1
|
The Critical Role Played by Mitochondrial MITF Serine 73 Phosphorylation in Immunologically Activated Mast Cells. Cells 2022; 11:cells11030589. [PMID: 35159398 PMCID: PMC8834024 DOI: 10.3390/cells11030589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, growing evidence has indicated the pivotal role of mitochondria in mast cell immunological activation. We have previously reported a decrease in degranulation and cytokine secretion following the inhibition of pyruvate dehydrogenase (PDH) either by CPI-613 (PDH inhibitor/anti-cancer drug) or through its interaction with mitochondrial microphthalmia-associated transcription factor (MITF). In the present study, we further explored the role played by mitochondrial MITF in mast cell exocytosis using rat basophil leukemia cells [RBL], as well as mouse bone marrow-derived mast cells (BMMCs). Here, we report that mast cell degranulation, cytokine secretion and oxidative phosphorylation (OXPHOS) activities were associated with phosphorylation of Serine 73 of mitochondrial MITF, controlled by extracellular signals regulated by protein kinase (ERK1/2) activity. Also, we report here that decreased OXPHOS activity following ERK1/2 inhibition (U0126 treatment) during IgE-Ag activation was mediated by the dephosphorylation of Serine 73 mitochondrial MITF, which inhibited its association with PDH. This led to a reduction in mast cell reactivity. In addition, a phosphorylation-mimicking mitochondrial MITF-S73D positively regulated the mitochondrial activity, thereby supporting mast cell degranulation. Thus, the present research findings highlight the prominence of mitochondrial MITF Serine 73 phosphorylation in immunologically activated mast cells.
Collapse
|
2
|
Oppezzo A, Rosselli F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021; 11:18. [PMID: 33441180 PMCID: PMC7805242 DOI: 10.1186/s13578-021-00529-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Haematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks. Most TFs are highly pleiotropic; i.e., they are capable of influencing two or more apparently unrelated phenotypic traits, and the action of a single TF in a specific setting often depends on its interaction with other TFs and signalling pathway components. The microphthalmia-associated TF (MiTF) is a prototype TF in multiple situations. MiTF has been described extensively as a key regulator of melanocyte and melanoma development because it acts mainly as an oncogene. Mitf-mutated mice show a plethora of pleiotropic phenotypes, such as microphthalmia, deafness, abnormal pigmentation, retinal degeneration, reduced mast cell numbers and osteopetrosis, revealing a greater requirement for MiTF activity in cells and tissue. A growing amount of evidence has led to the delineation of key roles for MiTF in haematopoiesis and/or in cells of haematopoietic origin, including haematopoietic stem cells, mast cells, NK cells, basophiles, B cells and osteoclasts. This review summarizes several roles of MiTF in cells of the haematopoietic system and how MiTFs can impact BM development.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
3
|
Park HH, Lee S, Yu Y, Yoo SM, Baek SY, Jung N, Seo KW, Kang KS. TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE. Stem Cells 2020; 38:904-916. [PMID: 32277785 DOI: 10.1002/stem.3183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (MSCs) are promising therapeutics for autoimmune diseases due to their immunomodulatory effects. In particular, human umbilical cord blood-derived MSCs (hUCB-MSCs) have a prominent therapeutic effect on atopic dermatitis (AD). However, the underlying mechanism is unclear. This study investigated the role of transforming growth factor-beta (TGF-β) in the therapeutic effect of hUCB-MSCs on AD. Small interfering RNA (siRNA)-mediated depletion of TGF-β disrupted the therapeutic effect of hUCB-MSCs in a mouse model of AD by attenuating the beneficial changes in histopathology, mast cell infiltration, tumor necrosis factor-alpha (TNF-α) expression, and the serum IgE level. To confirm that hUCB-MSCs regulate secretion of TNF-α, we investigated whether they inhibit TNF-α secretion by activated LAD2 cells. Coculture with hUCB-MSCs significantly inhibited secretion of TNF-α by LAD2 cells. However, this effect was abolished by siRNA-mediated depletion of TGF-β in hUCB-MSCs. TNF-α expression in activated LAD2 cells was regulated by the extracellular signal-related kinase signaling pathway and was suppressed by TGF-β secreted from hUCB-MSCs. In addition, TGF-β secreted by hUCB-MSCs inhibited maturation of B cells. Taken together, our findings suggest that TGF-β plays a key role in the therapeutic effect of hUCB-MSCs on AD by regulating TNF-α in mast cells and maturation of B cells.
Collapse
Affiliation(s)
- Hwan Hee Park
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Sae Mi Yoo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Song Yi Baek
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kwang-Won Seo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Motzik A, Amir E, Erlich T, Wang J, Kim BG, Han JM, Kim JH, Nechushtan H, Guo M, Razin E, Tshori S. Post-translational modification of HINT1 mediates activation of MITF transcriptional activity in human melanoma cells. Oncogene 2017; 36:4732-4738. [DOI: 10.1038/onc.2017.81] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/21/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
|
5
|
Sharkia I, Hadad Erlich T, Landolina N, Assayag M, Motzik A, Rachmin I, Kay G, Porat Z, Tshori S, Berkman N, Levi-Schaffer F, Razin E. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. J Allergy Clin Immunol 2016; 140:204-214.e8. [PMID: 27871875 DOI: 10.1016/j.jaci.2016.09.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/31/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. OBJECTIVE We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. METHODS Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. RESULTS PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. CONCLUSION The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases.
Collapse
Affiliation(s)
- Israa Sharkia
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Hadad Erlich
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Assayag
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alex Motzik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbal Rachmin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagi Tshori
- Department of Nuclear Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
7
|
Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. J Allergy Clin Immunol 2014; 134:460-9. [PMID: 24582310 DOI: 10.1016/j.jaci.2013.12.1075] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/03/2013] [Accepted: 12/31/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND The involvement of mitochondrial oxidative phosphorylation (OXPHOS) in mast cell exocytosis was recently suggested by the finding that mitochondria translocate to exocytosis sites upon mast cell activation. In parallel, mitochondrial signal transducer and activator of transcription 3 (STAT3) was found to be involved in ATP production. However, the regulation of mitochondrial STAT3 function and its connection to mast cell exocytosis is unknown. OBJECTIVE We sought to explore the role played by mitochondrial STAT3 in mast cell exocytosis. METHODS Experiments were performed in vitro with human and mouse mast cells and rat basophilic leukemia (RBL) cells and in vivo in mice. OXPHOS activity was measured after immunologic activation. The expression of STAT3, extracellular signal-regulated kinase 1/2, and protein inhibitor of activated STAT3 in the mitochondria during mast cell activation was determined, as was the effect of STAT3 inhibition on OXPHOS activity and mast cell function. RESULTS Here we show that mitochondrial STAT3 is essential for immunologically mediated degranulation of human and mouse mast cells and RBL cells. Additionally, in IgE-antigen-activated RBL cells, mitochondrial STAT3 was phosphorylated on serine 727 in an extracellular signal-regulated kinase 1/2-dependent manner, which was followed by induction of OXPHOS activity. Furthermore, the endogenous inhibitor of STAT3, protein inhibitor of activated STAT3, was found to inhibit OXPHOS activity in the mitochondria, resulting in inhibition of mast cell degranulation. Moreover, mice injected with Stattic, a STAT3 inhibitor, had a significant decrease in histamine secretion. CONCLUSION These results provide the first evidence of a regulatory role for mitochondrial STAT3 in mast cell functions, and therefore mitochondrial STAT3 could serve as a new target for the manipulation of allergic diseases.
Collapse
|
8
|
Motzik A, Nechushtan H, Foo SY, Razin E. Non-canonical roles of lysyl-tRNA synthetase in health and disease. Trends Mol Med 2013; 19:726-31. [DOI: 10.1016/j.molmed.2013.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023]
|
9
|
Siegel AM, Stone KD, Cruse G, Lawrence MG, Olivera A, Jung MY, Barber JS, Freeman AF, Holland SM, O'Brien M, Jones N, Nelson CG, Wisch LB, Kong HH, Desai A, Farber O, Gilfillan AM, Rivera J, Milner JD. Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation. J Allergy Clin Immunol 2013; 132:1388-96. [PMID: 24184145 DOI: 10.1016/j.jaci.2013.08.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Severe atopic conditions associated with elevated serum IgE are heterogeneous with few known causes. Nearly every patient with autosomal-dominant hyper-IgE syndrome (AD-HIES) due to signal transducer and activator of transcription 3 (STAT3) mutations has a history of eczematous dermatitis and elevated IgE; however, clinical atopy has never been systematically studied. OBJECTIVE Understanding of genetic determinants of allergic disease may lead to novel therapies in controlling allergic disease. METHODS We conducted clinical evaluation of the rates of food allergies and anaphylaxis in patients with AD-HIES, a cohort of patients with no STAT3 mutation but with similar histories of elevated IgE and atopic dermatitis, and healthy volunteers with no history of atopy. Morphine skin prick testing, ImmunoCAP assays for allergen-specific IgE, and basophil activation were measured. A model of systemic anaphylaxis was studied in transgenic mice carrying an AD-HIES mutation. STAT3 was silenced in LAD2 and primary human mast cells to study the role of STAT3 in signaling and degranulation after IgE cross-linking. RESULTS Food allergies and anaphylaxis were markedly diminished in patients with AD-HIES compared with a cohort of patients with no STAT3 mutation but with similar histories of elevated IgE and atopic dermatitis. Morphine skin prick testing and basophil activation were diminished in patients with AD-HIES, whereas mice carrying an AD-HIES mutation were hyporesponsive to systemic anaphylaxis models. Rapid mast cell STAT3 serine727 phosphorylation was noted after IgE cross-linking, and inhibition of STAT3 signaling in mast cells lead to impaired FcεRI-mediated proximal and distal signaling, as well as reduced degranulation. CONCLUSION This study serves as an example for how mutations in specific atopic pathways can lead to discrete allergic phenotypes, encompassing increased risk of some phenotypes but a relative protection from others.
Collapse
Affiliation(s)
- Andrea M Siegel
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Redhu NS, Shan L, Al-Subait D, Ashdown HL, Movassagh H, Lamkhioued B, Gounni AS. IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways. Allergy Asthma Clin Immunol 2013; 9:41. [PMID: 24499258 PMCID: PMC3842672 DOI: 10.1186/1710-1492-9-41] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/01/2013] [Indexed: 12/27/2022] Open
Abstract
Airway remodeling is not specifically targeted by current asthma medications, partly owing to the lack of understanding of remodeling mechanisms, altogether posing great challenges in asthma treatment. Increased airway smooth muscle (ASM) mass due to hyperplasia/hypertrophy contributes significantly to overall airway remodeling and correlates with decline in lung function. Recent evidence suggests that IgE sensitization can enhance the survival and mediator release in inflammatory cells. Human ASM (HASM) cells express both low affinity (FcεRII/CD23) and high affinity IgE Fc receptors (FcεRI), and IgE can modulate the contractile and synthetic function of HASM cells. IgE was recently shown to induce HASM cell proliferation but the detailed mechanisms remain unknown. We report here that IgE sensitization induces HASM cell proliferation, as measured by 3H-thymidine, EdU incorporation, and manual cell counting. As an upstream signature component of FcεRI signaling, inhibition of spleen tyrosine kinase (Syk) abrogated the IgE-induced HASM proliferation. Further analysis of IgE-induced signaling depicted an IgE-mediated activation of Erk 1/2, p38, JNK MAPK, and Akt kinases. Lastly, lentiviral-shRNA-mediated STAT3 silencing completely abolished the IgE-mediated HASM cell proliferation. Collectively, our data provide mechanisms of a novel function of IgE which may contribute, at least in part, to airway remodeling observed in allergic asthma by directly inducing HASM cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abdelilah S Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, 419 Apotex Centre- 750 McDermot Ave, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
11
|
Pullen NA, Falanga YT, Morales JK, Ryan JJ. The Fyn-STAT5 Pathway: A New Frontier in IgE- and IgG-Mediated Mast Cell Signaling. Front Immunol 2012; 3:117. [PMID: 22593761 PMCID: PMC3350083 DOI: 10.3389/fimmu.2012.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mast cells are central players in immune surveillance and activation, positioned at the host–environment interface. Understanding the signaling events controlling mast cell function, especially those that maintain host homeostasis, is an important and still less understood area of mast cell-mediated disease. With respect to allergic disease, it is well established that IgE and its high affinity receptor FcεRI are major mediators of mast cell activation. However, IgG-mediated signals can also modulate mast cell activities. Signals elicited by IgG binding to its cognate receptors (FcγR) are the basis for autoimmune disorders such as lupus and rheumatoid arthritis. Using knowledge of IgE-mediated mast cell signaling, recent work has begun to illuminate potential overlap between FcεRI and FcγR signal transduction. Herein we review the importance of Src family kinases in FcεRI and FcγR signaling, the role of the transcription factor STAT5, and impingement of the regulatory cytokines IL-4, IL-10, and TGFβ1 upon this network.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, The Asthma and Allergic Disease Cooperative Research Center, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
12
|
Gleason BC, Crum CP, Murphy GF. Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts. J Cutan Pathol 2008; 35:615-22. [PMID: 18312434 PMCID: PMC2935278 DOI: 10.1111/j.1600-0560.2007.00881.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The mechanisms whereby melanocytes populate the epidermis and developing hair follicles during embryogenesis are incompletely understood. Recent evidence implicates an intermediate mesenchymal stage in this evolutionary process in which HMB-45-positive melanocyte precursors ('melanoblasts') exist both in intradermal as well as intraepithelial and intrafollicular compartments. The melanocyte master transcriptional regulator, microphthalmia transcription factor (MITF), identifies mature melanocytes as well as melanocyte precursor stem cells that reside in the bulge region of the hair follicle. METHODS To better define the use of MITF expression in the evaluation of melanocyte ontogeny, human embryonic and fetal skin samples (n = 28) at 6-24 weeks gestation were studied immunohistochemically for expression of MITF and Mart-1. Adjacent step sections were evaluated to correlate staining patterns with cell localization in the intraepidermal, intrafollicular and intradermal compartments. RESULTS At 6-8 weeks, MITF and Mart-1-positive cells were primarily intradermal with only rare positive cells in the epidermis. By 12-13 weeks, most of these cells had migrated into the epidermis, predominantly the suprabasal layers. Between 15-17 weeks, these cells localized to the basal layer and colonized developing hair follicles. Rare intradermal MITF and Mart-1 positive cells were found as late as week 20. At 18-24 weeks, MITF and Mart-1 positive cells were identified in the outer root sheath, bulge, and follicular bulge epithelium, in addition to the epidermis. Unexpectedly, weak but diffuse nuclear MITF expression was also present in the keratinocytes of the bulge area. CONCLUSIONS The in situ migratory fate of MITF/Mart-1-expressing cells in fetal skin involves a well-defined progression from intradermal to intraepidermal to intrafollicular localization. Occasional intradermal melanocytes may persist after the intraepithelial stages are completed, a finding of potential significance to melanocytic proliferations that may arise de novo within the dermis. Because MITF may play a role in stem cell maintenance, the presence of MITF in bulge epithelial cells suggests that it may be a novel marker for follicular stem cells of both epithelial and melanocytic lineage.
Collapse
Affiliation(s)
- Briana C Gleason
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Barnstein BO, Li G, Wang Z, Kennedy S, Chalfant C, Nakajima H, Bunting KD, Ryan JJ. Stat5 expression is required for IgE-mediated mast cell function. THE JOURNAL OF IMMUNOLOGY 2006; 177:3421-6. [PMID: 16920984 DOI: 10.4049/jimmunol.177.5.3421] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mast cell (MC) inflammatory response is now linked not only to atopy, but also to arthritis, multiple sclerosis, heart disease, and resistance to bacterial infection. In the current study, we demonstrate that the signal transducer and activator of transcription 5 (Stat5) is rapidly activated by IgE cross-linkage, and that its expression is critical to the MC response. Stat5-deficient (Stat5KO) MC demonstrated a significant decrease in IgE-mediated degranulation, leukotriene B4 production, cytokine secretion, and survival signals. The defect in cytokine production may be caused by decreased cytokine mRNA stability. Stat5KO MC-induced cytokine mRNAs normally following IgE cross-linkage, but these mRNAs were not sustained over time and were degraded at twice the rate observed in WT cells. Interestingly, the RNA destabilizing protein tristetraprolin was induced following IgE cross-linkage in Stat5KO but not wild-type cells. Moreover, reducing tristetraprolin expression via short hairpin RNA transfection significantly increased IL-13 production in Stat5KO MC. Our work demonstrates that Stat5 is a critical factor in IgE-induced MC activation, acting in part via posttranscriptional control of cytokine mRNA stability. These data have a direct impact on MC-associated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dimitriadis E, Stoikos C, Tan YL, Salamonsen LA. Interleukin 11 signaling components signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) regulate human endometrial stromal cell differentiation. Endocrinology 2006; 147:3809-17. [PMID: 16709613 DOI: 10.1210/en.2006-0264] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The differentiation of endometrial stromal cells into decidual cells (decidualization) is critical for embryo implantation, but the mechanisms remain poorly defined. Numerous paracrine agents including IL-11 promote human endometrial stromal cell (HESC) decidualization. IL-11 signaling is transduced by the signal transducers and activators of transcription (STAT) proteins. Suppressors of cytokine signaling (SOCS) proteins are stimulated in response to cytokine-inducible STAT phosphorylation, acting in a negative-feedback mechanism to hinder cytokine receptor activity. This study examined the role of IL-11 signal transduction components in HESC decidualization in an ex vivo model. Cells were induced to differentiate with estrogen plus medroxyprogesterone acetate (E+P) or cAMP (assessed by prolactin secretion) and resulted in increased STAT3 and SOCS3. E+P maximally stimulated STAT3, whereas cAMP maximally stimulated SOCS3 during decidualization, suggesting E+P and cAMP differentially regulated the signaling components. IL-11 stimulated the phosphorylation (p) of STAT3 and SOCS3 mRNA and protein. Antiprogestin (onapristone) added to decidualizing cells attenuated STAT3 protein but increased SOCS3 mRNA and protein, suggesting regulation via both ligand-dependent and -independent progesterone-receptor pathways. SOCS3 overexpression in HESC reduced IL-11-induced pSTAT3 and retarded decidualization, indicating that SOCS3 is a critical regulator of differentiation. Immunoreactive pSTAT3 and SOCS3 were all present in decidualized stromal cells, epithelial cells, and leukocytes in human endometrium. These data support a role for IL-11 via pSTAT3 and SOCS3 in initiating and progressing decidualization.
Collapse
|