:947-961.e17. [DOI: 10.1016/j.cell.2018.09.055] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
|
22
|
Menard KL, Haskins BE, Colombo AP, Denkers EY. Toxoplasma gondii Manipulates Expression of Host Long Noncoding RNA during Intracellular Infection. Sci Rep 2018; 8:15017. [PMID: 30301916 PMCID: PMC6177471 DOI: 10.1038/s41598-018-33274-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNA (lncRNA) are non-protein-coding transcripts greater than 200 nucleotides that regulate gene expression. The field of transcriptomics is only beginning to understand the role of lncRNA in host defense. Little is known about the role of lncRNA in the response to infection by intracellular pathogens such as Toxoplasma gondii. Using a microarray, we examined the differential expression of 35,923 lncRNAs and 24,881 mRNAs in mouse bone-marrow-derived macrophages during infection with high- and low-virulence T. gondii strains. We found that 1,522 lncRNA molecules were differentially regulated during infection with the high-virulence Type I strain, versus 528 with the less-virulent Type II strain. Of these lncRNAs, 282 were co-regulated with a nearby or overlapping mRNA–including approximately 60 mRNAs with immune-related functions. We validated the microarray for 4 lncRNAs and 4 mRNAs using qRT-PCR. Using deletion strains of T. gondii, we found that the secretory kinase ROP16 controls upregulation of lncRNAs Csf1-lnc and Socs2-lnc, demonstrating that the parasite directly manipulates host lncRNA expression. Given the number of regulated lncRNAs and the magnitude of the expression changes, we hypothesize that these molecules constitute both an additional regulatory layer in the host response to infection and a target for manipulation by T. gondii.
Collapse
Affiliation(s)
- Kayla L Menard
- Department of Biology and Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Breanne E Haskins
- Department of Biology and Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | - Eric Y Denkers
- Department of Biology and Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
23
|
Li Y, Xiu F, Mou Z, Xue Z, Du H, Zhou C, Li Y, Shi Y, He S, Zhou H. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomedicine (Lond) 2018. [PMID: 29542367 DOI: 10.2217/nnm-2018-0035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Exosomes are nanoscale membranous vesicles secreted by most cell types able to transfer bioactive molecules among cells, which play crucial roles in intercellular communication. We characterized the exosomes derived from Toxoplasma gondii and detected the immune response in macrophages. METHODS We used transmission electron microscopy, nanotracking analysis and western blotting to identify T. gondii exosomes. Functional experiments were performed in RAW264.7 cells for the induction of cytokines, MAPKs (p38 MAPK, ERK 1/2 and c-Jun N-terminal kinase [JNK]), mRNAs and nuclear translocation of phosphorylated JNK protein. RESULTS JNK pathway was activated by T. gondii exosomes, and the production of IL-12, IFN-γ and TNF-α was significantly increased in macrophages. CONCLUSION Our findings demonstrated that T. gondii exosomes elicit innate immune through JNK activation, which could provide new insight into the essential regulators of host-pathogen interactions.
Collapse
Affiliation(s)
- Yawen Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Fangming Xiu
- Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Zezhong Mou
- Cheeloo Health Sciences Center, Shandong University, Jinan, PR China
| | - Zhiwei Xue
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Huanhui Du
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Chunxue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Shenyi He
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
24
|
Yakubu RR, Weiss LM, Silmon de Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol Microbiol 2017; 107:1-23. [PMID: 29052917 DOI: 10.1111/mmi.13867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
Abstract
Parasites of the Apicomplexa phylum, such as Plasmodium spp. and Toxoplasma gondii, undergo complex life cycles involving multiple stages with distinct biology and morphologies. Post-translational modifications (PTMs), such as phosphorylation, acetylation and glycosylation, regulate numerous cellular processes, playing a role in every aspect of cell biology. PTMs can occur on proteins at any time in their lifespan and through alterations of target protein activity, localization, protein-protein interactions, among other functions, dramatically increase proteome diversity and complexity. In addition, PTMs can be induced or removed on changes in cellular environment and state. Thus, PTMs are likely to be key regulators of developmental transitions, biology and pathogenesis of apicomplexan parasites. In this review we examine the roles of PTMs in both parasite-specific and conserved eukaryotic processes, and the potential crosstalk between PTMs, that together regulate the intricate lives of these protozoa.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Natalie C Silmon de Monerri
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| |
Collapse
|
25
|
Jin X, Gong P, Zhang X, Li G, Zhu T, Zhang M, Li J. Activation of ERK Signaling via TLR11 Induces IL-12p40 Production in Peritoneal Macrophages Challenged by Neospora caninum. Front Microbiol 2017; 8:1393. [PMID: 28798732 PMCID: PMC5527353 DOI: 10.3389/fmicb.2017.01393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023] Open
Abstract
Neospora caninum, an obligate intracellular protozoan parasite, can infect a large variety of vertebrate hosts including the most economically important cattle. Infection with N. caninum is a main cause of abortion in both dairy and beef cattle, which causes great economic losses worldwide. However, the mechanism of host cell infection by N. caninum has not been fully elucidated, especially in terms of inflammatory responses. In this study, the effect of TLR-ERK signaling pathway on the synthesis of pro-inflammatory interleukin-12p40 in mouse peritoneal macrophages (PMϕ) challenged by N. caninum was investigated. Our results suggested that N. caninum infection quickly activated MEK-ERK signaling via TLR11 in PMϕ. In addition, N. caninum infection also caused upregulated production of IL-12p40 by PMϕ, which was significantly reduced with the blockade of TLR11/MEK/ERK pathway, suggesting that this upregulation of IL-12 p40 was TLR11 and MEK-ERK-activation dependent.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Key Laboratory of Zoonosis, Ministry of Education - College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education - College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education - College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Guojiang Li
- Jilin Agricultural Science and Technology UniversityJilin, China
| | - Tao Zhu
- Key Laboratory of Zoonosis, Ministry of Education - College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Mengge Zhang
- Key Laboratory of Zoonosis, Ministry of Education - College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education - College of Veterinary Medicine, Jilin UniversityChangchun, China.,Jilin Agricultural Science and Technology UniversityJilin, China
| |
Collapse
|
26
|
Abstract
Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Collapse
|
27
|
Kaltenmeier CT, Vollmer LL, Vernetti LA, Caprio L, Davis K, Korotchenko VN, Day BW, Tsang M, Hulkower KI, Lotze MT, Vogt A. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity. J Pharmacol Exp Ther 2017; 361:39-50. [PMID: 28154014 PMCID: PMC5363763 DOI: 10.1124/jpet.116.239756] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/30/2017] [Indexed: 01/05/2023] Open
Abstract
Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration.
Collapse
Affiliation(s)
- Christof T Kaltenmeier
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Laura L Vollmer
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Lawrence A Vernetti
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Lindsay Caprio
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Keanu Davis
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Vasiliy N Korotchenko
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Billy W Day
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Michael Tsang
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Keren I Hulkower
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Michael T Lotze
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| | - Andreas Vogt
- Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
| |
Collapse
|
28
|
The Effect of Tacrolimus and Mycophenolic Acid on CD14+ Monocyte Activation and Function. PLoS One 2017; 12:e0170806. [PMID: 28122021 PMCID: PMC5266297 DOI: 10.1371/journal.pone.0170806] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022] Open
Abstract
Monocytes and macrophages play key roles in many disease states, including cellular and humoral rejection after solid organ transplantation (SOT). To suppress alloimmunity after SOT, immunosuppressive drug therapy is necessary. However, little is known about the effects of the immunosuppressive drugs tacrolimus and mycophenolic acid (MPA) on monocyte activation and function. Here, the effect of these immunosuppressants on monocytes was investigated by measuring phosphorylation of three intracellular signaling proteins which all have a major role in monocyte function: p38MAPK, ERK and Akt. In addition, biological functions downstream of these signaling pathways were studied, including cytokine production, phagocytosis and differentiation into macrophages. To this end, blood samples from healthy volunteers were spiked with diverse concentrations of tacrolimus and MPA. Tacrolimus (200 ng/ml) inhibited phosphorylation of p38MAPK by 30% (mean) in CD14+ monocytes which was significantly less than in activated CD3+ T cells (max 60%; p < 0.05). This immunosuppressive agent also partly inhibited p-AKT (14%). MPA, at a therapeutic concentration showed the strongest effect on p-AKT (27% inhibition). p-ERK was inhibited with a maximum of 15% after spiking with either tacrolimus or MPA. The production of IL-1β and phagocytosis by monocytes were not affected by tacrolimus concentrations, whereas MPA did inhibit IL-1β production by 50%. Monocyte/macrophage polarization was shifted to an M2-like phenotype in the presence of tacrolimus, while MPA increased the expression of M2 surface markers, including CD163 and CD200R, on M1 macrophages. These results show that tacrolimus and MPA do not strongly affect monocyte function, apart from a change in macrophage polarization, to a clinically relevant degree.
Collapse
|
29
|
Yang Z, Hou Y, Hao T, Rho HS, Wan J, Luan Y, Gao X, Yao J, Pan A, Xie Z, Qian J, Liao W, Zhu H, Zhou X. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18. Mol Cell Proteomics 2017; 16:469-484. [PMID: 28087594 DOI: 10.1074/mcp.m116.063602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface.
Collapse
Affiliation(s)
- Zhaoshou Yang
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongheng Hou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Taofang Hao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hee-Sool Rho
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun Wan
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Yizhao Luan
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China.,the **School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Gao
- ‡‡The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; and
| | - Jianping Yao
- §§The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Pan
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhi Xie
- the ‖State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiang Qian
- the ¶Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Wanqin Liao
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Heng Zhu
- the §Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xingwang Zhou
- From the ‡Department of Biochemistry and Molecular Biology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| |
Collapse
|
30
|
Lumley EC, Osborn AR, Scott JE, Scholl AG, Mercado V, McMahan YT, Coffman ZG, Brewster JL. Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones 2017; 22:43-54. [PMID: 27761878 PMCID: PMC5225058 DOI: 10.1007/s12192-016-0740-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) has the ability to signal organelle dysfunction via a complex signaling network known as the unfolded protein response (UPR). In this work, hamster fibroblast cells exhibiting moderate levels of ER stress were compared to those exhibiting severe ER stress. Inhibition of N-linked glycosylation was accomplished via a temperature-sensitive mutation in the Dad1 subunit of the oligosaccharyltransferase (OST) complex or by direct inhibition with tunicamycin (Tm). Temperature shift (TS) treatment generated weak activation of ER stress signaling when compared to doses of Tm that are typically used in ER stress studies (500-1000 nM). A dose-response analysis of key ER stress signaling mediators, inositol-requiring enzyme 1 (IRE1) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), revealed 20-40 nM of Tm to generate activation intensity similar to TS treatment. In parental BHK21 cells, moderate (20-40 nM) and high doses (200-1000 nM) of Tm were compared to identify physiological and signaling-based differences in stress response. Inhibition of ER Ca2+ release via ITPR activity with 2-aminoethoxydiphenyl borate (2-APB) or Xestospongin C (XeC) was sufficient to protect against apoptosis induced by moderate but not higher doses of Tm. Analysis of kinase activation over a range of Tm exposures revealed the p38 stress-activated protein kinase (SAPK) to display increasing activation with Tm dosage. Interestingly, Tm induced the extracellular regulated kinases (Erk1/2) only at moderate doses of Tm. Inhibition of ER transmembrane stress sensors (IRE1, PERK) or cytosolic signaling mediators (p38, Jnk1, Erk1/2) was used to evaluate pathways involved in apoptosis activation during ER stress. Inhibition of either PERK or p38 was sufficient to reduce cell death and apoptosis induced by moderate, but not high, doses of Tm. During ER stress, cells exhibited a rapid decline in anti-apoptotic Mcl-1 and survivin proteins. Inhibition of PERK was sufficient to block this affect. This work reveals moderate doses of ER stress to generate patterns of stress signaling that are distinct from higher doses and that apoptosis activation at moderate levels of stress are dependent upon PERK and p38 signaling. Studies exploring ER stress signaling should recognize that this signaling acts as a rheostat rather than a simple switch, behaving distinctively in a dose-dependent manner.
Collapse
Affiliation(s)
- Emily C Lumley
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Acadia R Osborn
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Jessica E Scott
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Amanda G Scholl
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Vicki Mercado
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Young T McMahan
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Zachary G Coffman
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA
| | - Jay L Brewster
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu,, CA, 90263, USA.
| |
Collapse
|
31
|
Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Curr Opin Hematol 2016; 23:274-9. [PMID: 26845544 DOI: 10.1097/moh.0000000000000232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The maintenance and integrity of the endothelial barrier is essential for vascular homeostasis. Endothelial barrier dysfunction is mediated by various inflammatory factors, many of which act through G protein-coupled receptors including protease-activated receptors (PARs). PARs are expressed in multiple cell types in the vasculature and mediate cellular responses to thrombin, the key effector protease of the coagulation cascade. Thrombin activation of PAR1 induces endothelial barrier permeability through multiple pathways. Here, we discuss the mechanism by which thrombin activation of PAR1 promotes endothelial barrier breakdown and highlight recent advances that have provided new insight into molecular mechanisms that control endothelial barrier integrity. RECENT FINDINGS Although the signal transduction pathways induced by thrombin activation of PAR1 in endothelial cells have been extensively studied, the key regulatory mechanisms remain poorly understood. Posttranslational modifications are integral to the regulation of PAR1 signaling and recent studies suggest a novel function for ubiquitination of PAR1 in regulation of endothelial barrier permeability. SUMMARY An understanding of how endothelial barrier permeability is regulated by thrombin activation of PAR1 is important for the discovery of new drug targets that can be manipulated to control endothelial barrier permeability and prevent progression of vascular inflammation.
Collapse
|
32
|
Maphis N, Jiang S, Xu G, Kokiko-Cochran ON, Roy SM, Van Eldik LJ, Watterson DM, Lamb BT, Bhaskar K. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. ALZHEIMERS RESEARCH & THERAPY 2016; 8:54. [PMID: 27974048 PMCID: PMC5157054 DOI: 10.1186/s13195-016-0221-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer's disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1. METHOD We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice. RESULTS First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 (pS199/pS202) site tau phosphorylation, with the maximum effect peaking at 60-90 min after stimulation. Second, treatment of old (~20 months of age) hTau mice with MW181 (1 mg/kg body weight; 14 days via oral gavage) significantly reduced p38α MAPK activation compared with vehicle-administered hTau mice. This also resulted in a significant reduction in AT180 (pT231) site tau phosphorylation and Sarkosyl-insoluble tau aggregates. Third, MW181 treatment significantly increased synaptophysin protein expression and resulted in improved working memory. Fourth, MW181 administration reduced phosphorylated MAPK-activated protein kinase 2 (pMK2) and phosphorylated activating transcription factor 2 (pATF2), which are known substrates of p38α MAPK. Finally, MW181 reduced the expression of interferon-γ and interleukin-1β. CONCLUSIONS Taken together, these studies support p38α MAPK as a valid therapeutic target for the treatment of tauopathies.
Collapse
Affiliation(s)
- Nicole Maphis
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guixiang Xu
- Stark Neurosciences Research Institute, Indiana University, 320W 15th Street, NB Suite 414C, Indianapolis, IN, 46202, USA
| | - Olga N Kokiko-Cochran
- Department of Neurosciences, The Ohio State University, 4198 Graves Hall, 333 West 10th Avenue, Columbus, OH, 43210, USA
| | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Ward Building Room Mail Code W896, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800S. Limestone Street, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Ward Building Room Mail Code W896, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, 320W 15th Street, NB Suite 414C, Indianapolis, IN, 46202, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
33
|
Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure 2016; 25:16-26. [PMID: 27889209 PMCID: PMC5222587 DOI: 10.1016/j.str.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38α (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38α has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38α inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38α. Toxoplasmosis controls its host immune response via a protein effector, GRA24 A recombinant complex of GRA24 and MAPK p38α demonstrates how the protein works An adapted KIM domain ensures activation and a sustained inflammatory response The recombinant complex is useful in the evaluation of p38 inhibitors
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrés Palencia
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Laurence Braun
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Bougdour
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France.
| |
Collapse
|
34
|
Incrocci R, Barse L, Stone A, Vagvala S, Montesano M, Subramaniam V, Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton's tyrosine kinase and STAT3. Virology 2016; 500:96-102. [PMID: 27792904 DOI: 10.1016/j.virol.2016.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Previous data demonstrate that Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 to promote the survival of LMP2A-expressing B cell lymphomas. Since STAT3 is an important regulator of IL-10 production, we hypothesized that LMP2A activates a signal transduction cascade that increases STAT3 phosphorylation to enhance IL-10. Using LMP2A-negative and -positive B cell lines, the data indicate that LMP2A requires the early signaling molecules of the Syk/RAS/PI3K pathway to increase IL-10. Additional studies indicate that the PI3K-regulated kinase, BTK, is responsible for phosphorylating STAT3, which ultimately mediates the LMP2A-dependent increase in IL-10. These data are the first to show that LMP2A signaling results in STAT3 phosphorylation in B cells through a PI3K/BTK-dependent pathway. With the use of BTK and STAT3 inhibitors to treat B cell lymphomas in clinical trials, these findings highlight the possibility of using new pharmaceutical approaches to treat EBV-associated lymphomas that express LMP2A.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Levi Barse
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Amanda Stone
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Sai Vagvala
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Michael Montesano
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Vijay Subramaniam
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States.
| |
Collapse
|
35
|
Mota CM, Oliveira ACM, Davoli-Ferreira M, Silva MV, Santiago FM, Nadipuram SM, Vashisht AA, Wohlschlegel JA, Bradley PJ, Silva JS, Mineo JR, Mineo TWP. Neospora caninum Activates p38 MAPK as an Evasion Mechanism against Innate Immunity. Front Microbiol 2016; 7:1456. [PMID: 27679624 PMCID: PMC5020094 DOI: 10.3389/fmicb.2016.01456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
Due to the high prevalence and economic impact of neosporosis, the development of safe and effective vaccines and therapies against this parasite has been a priority in the field and is crucial to limit horizontal and vertical transmission in natural hosts. Limited data is available regarding factors that regulate the immune response against this parasite and such knowledge is essential in order to understand Neospora caninum induced pathogenesis. Mitogen-activated protein kinases (MAPKs) govern diverse cellular processes, including growth, differentiation, apoptosis, and immune-mediated responses. In that sense, our goal was to understand the role of MAPKs during the infection by N. caninum. We found that p38 phosphorylation was quickly triggered in macrophages stimulated by live tachyzoites and antigen extracts, while its chemical inhibition resulted in upregulation of IL-12p40 production and augmented B7/MHC expression. In vivo blockade of p38 resulted in an amplified production of cytokines, which preceded a reduction in latent parasite burden and enhanced survival against the infection. Additionally, the experiments indicate that the p38 activation is induced by a mechanism that depends on GPCR, PI3K and AKT signaling pathways, and that the phenomena here observed is distinct that those induced by Toxoplasma gondii’s GRA24 protein. Altogether, these results showed that N. caninum manipulates p38 phosphorylation in its favor, in order to downregulate the host’s innate immune responses. Additionally, those results infer that active interference in this signaling pathway may be useful for the development of a new therapeutic strategy against neosporosis.
Collapse
Affiliation(s)
- Caroline M Mota
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Ana C M Oliveira
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Marcela Davoli-Ferreira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - Murilo V Silva
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Fernanda M Santiago
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Santhosh M Nadipuram
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles CA, USA
| | - Peter J Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los AngelesCA, USA; Molecular Biology Institute, University of California, Los Angeles, Los AngelesCA, USA
| | - João S Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - José R Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| |
Collapse
|
36
|
Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17:259-68. [PMID: 26808229 PMCID: PMC4755875 DOI: 10.1038/ni.3347] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/12/2015] [Indexed: 02/05/2023]
Abstract
The proinflammatory cytokines interleukin 12 (IL-12) and IL-23 connect innate and adaptive immune responses and are also involved in autoimmune and inflammatory diseases. Here we describe an epigenetic mechanism of Il12 and Il23 gene regulation involving the deubiquitinase Trabid. Deletion of Zranb1, the gene encoding Trabid, in dendritic cells inhibited the induction of IL-12 and IL-23 expression by Toll-like receptors (TLR), impairing the differentiation of inflammatory T cells and protecting mice from autoimmune inflammation. Trabid facilitated TLR-induced histone modifications at the Il12 and Il23 promoters, which involved deubiqutination and stabilization of the histone demethylase Jmjd2d. These findings highlight an epigenetic mechanism of Il12 and Il23 gene regulation and establish Trabid as an innate immune regulator of inflammatory T cell responses.
Collapse
|
37
|
Mohanty S, Dal Molin M, Ganguli G, Padhi A, Jena P, Selchow P, Sengupta S, Meuli M, Sander P, Sonawane A. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Tuberculosis (Edinb) 2015; 96:44-57. [PMID: 26786654 DOI: 10.1016/j.tube.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) survives inside the macrophages by modulating the host immune responses in its favor. The 6-kDa early secretory antigenic target (ESAT-6; esxA) of Mtb is known as a potent virulence and T-cell antigenic determinant. At least 23 such ESAT-6 family proteins are encoded in the genome of Mtb; however, the function of many of them is still unknown. We herein report that ectopic expression of Mtb Rv2346c (esxO), a member of ESAT-6 family proteins, in non-pathogenic Mycobacterium smegmatis strain (MsmRv2346c) aids host cell invasion and intracellular bacillary persistence. Further mechanistic studies revealed that MsmRv2346c infection abated macrophage immunity by inducing host cell death and genomic instability as evident from the appearance of several DNA damage markers. We further report that the induction of genomic instability in infected cells was due to increase in the hosts oxidative stress responses. MsmRv2346c infection was also found to induce autophagy and modulate the immune function of macrophages. In contrast, blockade of Rv2346c induced oxidative stress by treatment with ROS inhibitor N-acetyl-L-cysteine prevented the host cell death, autophagy induction and genomic instability in infected macrophages. Conversely, MtbΔRv2346c mutant did not show any difference in intracellular survival and oxidative stress responses. We envision that Mtb ESAT-6 family protein Rv2346c dampens antibacterial effector functions namely by inducing oxidative stress mediated genomic instability in infected macrophages, while loss of Rv2346c gene function may be compensated by other redundant ESAT-6 family proteins. Thus EsxO plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Soumitra Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | | | - Avinash Padhi
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Prajna Jena
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | - Srabasti Sengupta
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland; National Reference Laboratory for Mycobacteria, Gloriastrasse 30, CH 8006 Zurich, Switzerland
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
38
|
Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells. PLoS One 2015; 10:e0141550. [PMID: 26528819 PMCID: PMC4631599 DOI: 10.1371/journal.pone.0141550] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.
Collapse
|
39
|
Grimsey NJ, Aguilar B, Smith TH, Le P, Soohoo AL, Puthenveedu MA, Nizet V, Trejo J. Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes. J Cell Biol 2015; 210:1117-31. [PMID: 26391660 PMCID: PMC4586747 DOI: 10.1083/jcb.201504007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
K63-linked ubiquitination of GPCRs mediated by the NEDD4-2 E3 ubiquitin ligase regulates recruitment of a TAB1–TAB2 complex on endosomes and stimulates p38 MAPK through a noncanonical pathway, which is critical for endothelial barrier disruption. Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.
Collapse
Affiliation(s)
- Neil J Grimsey
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093
| | - Berenice Aguilar
- Department of Pediatrics, School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Thomas H Smith
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093
| | - Phillip Le
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093
| | - Amanda L Soohoo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Victor Nizet
- Department of Pediatrics, School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
40
|
Combes A, Dekerle J, Webborn N, Watt P, Bougault V, Daussin FN. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol Rep 2015; 3:3/9/e12462. [PMID: 26359238 PMCID: PMC4600372 DOI: 10.14814/phy2.12462] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During transition from rest to exercise, metabolic reaction rates increase substantially to sustain intracellular ATP use. These metabolic demands activate several kinases that initiate signal transduction pathways which modulate transcriptional regulation of mitochondrial biogenesis. The purpose of this study was to determine whether metabolic fluctuations per se affect the signaling cascades known to regulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). On two separate occasions, nine men performed a continuous (30-min) and an intermittent exercise (30 × 1-min intervals separated by 1-min of recovery) at 70% of . Skeletal muscle biopsies from the vastus lateralis were taken at rest and at +0 h and +3 h after each exercise. Metabolic fluctuations that correspond to exercise-induced variation in metabolic rates were determined by analysis of VO2 responses. During intermittent exercise metabolic fluctuations were 2.8-fold higher despite identical total work done to continuous exercise (317 ± 41 vs. 312 ± 56 kJ after intermittent and continuous exercise, respectively). Increased phosphorylation of AMP-activated protein kinase (AMPK) (˜2.9-fold, P < 0.01), calcium/calmodulin-dependent protein kinase II (CaMKII) (˜2.7-fold, P < 0.01) and p38-mitogen-activated protein kinase (MAPK) (˜4.2-fold, P < 0.01) occurred immediately in both exercises and to a greater extent after the intermittent exercise (condition x time interaction, P < 0.05). A single bout of intermittent exercise induces a greater activation of these signaling pathways regulating PGC-1α when compared to a single bout of continuous exercise of matched work and intensity. Chronic adaptations to exercise on mitochondria biogenesis are yet to be investigated.
Collapse
Affiliation(s)
- Adrien Combes
- URePSSS: Physical Activity - Muscle - Health Research Team, EA 7369, University of Lille, Lille, France
| | - Jeanne Dekerle
- Centre for Sport Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, UK
| | - Nick Webborn
- Centre for Sport Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, UK
| | - Peter Watt
- Centre for Sport Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, UK
| | - Valérie Bougault
- URePSSS: Physical Activity - Muscle - Health Research Team, EA 7369, University of Lille, Lille, France
| | - Frédéric N Daussin
- URePSSS: Physical Activity - Muscle - Health Research Team, EA 7369, University of Lille, Lille, France
| |
Collapse
|
41
|
Mohanty S, Jagannathan L, Ganguli G, Padhi A, Roy D, Alaridah N, Saha P, Nongthomba U, Godaly G, Gopal RK, Banerjee S, Sonawane A. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem 2015; 290:13321-43. [PMID: 25825498 DOI: 10.1074/jbc.m114.598482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Collapse
Affiliation(s)
- Soumitra Mohanty
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Lakshmanan Jagannathan
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India, the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Avinash Padhi
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Debasish Roy
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nader Alaridah
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Pratip Saha
- the Bioinformatics Center, Indian Institute of Science, Bangalore, Karnataka 560012, India, and
| | - Upendra Nongthomba
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gabriela Godaly
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Ramesh Kumar Gopal
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Sulagna Banerjee
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India, the Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | - Avinash Sonawane
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India,
| |
Collapse
|
42
|
Theivanthiran B, Kathania M, Zeng M, Anguiano E, Basrur V, Vandergriff T, Pascual V, Wei WZ, Massoumi R, Venuprasad K. The E3 ubiquitin ligase Itch inhibits p38α signaling and skin inflammation through the ubiquitylation of Tab1. Sci Signal 2015; 8:ra22. [PMID: 25714464 DOI: 10.1126/scisignal.2005903] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deficiency in the E3 ubiquitin ligase Itch causes a skin-scratching phenotype in mice. We found that there was increased phosphorylation and activation of the mitogen-activated protein kinase p38α in spontaneous and experimentally induced skin lesions of Itch-deficient (Itch-/-) mice. Itch bound directly to the TGF-β-activated kinase 1-binding protein 1 (Tab1) through a conserved PPXY motif and inhibited the activation of p38α. Knockdown of Tab1 by short hairpin RNA attenuated the prolonged p38α phosphorylation exhibited by Itch-/- cells. Similarly, reconstitution of Itch-/- cells with wild-type Itch, but not the ligase-deficient Itch-C830A mutant, inhibited the phosphorylation and activation of p38α. Compared to the skin of wild-type mice, the skin of Itch-/- mice contained increased amounts of the mRNAs of proinflammatory cytokines, including tumor necrosis factor (TNF), interleukin-6 (IL-6), IL-1β, IL-11, and IL-19. Inhibition of p38 or blocking the interaction between p38α and Tab1 with a cell-permeable peptide substantially attenuated skin inflammation in Itch-/- mice. These findings provide insight into how Itch-mediated regulatory mechanisms prevent chronic skin inflammation, which could be exploited therapeutically.
Collapse
Affiliation(s)
| | - Mahesh Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Minghui Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Esperanza Anguiano
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Travis Vandergriff
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ramin Massoumi
- Department of Laboratory Medicine, Lund University, Medicon Village, SE-22381 Lund, Sweden
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA.
| |
Collapse
|
43
|
Antileishmanial effect of 18β-glycyrrhetinic acid is mediated by Toll-like receptor-dependent canonical and noncanonical p38 activation. Antimicrob Agents Chemother 2015; 59:2531-9. [PMID: 25691644 DOI: 10.1128/aac.03997-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023] Open
Abstract
18β-Glycyrrhetinic acid (GRA), a natural immunomodulator, greatly reduced the parasite load in experimental visceral leishmaniasis through nitric oxide (NO) upregulation, proinflammatory cytokine expression, and NF-κB activation. For the GRA-mediated effect, the primary kinase responsible was found to be p38, and analysis of phosphorylation kinetics as well as studies with dominant-negative (DN) constructs revealed mitogen-activated protein kinase kinase 3 (MKK3) and MKK6 as the immediate upstream regulators of p38. However, detection of remnant p38 kinase activity in the presence of both DN MKK3 and MKK6 suggested alternative pathways of p38 activation. That residual p38 activity was attributed to an autophosphorylation event ensured by the transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1)-p38 interaction and was completely abolished upon pretreatment with SB203580 in DN MKK3/6 double-transfected macrophage cells. Further upstream signaling evaluation by way of phosphorylation kinetics and transfection studies with DN constructs identified TAK1, myeloid differentiation factor 88 (MyD88), interleukin 1 receptor (IL-1R)-activated kinase 1 (IRAK1), and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) as important contributors to GRA-mediated macrophage activation. Finally, gene knockdown studies revealed Toll-like receptor 2 (TLR2) and TLR4 as the membrane receptors associated with GRA-mediated antileishmanial activity. Together, the results of this study brought mechanistic insight into the antileishmanial activity of GRA, which is dependent on the TLR2/4-MyD88 signaling axis, leading to MKK3/6-mediated canonical and TAB1-mediated noncanonical p38 activation.
Collapse
|
44
|
Zhang T, Zhu M, Song WY, Harmon AC, Chen S. Oxidation and phosphorylation of MAP kinase 4 cause protein aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:156-65. [PMID: 25433264 DOI: 10.1016/j.bbapap.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/12/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades are highly conserved signaling pathways that respond to environmental cues. Arabidopsis MPK4 has been identified as a stress-responsive protein kinase. Here we demonstrate that Brassica napus MPK4 (BnMPK4) is activated by hydrogen peroxide (H2O2) and phytohormone abscisic acid (ABA). Transient expression of a constitutively active BnMPK4 causes H2O2 production and cell death in Nicotiana benthamiana leaves. However, little is known about how H2O2 contributes to the regulation of MPK4 kinase function. Biochemical analysis revealed that recombinant BnMPK4 autophosphorylates on both threonine and tyrosine residues in the activation loop. In the presence of H2O2, phosphorylation of BnMPK4 caused protein aggregation in vitro. The aggregation of BnMPK4 could be reversed to the monomeric form by reducing reagents. Point-mutation of cysteine codons indicated that cysteine 232 is involved in protein aggregation. Our results suggest that BnMPK4 is involved in reactive oxygen species (ROS) signaling and metabolism, and its aggregation may be modulated by redox.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mengmeng Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wen-yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Alice C Harmon
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
45
|
Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. TAK1-binding proteins (TAB1 and TAB2) in grass carp (Ctenopharyngodon idella): identification, characterization, and expression analysis after infection with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2014; 38:389-399. [PMID: 24747054 DOI: 10.1016/j.fsi.2014.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor-β activated kinase-1 (TAK1) is a key regulatory molecule in toll-like receptor (TLR), interleukin-1 (IL-1), and tumor necrosis factor (TNF) signaling pathways. The activation of TAK1 is specifically regulated by two TAK1-binding proteins, TAB1 and TAB2. However, the roles of TAB1 and TAB2 in fish have not been reported to date. In the present study, TAB1 (CiTAB1) and TAB2 (CiTAB2) in grass carp (Ctenopharyngodon idella) were identified and characterized, and their expression profiles were analyzed after fish were infected with the pathogenic ciliate Ichthyophthirius multifiliis. The full-length CiTAB1 cDNA is 1949 bp long with an open reading frame (ORF) of 1497 bp that encodes a putative protein of 498 amino acids containing a typical PP2Cc domain. The full-length CiTAB2 cDNA is 2967 bp long and contains an ORF of 2178 bp encoding a putative protein of 725 amino acids. Protein structure analysis revealed that CiTAB2 consists of three main structural domains: an N-terminal CUE domain, a coiled-coil domain, and a C-terminal ZnF domain. Multiple sequence alignment showed that CiTAB1 and CiTAB2 share high sequence identity with other known TAB1 and TAB2 proteins, and several conserved phosphorylation sites and an O-GlcNAc site were deduced in CiTAB1. Phylogenetic tree analysis demonstrated that CiTAB1 and CiTAB2 have the closest evolutionary relationship with TAB1 and TAB2 of Danio rerio, respectively. CiTAB1 and CiTAB2 were both widely expressed in all examined tissues with the highest levels in the heart and liver, respectively. After infection with I. multifiliis, the expressions of CiTAB1 and CiTAB2 were both significantly up-regulated in all tested tissues at most time points, which indicates that these proteins may be involved in the host immune response against I. multifiliis infection.
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hou-Jun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Cun-Bin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shu-Qin Wu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
46
|
Ricardo-Carter C, Favila M, Polando RE, Cotton RN, Bogard Horner K, Condon D, Ballhorn W, Whitcomb JP, Yadav M, Geister RL, Schorey JS, McDowell MA. Leishmania major inhibits IL-12 in macrophages by signalling through CR3 (CD11b/CD18) and down-regulation of ETS-mediated transcription. Parasite Immunol 2014; 35:409-20. [PMID: 23834512 DOI: 10.1111/pim.12049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 01/17/2023]
Abstract
Leishmania major is an aetiological agent of cutaneous leishmaniasis. The parasite primarily infects immune sentinel cells, specifically macrophages and dendritic cells, in the mammalian host. Infection is receptor mediated and is known to involve parasite binding to cell surface protein complement receptor 3 (CR3, Mac-1, CD11b/CD18). Engagement of CR3 by various ligands inhibits production of interleukin-12 (IL-12), the cytokine that drives antileishmanial T helper 1-type immune responses. Likewise, L. major infection inhibits IL-12 production and activation of host macrophages. Our data indicate that in the absence of CR3, L. major-infected bone marrow-derived macrophages produce more IL-12 and nitric oxide compared with WT cells upon lipopolysaccharide (LPS) stimulation. We therefore investigated multiple signalling pathways by which L. major may inhibit IL-12 transcription through CR3 ligation. We demonstrate that L. major infection does not elicit significant NFκB p65, MAPK, IRF-1 or IRF-8 activation in WT or CD11b-deficient macrophages. Furthermore, infection neither inhibits LPS-induced MAPK or NFκB activation nor blocks IFN-γ-activated IRF-1 and IRF-8. ETS-mediated transcription, however, is inhibited by L. major infection independently of CR3. Our data indicate that L. major-mediated inhibition of IL-12 occurs through CR3 engagement; however, the mechanism of inhibition is independent of NFκB, MAPK, IRF and ETS.
Collapse
Affiliation(s)
- C Ricardo-Carter
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bougdour A, Tardieux I, Hakimi MA. Toxoplasmaexports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cell Microbiol 2014; 16:334-43. [DOI: 10.1111/cmi.12255] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Bougdour
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| | - Isabelle Tardieux
- Institut Cochin; INSERM U1016; CNRS UMR 8104; Université Paris Descartes; Paris 75014 France
| | - Mohamed-Ali Hakimi
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| |
Collapse
|
48
|
Gabryšová L, Howes A, Saraiva M, O'Garra A. The regulation of IL-10 expression. Curr Top Microbiol Immunol 2014; 380:157-90. [PMID: 25004818 DOI: 10.1007/978-3-662-43492-5_8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells.
Collapse
Affiliation(s)
- Leona Gabryšová
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | |
Collapse
|
49
|
Phosphorylation of mitogen- and stress-activated protein kinase-1 in astrocytic inflammation: a possible role in inhibiting production of inflammatory cytokines. PLoS One 2013; 8:e81747. [PMID: 24349124 PMCID: PMC3859508 DOI: 10.1371/journal.pone.0081747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/16/2013] [Indexed: 11/24/2022] Open
Abstract
Purpose It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated. Methods The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA). Results Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6. Conclusions Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of inflammation.
Collapse
|
50
|
Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. ACTA ACUST UNITED AC 2013; 210:2071-86. [PMID: 24043761 PMCID: PMC3782045 DOI: 10.1084/jem.20130103] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii secretes a novel dense granule protein, GRA24, that traffics from the vacuole to the host cell nucleus where it prolongs p38a activation and correlates with proinflammatory cytokine production. Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite that resides inside a parasitophorous vacuole. During infection, Toxoplasma actively remodels the transcriptome of its hosting cells with profound and coupled impact on the host immune response. We report that Toxoplasma secretes GRA24, a novel dense granule protein which traffics from the vacuole to the host cell nucleus. Once released into the host cell, GRA24 has the unique ability to trigger prolonged autophosphorylation and nuclear translocation of the host cell p38α MAP kinase. This noncanonical kinetics of p38α activation correlates with the up-regulation of the transcription factors Egr-1 and c-Fos and the correlated synthesis of key proinflammatory cytokines, including interleukin-12 and the chemokine MCP-1, both known to control early parasite replication in vivo. Remarkably, the GRA24–p38α complex is defined by peculiar structural features and uncovers a new regulatory signaling path distinct from the MAPK signaling cascade and otherwise commonly activated by stress-related stimuli or various intracellular microbes.
Collapse
Affiliation(s)
- Laurence Braun
- Centre National de la Recherche Scientifique (CNRS), UMR5163, Laboratoire Adaptation et Pathogénie des Microorganismes, F-38041 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|