1
|
Chow S, Tang K, Al-Abri M, Hall V, Tremblay-Lemay R, Rashedi I, Tsui H, Chan SM. RUNX1 mutations correlate with response to venetoclax combination therapies in relapsed/refractory acute myeloid leukemia. Leuk Res 2021; 111:106735. [PMID: 34735933 DOI: 10.1016/j.leukres.2021.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Signy Chow
- Division of Medical Oncology and Hematology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.
| | - Kenny Tang
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada
| | - Mahmood Al-Abri
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada
| | - Victoria Hall
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Rosemarie Tremblay-Lemay
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Iran Rashedi
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Hubert Tsui
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Steven M Chan
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada
| |
Collapse
|
2
|
The artificial loss of Runx1 reduces the expression of quiescence-associated transcription factors in CD4 + T lymphocytes. Mol Immunol 2015; 68:223-33. [DOI: 10.1016/j.molimm.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
|
3
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
4
|
Mizutani S, Yoshida T, Zhao X, Nimer SD, Taniwaki M, Okuda T. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br J Haematol 2015; 170:859-73. [PMID: 26010396 DOI: 10.1111/bjh.13499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1(KTAMK) (/) (KTAMK) mice are born alive and appear normal during adulthood. However, Runx1(KTAMK) (/) (KTAMK) mice showed a reduction in CD3(+) T lymphoid cells and a decrease in CD4(+) T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4(+) to CD8(+) T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4(+) T-cell population.
Collapse
Affiliation(s)
- Shinsuke Mizutani
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.,Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Xinyang Zhao
- Department of Biochemistry & Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Masafumi Taniwaki
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
5
|
Wong WF, Kurokawa M, Satake M, Kohu K. Down-regulation of Runx1 expression by TCR signal involves an autoregulatory mechanism and contributes to IL-2 production. J Biol Chem 2011; 286:11110-8. [PMID: 21292764 DOI: 10.1074/jbc.m110.166694] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx1 transcription factor plays multiple roles in T cell development, differentiation, and function. However, the regulatory mechanisms and functional significance of high Runx1 protein expression in resting peripheral CD4+ T cells is not well understood. Here, we demonstrate that T-cell receptor (TCR) activation down-regulates distal Runx1 transcription, resulting in a significant reduction of Runx1 protein. Interestingly, this down-regulation of distal Runx1 transcription appears to be mediated through a negative auto-regulatory mechanism, whereby Runx1 protein binds to a Runx consensus site in the distal promoter. Through the use of Runx1-overexpressing cells from transgenic mice, we demonstrate that interference with TCR-mediated Runx1 down-regulation inhibits IL-2 production and proliferation in activated CD4+ T cells. In contrast, using Runx1-deficient cells prepared from targeted mice, we show that the absence of Runx1 in unstimulated CD4+ T cells results in IL-2 derepression. In summary, we propose that high levels of Runx1 in resting CD4+ T cells functions negatively in the regulation of IL-2 transcription, and that TCR activation-mediated down-regulation of Runx1 involves negative auto-regulation of the distal Runx1 promoter and contributes to IL-2 production.
Collapse
Affiliation(s)
- Won Fen Wong
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
6
|
Wong WF, Kohu K, Chiba T, Sato T, Satake M. Interplay of transcription factors in T-cell differentiation and function: the role of Runx. Immunology 2010; 132:157-64. [PMID: 21091910 DOI: 10.1111/j.1365-2567.2010.03381.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past years, increasing numbers of distinct subsets have been discovered and identified for a T lymphocytes' entity. Differentiation and function of each T cell subset are controlled by a specific master transcription factor. Importantly, Runt-related transcription factors, particularly Runx1 and Runx3, interplay with these master regulators in various aspects of T cells' immunity. In this review article, we first explain roles of Th-Pok and Runx3 in differentiation of CD4 versus CD8 single positive cells, and later focus on cross-regulation of Th-Pok and Runx3 and their relationship with other factors such as TCR strength. Next, we provide evidences for the direct interplay of Runx1/3 with T-bet and GATA3 during Th1 versus Th2 commitment to activate or silence transcription of signature cytokine genes, IFNγ and IL4. Lastly, we explain feed-forward relationship between Runx1 and Foxp3 and discuss roles of Runx1 in regulatory T cells' suppressive activity. This review highlights an essential importance of Runx molecules in controlling various T cell subsets' differentiation and functions through molecular interplay with the master transcription factors in terms of protein-protein interaction as well as regulation of gene expression.
Collapse
Affiliation(s)
- Won Fen Wong
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Isehara, Japan
| | | | | | | | | |
Collapse
|
7
|
Tsukamoto H, Huston GE, Dibble J, Duso DK, Swain SL. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. THE JOURNAL OF IMMUNOLOGY 2010; 185:4535-44. [PMID: 20844198 DOI: 10.4049/jimmunol.1001668] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With age, peripheral naive CD4 T cells become both longer lived and functionally impaired and they express reduced levels of Bim, a proapoptotic Bcl family member. In this study, we show that reduced Bim expression by naive CD4 T cells intrinsically mediates their longer lifespan in the periphery. Moreover, using mixed bone marrow chimeras reconstituted with Bim(+/+) and Bim(+/-) bone marrow cells, Bim(+/-) naive CD4 T cells exhibit accelerated development of age-associated dysfunctions, including reduced proliferation and IL-2 production and defective helper function for B cells, without any increase in their turnover. However, newly generated Bim(+/-) naive CD4 T cells in middle-aged mice are not defective, indicating an additional requirement for their persistence in the periphery. These age-associated immune defects develop independently of the "aged" host environment and without extensive division, distinguishing them from classic "senescence." We suggest that the reduction of Bim levels with age in naive CD4 T cell is the initiating step that leads to increased cellular lifespan and development of age-associated functional defects.
Collapse
|
8
|
Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, Stein T, Neil J, Cameron ER. Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis 2010; 45:117-23. [PMID: 20580290 DOI: 10.1016/j.bcmd.2010.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/22/2022]
Abstract
The Runx transcription factors are essential for mammalian development, most notably in the haematopoietic and osteogenic lineages. Runx1 and its binding partner, CBFbeta, are frequently targeted in acute leukaemia but evidence is accumulating that all three Runx genes may have a role to play in a wider range of cancers, either as tumour promoters or tumour suppressors. Whilst Runx2 is renowned for its role as a master regulator of bone development we discuss here its expression pattern and putative functions beyond this lineage. Furthermore, we review the evidence that RUNX2 promotes neoplastic development in haematopoietic lineages and in advanced mammary and prostate cancer.
Collapse
Affiliation(s)
- Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Uchino R. Domain analyses of the Runx1 transcription factor responsible for modulating T-cell receptor-beta/CD4 and interleukin-4/interferon-gamma expression in CD4(+) peripheral T lymphocytes. Immunology 2009; 128:16-24. [PMID: 19689732 DOI: 10.1111/j.1365-2567.2009.03042.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Runx1 transcription factor is one of the master regulators of T-lymphocyte differentiation. There have been several reports trying to assign a domain within the Runx1 protein that is responsible for gene expression in thymocytes. The Runx1 domains involved in regulating the expression of several genes in peripheral CD4(+) T cells were analysed. It was observed that Runx1 over-expression enhanced the surface expression of CD4 and CD69 molecules via its activation domain and VWRPY domain, and decreased that of T-cell receptor-beta via its activation domain. Runx1 over-expression enhanced interferon-gamma expression via its activation and VWRPY domains, and abolished interleukin-4 expression through its activation domain. Transduction of Runx1 did not down-regulate CD4 expression until 72 hr of culture, but the repression of CD4 expression became evident after 96 hr. The main region responsible for repressing CD4 expression was the inhibitory domain of Runx1. Taken together, these results lead to a proposal that the regions in Runx1 responsible for modulating gene expression are distinct in thymocytes and in peripheral CD4(+) T cells.
Collapse
Affiliation(s)
- Ryuji Uchino
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Graduate School of Life Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
10
|
Blyth K, Slater N, Hanlon L, Bell M, Mackay N, Stewart M, Neil JC, Cameron ER. Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis 2009; 43:12-9. [PMID: 19269865 DOI: 10.1016/j.bcmd.2009.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Runx1 is essential for the homeostatic control of normal hematopoiesis and is required for lymphoid development. Translocations or point mutations that result in RUNX1 loss or disrupted function predispose to leukemia but data derived from model systems suggests that Runx genes can also be pro-oncogenic. Here we investigate the effects of enforced Runx1 expression in lymphoid lineages both in vivo and in vitro and show that transgene expression enhanced cell survival in the thymus and bone marrow but strongly inhibited the expansion of hematopoietic and B cell progenitors in vitro. Despite this, modestly enhanced levels of Runx1 accelerated Myc-induced lymphomagenesis in both the B cell and T cell lineages. Together these data provide formal proof that wild type Runx1 can promote oncogenesis in lymphoid tissues and that, in addition to loss of function, gain of function may have an aetiological role in leukemia.
Collapse
Affiliation(s)
- Karen Blyth
- Faculty of Veterinary Medicine, Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Carter JH, Lefebvre JM, Wiest DL, Tourtellotte WG. Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. THE JOURNAL OF IMMUNOLOGY 2007; 178:6796-805. [PMID: 17513727 DOI: 10.4049/jimmunol.178.11.6796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The early growth response (Egr) family of transcriptional regulators consists of four proteins that share highly conserved DNA-binding domains. In many cell types, they are coexpressed and appear to have cooperative roles in regulating gene expression during growth and differentiation. Three Egr proteins, Egr1, Egr2, and Egr3, are induced during thymocyte differentiation in response to pre-TCR signaling, suggesting they may be critical for some aspects of pre-TCR-mediated differentiation. Indeed, enforced expression of Egr proteins in developing thymocytes can recapitulate some aspects of pre-TCR signaling, but the mechanisms by which they contribute to beta-selection are still poorly understood. Egr3 stimulates proliferation of beta-selected thymocytes, and Egr3-deficient mice have hypocellular thymuses, defects in proliferation, and impaired progression from double-negative 3 to double-negative 4. Surprisingly, Egr1-deficient mice exhibit normal beta-selection, indicating that the functions of Egr1 during beta-selection are likely compensated by other Egr proteins. In this study, we show that mice lacking both Egr1 and Egr3 exhibit a more severe thymic atrophy and impairment of thymocyte differentiation than mice lacking either Egr1 or Egr3. This is due to a proliferation defect and cell-autonomous increase in apoptosis, indicating that Egr1 and Egr3 cooperate to promote thymocyte survival. Microarray analysis of deregulated gene expression in immature thymocytes lacking both Egr1 and Egr3 revealed a previously unknown role for Egr proteins in the maintenance of cellular metabolism, providing new insight into the function of these molecules during T cell development.
Collapse
Affiliation(s)
- John H Carter
- Department of Pathology, Northwestern University, Chicago IL, 60611, USA
| | | | | | | |
Collapse
|
12
|
Sandalova E, Hislop AD, Levitsky V. T-cell receptor triggering differentially regulates bim expression in human lymphocytes from healthy individuals and patients with infectious mononucleosis. Hum Immunol 2006; 67:958-65. [PMID: 17174744 DOI: 10.1016/j.humimm.2006.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 09/18/2006] [Accepted: 10/02/2006] [Indexed: 01/20/2023]
Abstract
Bim, a proapoptotic member of the Bcl-2 protein family, is a major regulator of central and peripheral T-cell deletion. Regulation of Bim activity by T-cell receptor (TCR) triggering is not well understood. We investigated expression of Bim in different subpopulations of ex vivo isolated human T cells from healthy donors and patients with infectious mononucleosis (IM). Upregulation of Bim expression in response to TCR-triggering was observed only in a small proportion of analyzed samples of peripheral blood lymphocytes (PBLs) from healthy donors and only occasionally upon longitudinal analysis of cells isolated from the same individuals. Populations of naive or memory T cells enriched on the basis of CD45RO or CD45RA expression showed only slight and comparable Bim upregulation. In contrast, ex vivo isolated PBLs from IM patients in the acute stage of the disease with significant expansions of CD8+ cells expressed increased levels of Bim, and lymphocytes from the majority of analyzed IM patients exhibited significant upregulation of all major Bim isoforms in response to TCR triggering. These results demonstrate that at least some antigen-induced expansions of human CD8+ T cells are associated with increased levels of Bim, and TCR triggering in effector T lymphocytes may increase Bim activity by upregulation of its expression.
Collapse
Affiliation(s)
- Elena Sandalova
- Division of Biomedical Sciences, Johns Hopkins in Singapore, Singapore
| | | | | |
Collapse
|
13
|
Wang X, Hsu HC, Wang Y, Edwards CK, Yang P, Wu Q, Mountz JD. Phenotype of genetically regulated thymic involution in young BXD RI strains of mice. Scand J Immunol 2006; 64:287-94. [PMID: 16918698 DOI: 10.1111/j.1365-3083.2006.01813.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Age-related thymic involution is a multifactorial process related to age-related changes in intrathymic T-cell development and cytokines. In contrast, early thymic involution, because of genetic differences that cause rapid or slow thymic involution at younger age, is less well characterized. Here, we analysed three representative rapid-involuting strains of mice, BXD 8, 18 and 32, compared with three representative slow-involuting strains, BXD 9, 19 and 29, all at 2 months of age. In rapid-involuting strains compared with slow involution strains, thymocyte production, as indicated by CD4+ and CD8+ T-cell receptor recombination excision circle (TREC), were decreased. Rapid-involution strains of mice exhibited a developmental block at the DN1 to DN2 and CD4-CD8- (DN) to CD4+CD8+ (double positive, DP) transition stages. There was also increased susceptibility to H2O2-induced apoptosis, decreased thymic expression of IL-7, decreased expression of an IL-7 downstream anti-apoptosis gene, Bcl-2, and increased expression of a pro-apoptotic gene, Bad. In contrast, IL-7R expression was higher on DN thymocytes of rapid-involution strains. The increased expression of IL-7R was associated with an increased thymocyte proliferation in response to anti-CD3 + IL-7 or anti-CD3 + IL-12 + IL-7. These findings indicate that, even at young age, genetic differences of IL-7/IL-7R regulation pathway in BXD strains of mice can lead to characteristic phenotypic changes that have been previously associated with age-related thymic involution.
Collapse
Affiliation(s)
- X Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, 701 South 19th Street, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|