1
|
Pahal S, Huang F, Singh P, Sharma N, Pham HP, Tran TBT, Sakhrie A, Akbaba H, Duc Nguyen T. Enhancing vaccine stability in transdermal microneedle platforms. Drug Deliv Transl Res 2025:10.1007/s13346-025-01854-4. [PMID: 40240731 DOI: 10.1007/s13346-025-01854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Micron-scale needles, so-called microneedles (MNs) offer a minimally invasive, nearly painless, and user-friendly method for effective intradermal immunization. Maintaining the stability of antigens and therapeutics is the primary challenge in producing vaccine or drug-loaded MNs. The manufacturing of MNs patches involves processes at ambient or higher temperatures and various physio-mechanical stresses that can impact the therapeutic efficacy of sensitive biologics or vaccines. Therefore, it is crucial to develop techniques that safeguard vaccines and other biological payloads within MNs. Despite growing research interest in deploying MNs as an efficient tool for delivering vaccines, there is no comprehensive review that integrates the strategies and efforts to preserve the thermostability of vaccine payloads to ensure compatibility with MNs fabrication. The discussion delves into various physical and chemical approaches for stabilizing antigens in vaccine formulations, which are subsequently integrated into the MNs matrix. The primary focus is to comprehensively examine the challenges associated with the translation of thermostable vaccine MNs for clinical applications while considering a safe, cost-effective approach with a regulatory roadmap. The recent cutting-edge advances facilitating flexible and scalable manufacturing of stabilized MNs patches have been emphasized. In conclusion, the ability to stabilize vaccines and therapeutics for MNs applications could bolster the effectiveness, safety and user-compliance for various drugs and vaccines, potentially offering a substantial impact on global public health.
Collapse
Affiliation(s)
- Suman Pahal
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Feifei Huang
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
| | - Parbeen Singh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Nidhi Sharma
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hoang-Phuc Pham
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
| | - Thi Bao Tram Tran
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Aseno Sakhrie
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hasan Akbaba
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Thanh Duc Nguyen
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Mihaylova NM, Manoylov IK, Nikolova MH, Prechl J, Tchorbanov AI. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Hum Vaccin Immunother 2024; 20:2292381. [PMID: 38193304 PMCID: PMC10793685 DOI: 10.1080/21645515.2023.2292381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.
Collapse
Affiliation(s)
- Nikolina M. Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K. Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H. Nikolova
- National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
5
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
6
|
Chi H, Qin Q, Hao X, Dalmo RA, Tang X, Xing J, Sheng X, Zhan W. Adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109502. [PMID: 38471627 DOI: 10.1016/j.fsi.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
β-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-βdefensin which express both the outer membrane protein of the bacterium and β-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-βdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-βdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-βdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-βdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that β-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.
Collapse
Affiliation(s)
- Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Qingqing Qin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaokai Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
7
|
Cobb J, Rawson J, Gonzalez N, Singer M, Kandeel F, Husseiny MI. Mechanism of Action of Oral Salmonella-Based Vaccine to Prevent and Reverse Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2024; 12:276. [PMID: 38543910 PMCID: PMC10975319 DOI: 10.3390/vaccines12030276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2025] Open
Abstract
A combination therapy of preproinsulin (PPI) and immunomodulators (TGFβ+IL10) orally delivered via genetically modified Salmonella and anti-CD3 promoted glucose balance in in NOD mice with recent onset diabetes. The Salmonella bacteria were modified to express the diabetes-associated antigen PPI controlled by a bacterial promoter in conjunction with over-expressed immunomodulating molecules. The possible mechanisms of action of this vaccine to limit autoimmune diabetes remained undefined. In mice, the vaccine prevented and reversed ongoing diabetes. The vaccine-mediated beneficial effects were associated with increased numbers of antigen-specific CD4+CD25+Foxp3+ Tregs, CD4+CD49b+LAG3+ Tr1-cells, and tolerogenic dendritic-cells (tol-DCs) in the spleens and lymphatic organs of treated mice. Despite this, the immune response to Salmonella infection was not altered. Furthermore, the vaccine effects were associated with a reduction in islet-infiltrating lymphocytes and an increase in the islet beta-cell mass. This was associated with increased serum levels of the tolerogenic cytokines (IL10, IL2, and IL13) and chemokine ligand 2 (CCL2) and decreased levels of inflammatory cytokines (IFNγ, GM-CSF, IL6, IL12, and TNFα) and chemokines (CXCL1, CXCL2, and CXCL5). Overall, the data suggest that the Salmonella-based vaccine modulates the immune response, reduces inflammation, and promotes tolerance specifically to an antigen involved in autoimmune diabetes.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Baghban R, Ghasemian A, Mahmoodi S. Nucleic acid-based vaccine platforms against the coronavirus disease 19 (COVID-19). Arch Microbiol 2023; 205:150. [PMID: 36995507 PMCID: PMC10062302 DOI: 10.1007/s00203-023-03480-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has infected 673,010,496 patients and caused the death of 6,854,959 cases globally until today. Enormous efforts have been made to develop fundamentally different COVID-19 vaccine platforms. Nucleic acid-based vaccines consisting of mRNA and DNA vaccines (third-generation vaccines) have been promising in terms of rapid and convenient production and efficient provocation of immune responses against the COVID-19. Several DNA-based (ZyCoV-D, INO-4800, AG0302-COVID19, and GX-19N) and mRNA-based (BNT162b2, mRNA-1273, and ARCoV) approved vaccine platforms have been utilized for the COVID-19 prevention. mRNA vaccines are at the forefront of all platforms for COVID-19 prevention. However, these vaccines have lower stability, while DNA vaccines are needed with higher doses to stimulate the immune responses. Intracellular delivery of nucleic acid-based vaccines and their adverse events needs further research. Considering re-emergence of the COVID-19 variants of concern, vaccine reassessment and the development of polyvalent vaccines, or pan-coronavirus strategies, is essential for effective infection prevention.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
9
|
Chang CY, Tai JA, Sakaguchi Y, Nishikawa T, Hirayama Y, Yamashita K. Enhancement of polyethylene glycol-cell fusion efficiency by novel application of transient pressure using a jet injector. FEBS Open Bio 2023; 13:478-489. [PMID: 36651034 PMCID: PMC9989930 DOI: 10.1002/2211-5463.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cell-cell fusion involves the fusion of somatic cells into a single hybrid cell. It is not only a physiological process but also an important cell engineering technology which can be applied to various fields, such as regenerative medicine, antibody engineering, genetic engineering, and cancer therapy. There are three major methods of cell fusion: electrical cell fusion, polyethylene glycol (PEG) cell fusion, and virus-mediated cell fusion. Although PEG cell fusion is the most economical approach and does not require expensive instrumentation, it has a poor fusion rate and induces a high rate of cell cytotoxicity. To improve the fusion rate of the PEG method, we combined it with the pyro-drive jet injector (PJI). PJI provides instant pressure instead of cell agitation to increase the probability of cell-to-cell contact and shorten the distance between cells in the process of cell fusion. Here, we report that this improved fusion method not only decreased cell cytotoxicity during the fusion process, but also increased fusion rate compared with the conventional PEG method. Furthermore, we tested the functionality of cells fused using the PJI-PEG method and found them to be comparable to those fused using the conventional PEG method in terms of their application for dendritic cell (DC)-tumor cell fusion vaccine production; in addition, the PJI-PEG method demonstrated excellent performance in hybridoma cell preparation. Taken together, our data indicate that this method improves cell fusion efficiency as compared to the PEG method and thus has the potential for use in various applications that require cell fusion technology.
Collapse
Affiliation(s)
- Chin Yang Chang
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan
| | - Jiayu A Tai
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan
| | - Yuko Sakaguchi
- Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan
| | - Tomoyuki Nishikawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan
| | - Yayoi Hirayama
- Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan.,Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan.,Medical Device Development, Medical Device Division, Industry Business Unit, Safety Strategic Business Unit, Daicel Co., Osaka, Japan
| |
Collapse
|
10
|
Alijani M, Saffar B, Yosefi Darani H, Mahzounieh M, Fasihi-Ramandi M, Shakshi-Niaei M, Soltani S, Ghaemi A, Shirian S. Immunological evaluation of a novel multi-antigenic DNA vaccine encoding SAG1, SAG3, MIC4, GRA5, GRA7, AMA1and BAG1 against Toxoplasma gondii in BALB/c mice. Exp Parasitol 2023; 244:108409. [PMID: 36403800 DOI: 10.1016/j.exppara.2022.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
Abstract
Many recent studies have been conducted to find new DNA vaccines based on Toxoplasma gondii antigens. DNA vaccines encoding complex of different antigens showed better immune responses compared to single antigen vaccine. In this study, we constructed a DNA vaccine encoding SAG1, SAG3, MIC4, GRA5, GRA7, AMA1 and BAG1 against T. gondii, and evaluated the immune response it induced in BALB/c mice. For this purposes, thirty BALB/c mice were randomly divided into three groups containing tenmice each. There were two negative control groups (PBSand pVAX1 vector) and one vaccination group (pVAX1-MAF, Multantigenic Fragment). On days 0, 14 and 28, the mice were immunized intramuscularly, and 5 weeks later they were challenged with T. gondii RH strain. The immune responses were evaluated using lymphocyte proliferation assay, T-cell subsets detection, and measurement of antibody and cytokine levels. The results showed that mice immunized with pVAX1-MAF developed high levels of IL-2, IL-12, IgG and IFN- γ as well as CD3+CD4+ T cells. In addition, the survival time of mice immunized by pVAX1-MAF was longer than that control mice. In conclusion, our results show that the multiple DNA vaccine encodingSAG1, SAG3, mic4, GRA5, GRA7, AMA and BAG1effectively enhanced humoral and cellular immune responses, and prolonged the survival time. Together this would suggest that further investigation may result in a promising candidate vaccine to treat toxoplasmosis.
Collapse
Affiliation(s)
- Mohammadreza Alijani
- Graduated Student of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran
| | - Behnaz Saffar
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Hossein Yosefi Darani
- Department of Parasitology, Faculty of Medicine, Esfahan University of Medical Science, Esfahan, Iran
| | - Mohammadreza Mahzounieh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Shakshi-Niaei
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Sodabe Soltani
- Graduated Student of Genetics, Shahrekord University, Shahrekord, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Pathology, Shahrekord University, Shahrekord, Iran; Shefa Neuroscience Research Center, Kahatm Al-Anbia Hospital, Tehran, Iran.
| |
Collapse
|
11
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
12
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
13
|
Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2112273. [PMID: 36304724 PMCID: PMC9595111 DOI: 10.1002/adfm.202112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Despite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases. Besides that, DNA vaccines allow the synthesis of target proteins in host cells, subsequently inducing recognition of these antigens to provoke immune responses. On this basis, researchers have designed numerous vehicles for DNA and nucleic acid delivery to regulate immune systems. Additionally, DNA nanostructures have also been implemented as vaccine delivery systems to elicit strong immune responses against pathogens and diseased cells. This review will introduce the mechanism of harnessing DNA-mediated immunity for the prevention and treatment of diseases, summarize recent progress, and envisage their future applications and challenges.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Weibo Cai
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
14
|
Hayashi H, Sun J, Yanagida Y, Otera T, Kubota-Koketsu R, Shioda T, Ono C, Matsuura Y, Arase H, Yoshida S, Nakamaru R, Ju N, Ide R, Tenma A, Kawabata S, Ehara T, Sakaguchi M, Tomioka H, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Komatsuno T, Saito Y, Rakugi H, Morishita R, Nakagami H. Preclinical study of a DNA vaccine targeting SARS-CoV-2. Curr Res Transl Med 2022; 70:103348. [PMID: 35489099 PMCID: PMC9020527 DOI: 10.1016/j.retram.2022.103348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/09/2022] [Accepted: 04/16/2022] [Indexed: 01/31/2023]
Abstract
To fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, and neutralization assays using pseudo-virus, and live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters from SARS-CoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Jiao Sun
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yuka Yanagida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Takako Otera
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Anges Inc, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Japan
| | - Shota Yoshida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | - Ryo Nakamaru
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | - Nan Ju
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Lead contact, Japan.
| |
Collapse
|
15
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
16
|
The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination. Vaccines (Basel) 2022; 10:vaccines10071119. [PMID: 35891282 PMCID: PMC9320421 DOI: 10.3390/vaccines10071119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Some of the most significant medical achievements in recent history are the development of distinct and effective vaccines, and the improvement of the efficacy of previously existing ones, which have contributed to the eradication of many dangerous and life-threatening diseases. Immunization depends on the generation of a physiological memory response and protection against infection. It is therefore crucial that antigens are delivered in an efficient manner, to elicit a robust immune response. The recent approval of COVID-19 vaccines containing lipid nanoparticles encapsulating mRNA demonstrates the broad potential of lipid-based delivery systems. In light of this, the present review article summarizes currently synthesized lipid-based nanoparticles such as liposomes, lipid-nano particles, or cell-derived exosomes.
Collapse
|
17
|
Nanotechnology for making a paradigm shift in COVID-19 vaccine. CLINICAL COMPLEMENTARY MEDICINE AND PHARMACOLOGY 2022; 2:100017. [PMID: 37520497 PMCID: PMC8884076 DOI: 10.1016/j.ccmp.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Clinical Development of mRNA Vaccines: Challenges and Opportunities. Curr Top Microbiol Immunol 2022; 440:167-186. [PMID: 35906319 DOI: 10.1007/82_2022_259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The emergence of safe and effective mRNA platform-based COVID-19 vaccines from the recent pandemic has changed the face of vaccine development. Compared with conventional technologies used historically, mRNA-based vaccines offer a rapid flexible and robust approach to preventing disease caused by transient viral strains such as SAR2-CoV-2 variants of concern and seasonal influenza. Adaptations in the formulation of the mRNA delivery systems such as with lipid nanoparticle delivery (LNP) used in mRNA-1273 and BNT16b2b have enabled this technology to flourish under the urgent collective response and collaborative regulatory understanding derived from COVID-19 vaccine development. The application of mRNA-based therapeutics in other areas holds potential promise including combination vaccines that might deliver protections against multiple infectious diseases. Future studies and further advances in mRNA-based technologies will provide insight into the clinical efficacy and real-world effectiveness of vaccines as well as provisions with respect to the impact of reactogenicity profiles. Overall, the success of mRNA-based COVID-19 vaccines has helped unlock a platform likely to result in many more candidate vaccines entering clinical evaluation to address the unmet medical needs of other diseases including viral respiratory diseases, herpesviruses, and historically challenging vaccine targets such as HIV.
Collapse
|
19
|
Peng XL, Cheng JSY, Gong HL, Yuan MD, Zhao XH, Li Z, Wei DX. Advances in the design and development of SARS-CoV-2 vaccines. Mil Med Res 2021; 8:67. [PMID: 34911569 PMCID: PMC8674100 DOI: 10.1186/s40779-021-00360-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since the end of 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The RNA genome of SARS-CoV-2, which is highly infectious and prone to rapid mutation, encodes both structural and nonstructural proteins. Vaccination is currently the only effective method to prevent COVID-19, and structural proteins are critical targets for vaccine development. Currently, many vaccines are in clinical trials or are already on the market. This review highlights ongoing advances in the design of prophylactic or therapeutic vaccines against COVID-19, including viral vector vaccines, DNA vaccines, RNA vaccines, live-attenuated vaccines, inactivated virus vaccines, recombinant protein vaccines and bionic nanoparticle vaccines. In addition to traditional inactivated virus vaccines, some novel vaccines based on viral vectors, nanoscience and synthetic biology also play important roles in combating COVID-19. However, many challenges persist in ongoing clinical trials.
Collapse
Affiliation(s)
- Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Meng-Di Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| |
Collapse
|
20
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Alturaiki W, Mubarak A, Al Jurayyan A, Hemida MG. The pivotal roles of the host immune response in the fine-tuning the infection and the development of the vaccines for SARS-CoV-2. Hum Vaccin Immunother 2021; 17:3297-3309. [PMID: 34114940 PMCID: PMC8204314 DOI: 10.1080/21645515.2021.1935172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV2 infection induces various degrees of infections ranging from asymptomatic to severe cases and death. Virus/host interplay contributes substantially to these outcomes. This highlights the potential roles of the host immune system in fighting virus infections. SARS-CoV-2. We highlighted the potential roles of host immune response in the modulation of the outcomes of SARS-CoV infections. The newly emerged SARS-CoV-2 mutants complicated the control and mitigation strategies measures. We are highlighting the current progress of some already deployed vaccines worldwide as well as those still in the pipelines. Recent studies from the large ongoing global vaccination campaign are showing promising results in reducing the hospitality rates as well as the number of severe SARS-CoV-2 infected patients. Careful monitoring of the genetic changes of the virus should be practiced. This is to prepare some highly sensitive diagnostic assays as well as to prepare some homologous vaccines matching the circulating strains in the future.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abduallah Al Jurayyan
- Immunology and HLA Department, Pathology and Laboratory Medicine, King Fahad Medical City, Riyadh, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| |
Collapse
|
22
|
Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne) 2021; 8:651658. [PMID: 34646834 PMCID: PMC8502894 DOI: 10.3389/fmed.2021.651658] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The coronaviruses that cause notable diseases, namely, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19), exhibit remarkable similarities in genomic components and pathogenetic mechanisms. Although coronaviruses have widely been studied as respiratory tract pathogens, their effects on the hepatobiliary system have seldom been reported. Overall, the manifestations of liver injury caused by coronaviruses typically involve decreased albumin and elevated aminotransferase and bilirubin levels. Several pathophysiological hypotheses have been proposed, including direct damage, immune-mediated injury, ischemia and hypoxia, thrombosis and drug hepatotoxicity. The interaction between pre-existing liver disease and coronavirus infection has been illustrated, whereby coronaviruses influence the occurrence, severity, prognosis and treatment of liver diseases. Drugs and vaccines used for treating and preventing coronavirus infection also have hepatotoxicity. Currently, the establishment of optimized therapy for coronavirus infection and liver disease comorbidity is of significance, warranting further safety tests, animal trials and clinical trials.
Collapse
Affiliation(s)
- Xinyi Wang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lunan Yan
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. NPJ Vaccines 2021; 6:114. [PMID: 34497271 PMCID: PMC8426359 DOI: 10.1038/s41541-021-00378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.
Collapse
|
24
|
Zhang N, Foiret J, Kheirolomoom A, Liu P, Feng Y, Tumbale S, Raie M, Wu B, Wang J, Fite BZ, Dai Z, Ferrara KW. Optimization of microbubble-based DNA vaccination with low-frequency ultrasound for enhanced cancer immunotherapy. ADVANCED THERAPEUTICS 2021; 4. [PMID: 34632048 DOI: 10.1002/adtp.202100033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy is an important cancer treatment strategy; nevertheless, the lack of robust immune cell infiltration in the tumor microenvironment remains a factor in limiting patient response rates. In vivo gene delivery protocols can amplify immune responses and sensitize tumors to immunotherapies, yet non-viral transfection methods often sacrifice transduction efficiency for improved safety tolerance. To improve transduction efficiency, we optimized a strategy employing low ultrasound transmission frequency-induced bubble oscillation to introduce plasmids into tumor cells. Differential centrifugation isolated size-specific microbubbles. The diameter of the small microbubble population was 1.27 ± 0.89 μm and that of larger population was 4.23 ± 2.27 μm. Upon in vitro insonation with the larger microbubble population, 29.7% of cancer cells were transfected with DNA plasmids, higher than that with smaller microbubbles (18.9%, P <0.05) or positive control treatments with a commercial transfection reagent (12%, P < 0.01). After 48 h, gene expression increased more than two-fold in tumors treated with large, as compared with small, microbubbles. Furthermore, the immune response, including tumor infiltration of CD8+ T cells and F4/80+ macrophages, was enhanced. We believe that this safe and efficacious method can improve preclinical procedures and outcomes for DNA vaccines in cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Pei Liu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Yi Feng
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Spencer Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Marina Raie
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Bo Wu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Brett Z Fite
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Engineering, Peking University, Beijing, China
| | | |
Collapse
|
25
|
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, Chen J, Luo M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front Cell Dev Biol 2021; 9:633776. [PMID: 34113610 PMCID: PMC8185206 DOI: 10.3389/fcell.2021.633776] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Faced with the challenges posed by infectious diseases and cancer, nucleic acid vaccines present excellent prospects in clinical applications. Compared with traditional vaccines, nucleic acid vaccines have the characteristics of high efficiency and low cost. Therefore, nucleic acid vaccines have potential advantages in disease prevention and treatment. However, the low immunogenicity and instability of nucleic acid vaccines have limited their development. Therefore, a large number of studies have been conducted to improve their immunogenicity and stability by improving delivery methods, thereby supporting progress and development for clinical applications. This article mainly reviews the advantages, disadvantages, mechanisms, delivery methods, and clinical applications of nucleic acid vaccines.
Collapse
Affiliation(s)
- Furong Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Identification of novel hepatitis B virus therapeutic vaccine candidates derived from polymerase protein. Aging (Albany NY) 2021; 13:14372-14384. [PMID: 34016795 PMCID: PMC8202855 DOI: 10.18632/aging.203053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/28/2021] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem with high morbidity and mortality rates. The therapeutic vaccine is a promising method of treatment, and HBV polymerase plays a vital role in viral replication. Therefore, a therapeutic vaccine that binds to HBV DNA polymerase may control HBV infection. We predicted and selected epitopes of polymerase using online databases and analysis software. We then performed molecular docking and peptide binding assays to evaluate the binding energies and affinities between polymerase epitopes and the HLA-A0201 molecule. Finally, we induced T cells from the peripheral blood mononuclear cells (PBMCs) of healthy donors using each epitope and quantified the functions of epitope-specific T cells by IFN-γELISPOT assay, T2 cell cytotoxicity assay, HepG2.2.15 cell cytotoxicity assay and HBV gene expression assays. Four epitopes (RVTGGVFLV, GLLGFAAPF, LLDDEAGPL and YMDDVVLGA) had low binding energy and two epitopes (RVTGGVFLV and GLLGFAAPF) had a high binding affinity. The T cells stimulated by two epitopes (GLLGFAAPF and HLYSHPIIL) had a greater ability to induce immune response and suppress HBV. The HBV DNA polymerase epitopes identified in this study are promising targets for designing an epitope-based therapeutic vaccine against HBV.
Collapse
|
27
|
Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021; 13:644. [PMID: 34062771 PMCID: PMC8147386 DOI: 10.3390/pharmaceutics13050644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
28
|
Zhu Y, Xu Y, Hong L, Zhou C, Chen J. Immunization With a DNA Vaccine Encoding the Toxoplasma gondii' s GRA39 Prolongs Survival and Reduce Brain Cyst Formation in a Murine Model. Front Microbiol 2021; 12:630682. [PMID: 33995293 PMCID: PMC8113873 DOI: 10.3389/fmicb.2021.630682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular protozoan parasite, can cause infect almost all warm-blooded animals and humans. To evaluate the immunogenicity and protective efficacy of T. gondii GRA39 (TgGRA39) in mice by using DNA immunization, we constructed a recombinant eukaryotic plasmid pVAX-TgGRA39. The specific immune responses in immunized mice were analyzed by serum antibody and cytokine measurements, lymphocyte proliferation assays and flow cytometry of T lymphocyte subclasses. Also, protective efficacy against acute and chronic T. gondii infection was assessed by observing the survival time after challenge with the highly virulent T. gondii RH strain (Genotype I) and counting the number of cyst-forming in brain at 4 weeks post-infection with the cyst-forming PRU strain of T. gondii (Genotype II), respectively. Our results showed that DNA immunization with pVAX-GRA39 via intramuscular injection three times, at 2-week intervals could elicit humoral and cellular immune response, indicated by enhanced levels of IgG and IgG2a antibodies (a slightly elevated IgG2a to IgG1 ratio), and increased levels of cytokines IFN-γ, IL-2, IL-12, IL-17A, IL-17F, IL-22 and IL-23 and percentages of CD3+ CD4+ CD8- and CD3+ CD8+ CD4– T cells, in contrast to non-immunized mice. The significant increase in the expression levels of IL-6, TGF-β1, IL-1β, and the transcription factor factors RORγt, RORα, and STAT3 involved in the activation and pathway of Th17 and Tc17 cells, were also observed. However, no significant difference was detected in level of IL-4 and IL-10 (p > 0.05). These effective immune responses had mounted protective immunity against T. gondii infection, with a prolonged survival time (16.80 ± 3.50 days) and reduced cyst numbers (44.5%) in comparison to the control mice. Our data indicated that pVAX-TgGRA39 could induce effective humoral, and Th1-type, Th17, and Tc17 cellular immune responses, and may represent a promising vaccine candidate against both acute and chronic T. gondii infection.
Collapse
Affiliation(s)
- Yuchao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yanan Xu
- The Ningbo Women and Children's Hospital, Ningbo, China
| | - Lu Hong
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Chunxue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,The Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
29
|
Fomsgaard A, Liu MA. The Key Role of Nucleic Acid Vaccines for One Health. Viruses 2021; 13:258. [PMID: 33567520 PMCID: PMC7916035 DOI: 10.3390/v13020258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic has highlighted both the importance of One Health, i.e., the interactions and transmission of pathogens between animals and humans, and the potential power of gene-based vaccines, specifically nucleic acid vaccines. This review will highlight key aspects of the development of plasmid DNA Nucleic Acid (NA) vaccines, which have been licensed for several veterinary uses, and tested for a number of human diseases, and will explain how an understanding of their immunological and real-world attributes are important for their efficacy, and how they helped pave the way for mRNA vaccines. The review highlights how combining efforts for vaccine development for both animals and humans is crucial for advancing new technologies and for combatting emerging diseases.
Collapse
Affiliation(s)
- Anders Fomsgaard
- Department of Virology and Microbiological Special Diagnostic, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Margaret A. Liu
- ProTherImmune, 3656 Happy Valley Road, Lafayette, CA 94549, USA
| |
Collapse
|
30
|
Strizova Z, Smetanova J, Bartunkova J, Milota T. Principles and Challenges in anti-COVID-19 Vaccine Development. Int Arch Allergy Immunol 2021; 182:339-349. [PMID: 33524979 PMCID: PMC7900461 DOI: 10.1159/000514225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/05/2022] Open
Abstract
The number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients keeps rising in most of the European countries despite the pandemic precaution measures. The current antiviral and anti-inflammatory therapeutic approaches are only supportive, have limited efficacy, and the prevention in reducing the transmission of SARS-CoV-2 virus is the best hope for public health. It is presumed that an effective vaccination against SARS-CoV-2 infection could mobilize the innate and adaptive immune responses and provide a protection against severe forms of coronavirus disease 2019 (COVID-19) disease. As the race for the effective and safe vaccine has begun, different strategies were introduced. To date, viral vector-based vaccines, genetic vaccines, attenuated vaccines, and protein-based vaccines are the major vaccine types tested in the clinical trials. Over 80 clinical trials have been initiated; however, only 18 vaccines have reached the clinical phase II/III or III, and 4 vaccine candidates are under consideration or have been approved for the use so far. In addition, the protective effect of the off-target vaccines, such as Bacillus Calmette-Guérin and measles vaccine, is being explored in randomized prospective clinical trials with SARS-CoV-2-infected patients. In this review, we discuss the most promising anti-COVID-19 vaccine clinical trials and different vaccination strategies in order to provide more clarity into the ongoing clinical trials.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia,
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia,
| |
Collapse
|
31
|
Shkair L, Garanina EE, Stott RJ, Foster TL, Rizvanov AA, Khaiboullina SF. Membrane Microvesicles as Potential Vaccine Candidates. Int J Mol Sci 2021; 22:1142. [PMID: 33498909 PMCID: PMC7865840 DOI: 10.3390/ijms22031142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.
Collapse
Affiliation(s)
- Layaly Shkair
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
32
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The rapid development of nanobiotechnology has enabled progress in therapeutic cancer vaccines. These vaccines stimulate the host innate immune response by tumor antigens followed by a cascading adaptive response against cancer. However, an improved antitumor immune response is still in high demand because of the unsatisfactory clinical performance of the vaccine in tumor inhibition and regression. To date, a complicated tumor immunosuppressive environment and suboptimal design are the main obstacles for therapeutic cancer vaccines. The optimization of tumor antigens, vaccine delivery pathways, and proper adjuvants for innate immune response initiation, along with reprogramming of the tumor immunosuppressive environment, is essential for therapeutic cancer vaccines in triggering an adequate antitumor immune response. In this review, we aim to review the challenges in and strategies for enhancing the efficacy of therapeutic vaccines. We start with the summary of the available tumor antigens and their properties and then the optimal strategies for vaccine delivery. Subsequently, the vaccine adjuvants focused on the intrinsic adjuvant properties of nanostructures are further discussed. Finally, we summarize the combination strategies with therapeutic cancer vaccines and discuss their positive impact in cancer immunity.
Collapse
Affiliation(s)
- Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
34
|
Fotoran WL, Kleiber N, Glitz C, Wunderlich G. A DNA Vaccine Encoding Plasmodium falciparum PfRH5 in Cationic Liposomes for Dermal Tattooing Immunization. Vaccines (Basel) 2020; 8:vaccines8040619. [PMID: 33092277 PMCID: PMC7711581 DOI: 10.3390/vaccines8040619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines are the primary means of controlling and preventing pandemics and outbreaks of pathogens such as bacteria, viruses, and parasites. However, a major drawback of naked DNA-based vaccines is their low immunogenicity and the amount of plasmid DNA necessary to elicit a response. Nano-sized liposomes can overcome this limitation, enhancing both nucleic acid stability and targeting to cells after administration. We tested two different DNA vaccines in cationic liposomes to improve the immunogenic properties. For this, we cloned the coding sequences of the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) either alone or fused with small the small hepatitis virus (HBV) envelope antigen (HBsAg) encoding sequences, potentially resulting in HBsAg particles displaying PfRH5 on their outside. Instead of invasive intraperitoneal or intramuscular immunization, we employed intradermal immunization by tattooing nano-encapsulated DNA. Mice were immunized with 10 μg encapsulated DNA encoding PfRH5 alone or in fusion with HBsAg and this elicited antibodies against schizont extracts (titer of 104). Importantly, only IgG from animals immunized with PfRH5-HBs demonstrated sustained IgG-mediated inhibition in in vitro growth assays showing 58% and 39% blocking activity after 24 and 48 h, respectively. Intradermal tattoo-vaccination of encapsulated PfRH5-HBsAg coding plasmid DNA is effective and superior compared with an unfused PfRH5-DNA vaccine, suggesting that the HBsAg fusion may be advantageous with other vaccine antigens.
Collapse
Affiliation(s)
- Wesley Luzetti Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
| | - Nicole Kleiber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
| | - Christiane Glitz
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany;
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo 05508-000, Brazil; (W.L.F.); (N.K.)
- Correspondence: ; Tel.: +55-11-3091-7265
| |
Collapse
|
35
|
CD4 + T Cells Induced by Tuberculosis Subunit Vaccine H1 Can Improve the HIV-1 Env Humoral Response by Intrastructural Help. Vaccines (Basel) 2020; 8:vaccines8040604. [PMID: 33066267 PMCID: PMC7711721 DOI: 10.3390/vaccines8040604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023] Open
Abstract
The induction of a potent and long-lasting, broadly neutralizing antibody response is one of the most promising approaches in HIV-1 vaccination. Recently, we demonstrated that Gag-specific T helper cells induced by DNA priming can enhance and modulate the HIV Env-specific B cell response upon virus-like particle (VLP) boost by intrastructural help (ISH). In order to minimize the induction of potentially harmful HIV specific TH cells, we explored the possibility to harness the heterologous TH cells induced by a recombinant tuberculosis subunit vaccine H1, which contains a fusion protein of Ag85B and ESAT-6 antigens in combination with the liposomal adjuvant CAF01. To provide ISH, immunodominant MHC-II restricted peptides from the H1 vaccine were genetically incorporated into the HIV 1 Gag protein and used for HIV VLP production. ISH effects on Env-specific antibody levels and B cell differentiation were analyzed in mice primed against H1 and boosted with VLPs. In contrast to non-primed mice, a significant increase of Env-specific IgG levels for up to 26 weeks after the last immunization was observed. This increase was largely caused by elevated IgG2b and IgG2c levels in mice that received H1 priming. Additionally, ISH enhanced the frequency of Env-specific long-lived plasma cells in the bone marrow. In this study, we were able to demonstrate that a heterologous prime-boost regimen consisting of the H1 tuberculosis subunit vaccine and T helper epitope modified HIV-1 VLPs resulted in enhanced HIV Env antibody and B cell responses, mediated by intrastructural help.
Collapse
|
36
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
37
|
Li D, Cheng J, Zhu Z, Catalfamo M, Goerlitz D, Lawless OJ, Tallon L, Sadzewicz L, Calderone R, Bellanti JA. Treg-inducing capacity of genomic DNA of Bifidobacterium longum subsp. infantis. Allergy Asthma Proc 2020; 41:372-385. [PMID: 32867892 PMCID: PMC8242987 DOI: 10.2500/aap.2020.41.200064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ forkhead box P3-positive regulatory T cells (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. Commensal microbiota known to have health benefits in humans include the lactic acid-producing, probiotic bacteria B. longum subsp. infantis and Lactobacillus rhamnosus. Mechanistically, several mechanisms have been proposed to explain how probiotics may favorably affect host immunity, including the induction of Tregs. Analysis of emerging data from several laboratories, including our own, suggest that DNA methylation may be an important determinant of immune reactivity responsible for Treg induction. Although methylated CpG moieties in normal mammalian DNA are both noninflammatory and lack immunogenicity, unmethylated CpGs, found largely in microbial DNA, are immunostimulatory and display proinflammatory properties. Objective: We hypothesize that microbiota with more DNA methylation may potentiate Treg induction to a greater degree than microbiota with a lower content of methylation. The purpose of the present study was to test this hypothesis by studying the methylation status of whole genomic DNA (gDNA) and the Treg-inducing capacity of purified gDNA in each of the probiotic bacteria B. longum subsp. infantis and L. rhamnosus, and a pathogenic Escherichia coli strain B. Results: We showed that gDNA from B. longum subsp. infantis is a potent Treg inducer that displays a dose-dependent response pattern at a dose threshold of 20 µg of gDNA. No similar Treg-inducing responses were observed with the gDNA from L. rhamnosus or E. coli. We identified a unique CpG methylated motif in the gDNA sequencing of B. longum subsp. infantis which was not found in L. rhamnosus or E. coli strain B. Conclusion: Although the literature indicates that both B. longum subsp. infantis and L. rhamnosus strains contribute to health, our data suggest that they do so by different mechanisms. Further, because of its small molecular size, low cost, ease of synthesis, and unique Treg-inducing feature, this methylated CpG oligodeoxynucleotide (ODN) from B. longum would offer many attractive features for an ideal novel therapeutic vaccine candidate for the treatment of immunologic diseases, such as the allergic and autoimmune disorders, in which Treg populations are diminished.
Collapse
Affiliation(s)
- Dongmei Li
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Jie Cheng
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Ziang Zhu
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Marta Catalfamo
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - David Goerlitz
- Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| | - Oliver J. Lawless
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| | - Luke Tallon
- Genomic Resource Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lisa Sadzewicz
- Genomic Resource Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard Calderone
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Joseph A. Bellanti
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| |
Collapse
|
38
|
Immune effect of a Newcastle disease virus DNA vaccine with IL-12 as a molecular adjuvant delivered by electroporation. Arch Virol 2020; 165:1959-1968. [PMID: 32519007 PMCID: PMC7282469 DOI: 10.1007/s00705-020-04669-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 10/27/2022]
Abstract
Newcastle disease (ND), caused by virulent Newcastle disease virus (NDV) strains, has been one of the most problematic diseases affecting the poultry industry worldwide. Conventional vaccines provide effective protection for birds to survive ND outbreaks, but they may not completely suppress NDV shedding. NDV strains circulate on farms for a long time after the initial infection and cause potential risks. A new vaccine with fast clearance ability and low viral shedding is needed. In this study, we used interleukin-12 (IL-12) as an adjuvant and electroporation (EP) as an advanced delivery system to improve a DNA vaccine candidate. The fusion (F) protein gene from an NDV strain of the prevalent genotype VII.1.1 was cloned to prepare the vaccine. Chickens immunized with the F gene DNA vaccine co-delivered with an IL-12-expressing plasmid DNA showed higher neutralizing antibody levels and stronger concanavalin-A-induced lymphocyte proliferation than those treated with the F gene DNA vaccine alone. The co-delivered vaccine provided 100% protection, and less viral shedding and a shorter release time were observed in challenged chickens than when the F gene DNA vaccine was administered alone. The use of F gene DNA combined with IL-12 delivered by electroporation is a promising approach for vaccination against ND.
Collapse
|
39
|
Petrushina I, Hovakimyan A, Harahap-Carrillo IS, Davtyan H, Antonyan T, Chailyan G, Kazarian K, Antonenko M, Jullienne A, Hamer MM, Obenaus A, King O, Zagorski K, Blurton-Jones M, Cribbs DH, Lander H, Ghochikyan A, Agadjanyan MG. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol Dis 2020; 139:104823. [PMID: 32119976 PMCID: PMC8772258 DOI: 10.1016/j.nbd.2020.104823] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
The DNA vaccine, AV-1959D, targeting N-terminal epitope of Aβ peptide, has been proven immunogenic in mice, rabbits, and non-human primates, while its therapeutic efficacy has been shown in mouse models of Alzheimer's disease (AD). Here we report for the first time on IND-enabling biodistribution and safety/toxicology studies of cGMP-grade AV-1959D vaccine in the Tg2576 mouse model of AD. We also tested acute neuropathology safety profiles of AV-1959D in another AD disease model, Tg-SwDI mice with established vascular and parenchymal Aβ pathology in a pre-clinical translational study. Biodistribution studies two days after the injection demonstrated high copy numbers of AV-1959D plasmid after single immunization of Tg2576 mice at the injection sites but not in the tissues of distant organs. Plasmids persisted at the injection sites of some mice 60 days after vaccination. In Tg2576 mice with established amyloid pathology, we did not observe short- or long-term toxicities after multiple immunizations with three doses of AV-1959D. Assessment of the repeated dose acute safety of AV-1959D in cerebral amyloid angiopathy (CAA) prone Tg-SwDI mice did not reveal any immunotherapy-induced vasogenic edema detected by magnetic resonance imaging (MRI) or increased microhemorrhages. Multiple immunizations of Tg-SwDI mice with AV-1959D did not induce T and B cell infiltration, glial activation, vascular deposition of Aβ, or neuronal degeneration (necrosis and apoptosis) greater than that in the control group determined by immunohistochemistry of brain tissues. Taken together, the safety data from two different mouse models of AD substantiate a favorable safety profile of the cGMP grade AV-1959D vaccine supporting its progression to first-in-human clinical trials.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Konstantin Kazarian
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Maxim Antonenko
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Amandine Jullienne
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mary M Hamer
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA; Preclinical and Translational Imaging Center, University of California, Irvine, CA, USA
| | - Olga King
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Harry Lander
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
40
|
Liu A, Ferretti C, Shi FD, Cohen IR, Quintana FJ, La Cava A. DNA Vaccination With Hsp70 Protects Against Systemic Lupus Erythematosus in (NZB × NZW)F1 Mice. Arthritis Rheumatol 2020; 72:997-1002. [PMID: 31943822 DOI: 10.1002/art.41202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To address whether a targeted modulation of the abnormal expression of Hsp70 and autoantibodies against this molecule in systemic lupus erythematosus can influence disease. METHODS Lupus-prone (NZB × NZW)F1 mice that had been DNA-vaccinated with plasmids encoding Hsp70 and controls were monitored for lupus disease parameters including anti-double stranded DNA (anti-dsDNA) autoantibodies and cytokines using enzyme-linked immunosorbent assay, and for kidney function and pathology. The phenotypic and numerical changes in relevant immune cells were evaluated by flow cytometry, and cell function was assessed. RESULTS Mice that had been DNA-vaccinated with Hsp70 displayed marked suppression of anti-dsDNA antibody production, reduced renal disease, and antiinflammatory responses that are associated with a significantly extended survival, compared to controls. These protective effects in Hsp70-vaccinated mice were associated with an induction of tolerogenic immune responses and an expansion of functional Treg cells. CONCLUSION DNA vaccination with Hsp70 suppresses murine lupus by inducing tolerogenic immune responses and antiinflammatory immune responses associated with reduced disease manifestations and increased mouse survival.
Collapse
Affiliation(s)
| | | | - Fu-Dong Shi
- Barrow Neurological Institute, Phoenix, Arizona
| | - Irun R Cohen
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
41
|
Gonzalez-Valdivieso J, Borrego B, Girotti A, Moreno S, Brun A, Bermejo-Martin JF, Arias FJ. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol Pharm 2020; 17:1608-1620. [PMID: 32233501 DOI: 10.1021/acs.molpharmaceut.0c00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Belen Borrego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Jesus F Bermejo-Martin
- Laboratory of Biomedical Research in Sepsis (BioSepsis), Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
42
|
Kim HC, Oh DS, Park JH, Kim HJ, Seo YB, Yoo HJ, Jang HS, Shin J, Kim CW, Kwon MS, Jin HT, Lee SK, Oh JE, Lee HK. Multivalent DNA vaccine protects against genital herpes by T-cell immune induction in vaginal mucosa. Antiviral Res 2020; 177:104755. [PMID: 32112797 DOI: 10.1016/j.antiviral.2020.104755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Genital herpes is one of the most common sexually transmitted infections (STIs), and it is mainly caused by the neurotropic herpes simplex virus (HSV-2). Not only does this infection cause ulcers, but HSV-2 can also stay in a latent state in the nervous system of the host throughout their lifespan. As a result, many people do not know that they harbor this infection. Moreover, HSV-2 serves as a major risk factor for human immunodeficiency virus (HIV) infection and can be transmitted to the fetus. Despite the high risk of infection and adverse effects, attempts at development of an effective vaccine for HSV-2 have not yet been successful. In this study, we developed a DNA vaccine for HSV-2 (SL-V20). This multivalent DNA vaccine effectively reduced the pathological symptoms of infection and induced efficient elimination of the virus in a mouse model. Intramuscular injection of SL-V20 led to induction of an HSV-2-specific T-cell response in the vagina, the major infection site, and in draining lymph organs. Dendritic cells (DCs), especially basic leucine zipper ATF-like transcription factor 3 (Baft3)+ DCs and partially interferon regulatory factor 4 (Irf4)+ DCs, were involved in this T-cell-mediated protective response, while B cells were dispensable for these prophylactic effects. This study demonstrates that SL-V20 offers a novel and effective vaccine against vaginal HSV-2 infection and may be applicable to patients, pending validation in clinical studies.
Collapse
Affiliation(s)
- Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Sun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yong Bok Seo
- SL-VAXiGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Hye Jee Yoo
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Republic of Korea
| | - Hye Seon Jang
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Republic of Korea
| | - Jua Shin
- SL-VAXiGEN Inc., 700 Daewangpanyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myeong Seung Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Center, Konyang University, Daejeon, Republic of Korea
| | - Hyun-Tak Jin
- ProGen Co., Ltd, 1201, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Center, Konyang University, Daejeon, Republic of Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
43
|
Song H, Yang Y, Tang J, Gu Z, Wang Y, Zhang M, Yu C. DNA Vaccine Mediated by Rambutan‐Like Mesoporous Silica Nanoparticles. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Song
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Min Zhang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
44
|
Ivanova II, Mihaylova NM, Manoylov IK, Makatsori D, Lolov S, Nikolova MH, Mamalaki A, Prechl J, Tchorbanov AI. Targeting of Influenza Viral Epitopes to Antigen-Presenting Cells by Genetically Engineered Chimeric Molecules in a Humanized NOD SCID Gamma Transfer Model. Hum Gene Ther 2019; 29:1056-1070. [PMID: 30191743 DOI: 10.1089/hum.2018.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antiviral DNA vaccines are a novel strategy in the vaccine development field, which basically consists of the administration of expression vectors coding viral antigen sequences into the host's cells. Targeting of conserved viral epitopes by antibody fragments specific to activating cell surface co-receptor molecules on antigen-presenting cells could be an alternative approach for inducing protective immunity. It has been shown that FcγRI on human monocytes enhances antigen presentation in vivo. Various DNA constructs, encoding a Single-chain variable antibodies (scFv) from mouse anti-human FcγRI monoclonal antibody, coupled to a sequence encoding a T- and B-cell epitope-containing influenza A virus hemagglutinin inter-subunit peptide were inserted into the eukaryotic expression vector system pTriEx-3 Neo. The constructed chimeric DNA molecules were expressed by transfected Chinese hamster ovary cells and the ability of the engineered proteins to interact with FcγRI-expressing cells was confirmed by flow cytometry. The fusion protein induced a strong signal transduction on human monocytes via FcγRI. The expression vector pTriEx-3 Neo containing the described construct was used as a naked DNA vaccine and introduced directly to experimental humanized NOD SCID gamma mice with or without boosting with the expressed fusion protein. Immunization with the generated DNA chimeric molecules and prime-boost with the expressed recombinant proteins induced significant serum levels of anti-influenza immunoglobulin G antibodies and strong cytotoxic T lymphocyte activity against influenza virus-infected cells in humanized animals.
Collapse
Affiliation(s)
- Iva I Ivanova
- 1 Laboratory of Experimental Immunology, Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolina M Mihaylova
- 1 Laboratory of Experimental Immunology, Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K Manoylov
- 1 Laboratory of Experimental Immunology, Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Stefan Lolov
- 3 Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H Nikolova
- 4 National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases , Sofia, Bulgaria
| | - Avgi Mamalaki
- 2 Hellenic Pasteur Institute , Ampelokipi, Athens, Greece
| | - Jozsef Prechl
- 5 Immunology Research Group, Hungarian Academy of Sciences , Budapest, Hungary
| | - Andrey I Tchorbanov
- 1 Laboratory of Experimental Immunology, Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria .,6 National Institute of Immunology , Sofia, Bulgaria
| |
Collapse
|
45
|
Foot-and-mouth disease vaccines: recent updates and future perspectives. Arch Virol 2019; 164:1501-1513. [PMID: 30888563 DOI: 10.1007/s00705-019-04216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Foot-and-mouth disease (FMD) is a major worldwide viral disease in animals, affecting the national and international trade of livestock and animal products and leading to high economic losses and social consequences. Effective control measures of FMD involve prevention through vaccination with inactivated vaccines. These inactivated vaccines, unfortunately, require short-term protection and cold-chain and high-containment facilities. Major advances and pursuit of hot topics in vaccinology and vectorology are ongoing, involving peptide vaccines, DNA vaccines, live vector vaccines, and novel attenuated vaccines. DIVA capability and marker vaccines are very important in differentiating infected animals from vaccinated animals. This review focuses on updating the research progress of these novel vaccines, summarizing their merits and including ideas for improvement.
Collapse
|
46
|
Arsenović-Ranin N. New vaccines on the horizon. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
47
|
Wen Z, Liu F, Chen Q, Xu Y, Li H, Sun S. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomater Sci 2019; 7:4414-4443. [DOI: 10.1039/c9bm00961b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A schematic illustration of BNDS biodegradation and release antigen delivery for assisting immunotherapy.
Collapse
Affiliation(s)
- Zhenfu Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Ganjingzi District
- P. R. China
| | | | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
48
|
Evaluation of DNA vaccine encoding BCSP 31 surface protein of Brucella abortus for protective immunity. Microb Pathog 2018; 125:514-520. [PMID: 30321591 DOI: 10.1016/j.micpath.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Brucellosis is a highly contagious and zoonotic disease and has a considerable impact on animal health and economy of a country, principally in Pakistan, where rural income largely depends upon livestock farming and dairy products. The disease burden is more in underdeveloped/developing countries due to the low economy and limited access to the diagnostic facilities. In Pakistan, the prevalence of Brucella abortus is very high, so it is the need of the hour to control this disease through more advanced methods. This study was designed with the aim to construct the DNA based vaccine of gene encoding antigenic surface protein (BCSP31). For this purpose, the BCSP31 gene was amplified, purified and ligated in pTZ57 R/T (cloning vector). Dubbed BCSP31-pTZ57 R/T vector was transformed into competent cells (DH5α). After plasmid extraction, the plasmid and pET-28a vector was restricted with EcoRI and BamHI. Again, ligation was done and dubbed pET-28a-BCSP31 transformed into E. coli (BL21). After expression, the protein was purified and used for evaluation of immunogenic response. The protective and immunogenic efficacy of the vaccine was evaluated in rabbits (n = 20). The rabbits were divided into four equal groups. Groups A-C were given purified protein diluted in normal saline @ 750, 1500 and 3000 μg/0.2 mL, respectively through intraconjunctival route. Group D was given 0.2 mL normal saline through intraconjunctival route. Specific immunoglobulin G (IgG) responses were measured through indirect ELISA on a weekly basis. The titer of IgG against the antigen was significantly (p < 0.05) higher in vaccinated groups A-C as compared to group D (control group) in a dose dependent manner. Moreover, log units of protection produced by DNA based vaccine in the rabbits (3.02) also indicated the protective efficacy of the DNA vaccine against B. abortus challenge. The response of this vaccine in rabbit suggested its potential effectiveness against Brucella abortus in large animals.
Collapse
|
49
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
50
|
Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018; 9:1963. [PMID: 30283434 PMCID: PMC6156540 DOI: 10.3389/fimmu.2018.01963] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.
Collapse
|