1
|
An J, Fu D, Chen X, Guan C, Li L, Bai J, Lv H. Revisiting the role of IL-27 in obesity-related metabolic diseases: safeguard or perturbation? Front Immunol 2025; 15:1498288. [PMID: 39906735 PMCID: PMC11792170 DOI: 10.3389/fimmu.2024.1498288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
The prevalence of metabolic diseases, such as obesity, has been steadily increasing in recent years, posing a significant threat to public health. Therefore, early identification and intervention play a crucial role. With the deepening understanding of the etiology of metabolic diseases, novel therapeutic targets are emerging for the treatment of obesity, lipid metabolism disorders, cardiovascular and cerebrovascular diseases, glucose metabolism disorders, and other related metabolic conditions. IL-27, as a multi-potent cytokine, holds great promise as a potential candidate target in this regard. This article provides a comprehensive review of the latest findings on IL-27 expression and signal transduction in the regulation of immune inflammatory cells, as well as its implications in obesity and other related metabolic diseases. Furthermore, it explores the potential of IL-27 as a novel therapeutic target for the treatment of obesity and metabolic disorders. Finally, an overview is presented on both the opportunities and challenges associated with targeting IL-27 for therapeutic interventions.
Collapse
Affiliation(s)
- Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Fu
- Department of Endocrinology, The People’s Hospital of Yuzhong County, Lanzhou, Gansu, China
| | - Ximei Chen
- Department of General Medicine, Zhengzhou Yihe Hospital affiliated to Henan University, Zhengzhou, Henan, China
| | - Conghui Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lingling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jia Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Geng M, Li K, Ai K, Liang W, Yang J, Wei X. Evolutionarily conserved IL-27β enhances Th1 cells potential by triggering the JAK1/STAT1/T-bet axis in Nile tilapia. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100087. [PMID: 36873098 PMCID: PMC9978509 DOI: 10.1016/j.fsirep.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
As a pleiotropic cytokine in the interleukin (IL)-12 family, IL-27β plays a significant role in regulating immune cell responses, eliminating invading pathogens, and maintaining immune homeostasis. Although non-mammalian IL-27β homologs have been identified, the mechanism of whether and how it is involved in adaptive immunity in early vertebrates remains unclear. In this study, we identified an evolutionarily conserved IL-27β (defined as OnIL-27β) from Nile tilapia (Oreochromis niloticus), and explored its conserved status through gene collinearity, gene structure, functional domain, tertiary structure, multiple sequence alignment, and phylogeny analysis. IL-27β was widely expressed in the immune-related tissues/organ of tilapia. The expression of OnIL-27β in spleen lymphocytes increased significantly at the adaptive immune phase after Edwardsiella piscicida infection. OnIL-27β can bind to precursor cells, T cells, and other lymphocytes to varying degrees. Additionally, IL-27β may be involved in lymphocyte-mediated immune responses through activation of Erk and JNK pathways. More importantly, we found that IL-27β enhanced the mRNA expression of the Th1 cell-associated cytokine IFN-γ and the transcription factor T-bet. This potential enhancement of the Th1 response may be attributed to the activation of the JAK1/STAT1/T-bet axis by IL-27β, as it induced increased transcript levels of JAK1, STAT1 but not TYK2 and STAT4. This study provides a new perspective for understanding the origin, evolution and function of the adaptive immune system in teleost.
Collapse
Affiliation(s)
- Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Pfeuffer S, Rolfes L, Wirth T, Steffen F, Pawlitzki M, Schulte-Mecklenbeck A, Gross CC, Brand M, Bittner S, Ruck T, Klotz L, Wiendl H, Meuth SG. Immunoadsorption versus double-dose methylprednisolone in refractory multiple sclerosis relapses. J Neuroinflammation 2022; 19:220. [PMID: 36071461 PMCID: PMC9450381 DOI: 10.1186/s12974-022-02583-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Intravenous methylprednisolone is the standard treatment for a multiple sclerosis relapse; however, this fails to improve symptoms in up to one quarter of patients. Immunoadsorption is an accepted treatment for refractory relapses, but prospective comparator-controlled studies are missing. Methods In this observational study, patients with steroid-refractory acute multiple sclerosis relapses receiving either six courses of tryptophan-immunoadsorption or double-dose methylprednisolone therapy were analysed. Outcomes were evaluated at discharge and three months later. Immune profiling of blood lymphocytes and proteomic analysis were performed by multi-parameter flow cytometry and Olink analysis, respectively (NCT04450030). Results 42 patients were enrolled (methylprednisolone: 26 patients; immunoadsorption: 16 patients). For determination of the primary outcome, treatment response was stratified according to relative function system score changes (“full/best” vs. “average” vs. “worse/none”). Upon discharge, the adjusted odds ratio for any treatment response (“full/best” + ”average” vs. “worse/none”) was 10.697 favouring immunoadsorption (p = 0.005 compared to methylprednisolone). At follow-up, the adjusted odds ratio for the best treatment response (“full/best” vs. “average” + ”worse/none”) was 103.236 favouring IA patients (p = 0.001 compared to methylprednisolone). Similar results were observed regarding evoked potentials and quality of life outcomes, as well as serum neurofilament light-chain levels. Flow cytometry revealed a profound reduction of B cell subsets following immunoadsorption, which was closely correlated to clinical outcomes, whereas methylprednisolone had a minimal effect on B cell populations. Immunoadsorption treatment skewed the blood cytokine network, reduced levels of B cell-related cytokines and reduced immunoglobulin levels as well as levels of certain coagulation factors. Interpretation Immunoadsorption demonstrated favourable outcomes compared to double-dose methylprednisolone. Outcome differences were significant at discharge and follow-up. Further analyses identified modulation of B cell function as a potential mechanism of action for immunoadsorption, as reduction of B cell subsets correlated with clinical improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02583-y.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Leoni Rolfes
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Department of Neurology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Timo Wirth
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Falk Steffen
- Department of Neurology, University Hospital Mainz, Mainz, Germany
| | - Marc Pawlitzki
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Department of Neurology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Catharina C Gross
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Marcus Brand
- Medical Department D - Nephrology, University Hospital Muenster, Muenster, Germany
| | - Stefan Bittner
- Department of Neurology, University Hospital Mainz, Mainz, Germany
| | - Tobias Ruck
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Department of Neurology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Luisa Klotz
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| | - Sven G Meuth
- Department of Neurology and Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany. .,Department of Neurology, University Hospital Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
5
|
Lv K, Hu B, Xu M, Wan L, Jin Z, Xu M, Du Y, Ma K, Lv Q, Xu Y, Lei L, Gong H, Liu H, Wu D, Liu Y. IL-39 promotes chronic graft-versus-host disease by increasing T and B Cell pathogenicity. Exp Hematol Oncol 2022; 11:34. [PMID: 35655245 PMCID: PMC9161463 DOI: 10.1186/s40164-022-00286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major complication during the late phase of allogeneic hematopoietic stem cell transplantation (allo-HSCT). IL-39, a newly described pro-inflammatory cytokine belonging to the IL-12 family, plays a role in lupus development. Recently, IL-39 has been identified as a pathogenic factor in acute GVHD (aGVHD). However, the role of IL-39 in the pathogenesis of cGVHD remains unclear. METHODS We constructed a recombinant IL-39 plasmid and established scleroderma and lupus-like cGVHD models. Quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to detect IL-39 expression in mice and patients post transplantation, respectively. Hydrodynamic gene transfer (HGT) was performed to achieve IL-39 overexpression in vivo. Multiparameter flow cytometry, western blotting, and assays in vitro were performed to investigate the effect of IL-39 on cGVHD. RESULTS The relative expression of IL-23p19 and EBi3 was significantly increased in the intestine of cGVHD mice on day 40 post allo-HSCT, and IL-39 levels were significantly elevated in the serum of patients following allo-HSCT. Overexpression of IL-39 significantly aggravated the severity of cGVHD. Increased IL-39 levels promoted T-cell activation and germinal center responses, and may exacerbate thymic damage. Consistently, blocking IL-39 markedly ameliorated immune dysregulation in the cGVHD mice. Furthermore, we found that IL-39 was produced by B cells, CD11b+ cells, and CD8+T cells after activation. Stimulation of IL-39 led to upregulation of the IL-39 receptor on CD4+T cells and further caused activation of the STAT1/STAT3 pathway, through which IL-39 may exert its pro-inflammatory effects. CONCLUSION Our study reveals a critical role for IL-39 in cGVHD pathogenesis and indicates that IL-39 may serve as a potential therapeutic target for cGVHD prevention.
Collapse
Affiliation(s)
- Kangkang Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mingzhu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Li Wan
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Du
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kunpeng Ma
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Quansheng Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Department of Microbiology and Immunology, Life Sciences Institute, Immunology Translational Research ProgramYong Loo Lin School of MedicineImmunology ProgramNational University of Singapore, Singapore, Singapore.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Ding M, Fei Y, Zhu J, Ma J, Zhu G, Zhen N, Zhu J, Mao S, Sun F, Wang F, Pan Q. IL-27 Improves Adoptive CD8 + T Cells Antitumor Activity via Enhancing Cells Survival and Memory T Cells Differentiation. Cancer Sci 2022; 113:2258-2271. [PMID: 35441753 PMCID: PMC9277268 DOI: 10.1111/cas.15374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
IL-27 is an anti-inflammatory cytokine that triggers enhanced antitumor immunity, particularly cytotoxic T lymphocyte responses. In the present study, we sought to develop IL-27 into a therapeutic adjutant for adoptive T-cell therapy using our well-established models. We have found that IL-27 directly improved the survival status and cytotoxicity of adoptive OT-1 CD8+ T cells in vitro and in vivo. Meanwhile, IL-27 treatment programs memory T cells differentiation in CD8+ T cells, characterized by up regulation of genes associated with T cell memory differentiation (T-bet, Eomes, Blimp1 and Ly6C). Additionally, we engineered the adoptive OT-1 CD8+ T cells to deliver IL-27. In mice, the established tumors treated with OT-1 CD8+ T-IL-27 were completely rejected, which demonstrated that IL-27 delivered via tumor antigen-specific T cells enhance adoptive T cells cancer immunity. To our knowledge, this is the first application of CD8+ T cells as a vehicle to deliver IL-27 to treat tumors. Thus, these studies demonstrate IL-27 is a feasible approach for enhancing CD8+ T cells anti-tumor immunity and can be used as a therapeutic adjutant for T cell adoptive transfer to treat cancer.
Collapse
Affiliation(s)
- Miao Ding
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Fei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiaotong University affiliated Sixth People's Hospital
| | - Jianmin Zhu
- Key Laboratory of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Ma
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabei Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siwei Mao
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| |
Collapse
|
7
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
8
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
9
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, Liu Y, Lai L, Wang Q. IL‐27 signaling negatively regulates FcɛRI‐mediated mast cell activation and allergic response. J Leukoc Biol 2022; 112:411-424. [PMID: 35075687 DOI: 10.1002/jlb.2ma1221-637r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaopeng Wan
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veternary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Huanna Tang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Tianqi Jiang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Jia He
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Chunjing Bao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Junkai Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yinjing Song
- Department of Dermatology and Venereology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Peng Xiao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yang Liu
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Lihua Lai
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Qingqing Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
10
|
Rahimi Z, Yaghobi R, Afshari A, Roozbeh J, Mokhtari MJ, Hosseini AM. The effect of BKV reactivation on cytokines behavior in kidney transplanted patients. BMC Nephrol 2022; 23:20. [PMID: 34996392 PMCID: PMC8739991 DOI: 10.1186/s12882-021-02645-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND BK virus associated nephropathy (BKVAN) is one of the common causes of graft loss among kidney transplanted recipients (KTRs). The current treatment for BKV nephropathy is decreasing the immunosuppressive regimen in KTRs. Interleukin-27 (IL-27) is a multifunctional cytokine that might be the front-runner of an important pathway in this regard. Therefore, in current study it is tried to evaluate the changes in the expression level of IL-27 and some related molecules, resulting from BKV reactivation in KTR patients. METHODS EDTA-treated blood samples were collected from all participants. Patients were divided into two groups, 31 kidney transplant recipients with active and 32 inactive BKV infection, after being monitored by Real time PCR (Taq-Man) in plasma. Total of 30 normal individuals were considered as healthy control group. Real time PCR (SYBR Green) technique is used to determine the expression level of studied genes. RESULTS The results of gene expression comparisons showed that the expression level of IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 genes was significantly higher in inactive group in comparison to active group. The expression level of TLR4 was lower in both active and inactive groups in comparison to control group. ROC curve analysis showed that IL-27 and IRF7 are significantly different amongst other studied genes. Finally, the analyses revealed that the expression level of most of the studied genes (except for TNF-α and TLR4) have significant correlation with viral load. CONCLUSIONS Our findings revealed that IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 expression level is higher in inactive group and TLR4 expression level is lower in patients' groups in comparison to control group. Also, ROC curve analysis showed IL-27 and IRF7 can significantly differentiate studied groups (BKV active vs. inactive). Therefore, these results might help elucidating the pattern in charge of BKV reactivation in kidney transplanted patients.
Collapse
Affiliation(s)
- Zahra Rahimi
- Department of Biology, Zarghan branch, Islamic Azad University, Zarghan, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Malek Hosseini
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Interleukin 27 as an inducer of antiviral response against chikungunya virus infection in human macrophages. Cell Immunol 2021; 367:104411. [PMID: 34325085 DOI: 10.1016/j.cellimm.2021.104411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 01/31/2023]
Abstract
Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Geysson J Fernandez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
12
|
Saeed MH, Kurosh K, Zahra A, Hossein DM, Davood R, Ataollahi MR. Decreased serum levels of IL-27and IL-35 in patients with Graves disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 64:521-527. [PMID: 34033291 PMCID: PMC10118973 DOI: 10.20945/2359-3997000000227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Graves' disease (GD) is an autoimmune disease causing the overproduction of the thyroid hormone from thyroid gland. This disease is mainly the result of the production of antibodies against TSH receptors. Cytokines play an important role in orchestrating the pathophysiology in autoimmune thyroid disease. The regulatory role of IL-12 on TH1 cells has been proven. IL-27 and IL-35, members of IL-12 cytokine family, are two cytokines that have been newly discovered. IL-35 has been identified as a novel immunosuppressive and anti-inflammatory cytokine while IL-27 has both inflammatory and anti-inflammatory functions. The objective of the current study was to examine the changes in the serum level of the foregoing cytokines in GD patients in comparison to healthy controls. Methods In this study, serum levels of IL-27 and IL-35 were determined by an ELISA method; anti TPO and anti Tg were measured by an RIA method in 40 new cases of Graves's disease. The findings were compared with 40 healthy controls. Results The results showed a significant difference between IL-27 and IL-35 regarding their serum levels with P values of 0.0001 and 0.024, respectively; anti TPO and anti Tg levels of the cases were also significantly different from controls (p < 0.001). Conclusion The reduction in the serum levels of IL-27 and IL-35 in GD patients compared to normal subjects suggests the possible anti-inflammatory role of these cytokines in GD.
Collapse
Affiliation(s)
- Malek-Hosseini Saeed
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kalantar Kurosh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirghofran Zahra
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Rostamzadeh Davood
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ataollahi
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran,
| |
Collapse
|
13
|
Morita Y, Masters EA, Schwarz EM, Muthukrishnan G. Interleukin-27 and Its Diverse Effects on Bacterial Infections. Front Immunol 2021; 12:678515. [PMID: 34079555 PMCID: PMC8165262 DOI: 10.3389/fimmu.2021.678515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Innate and adaptive immune responses against pathogens are known to be carefully orchestrated by specific cytokines that initiate and down regulate immune cell functions from the initial infection through tissue repair and homeostasis. However, some cytokines, including interleukin-27, are expressed at multiple phases of the infection, such that their pro and anti-inflammatory functions have been difficult to interpret. As elucidation of specific cytokine functions throughout infection is central to our understanding of protective vs. susceptible immunity and return to homeostasis vs. prolonged inflammation leading to septic shock, here we review the literature on IL-27 signaling and the various functions of this heterodimeric ligand member of the IL-12 cytokine family. Canonically, IL-27 is produced by antigen-presenting cells, and is thought of as an immunostimulatory cytokine due to its capacity to induce Th1 differentiation. However, many studies have also identified various immunosuppressive effects of IL-27 signaling, including suppression of Th17 differentiation and induction of co-inhibitory receptors on T cells. Thus, the exact role of IL-27 in the context of infectious diseases remains a topic of debate and active research. Additionally, as recent interest has focused on clinical management of acute vs. chronic infections, and life-threatening "cytokine storm" from sepsis, we propose a hypothetical model to explain the biphasic role of IL-27 during the early and late phases of immune responses to reconcile its known pro and anti-inflammatory functions, which could be therapeutically regulated to improve patient outcomes of infection.
Collapse
Affiliation(s)
- Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
14
|
Yousif AS, Ronsard L, Shah P, Omatsu T, Sangesland M, Bracamonte Moreno T, Lam EC, Vrbanac VD, Balazs AB, Reinecker HC, Lingwood D. The persistence of interleukin-6 is regulated by a blood buffer system derived from dendritic cells. Immunity 2020; 54:235-246.e5. [PMID: 33357409 PMCID: PMC7836640 DOI: 10.1016/j.immuni.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.
Collapse
Affiliation(s)
- Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Pankaj Shah
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Tatsushi Omatsu
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Evan C Lam
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vladimir D Vrbanac
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Hans-Christian Reinecker
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; The Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Manouchehri-Doulabi E, Abbaspour S, Rostami S, Faranoush M, Ghahramanfard F, Pak F, Barati M, Kokhaei P, Momtazi-Borojeni AA. Evaluating the mechanism underlying antitumor effect of interleukin 27 on B cells of chronic lymphocytic leukemia patients. J Cell Physiol 2020; 235:9424-9431. [PMID: 32383245 DOI: 10.1002/jcp.29747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/06/2022]
Abstract
Chronic lymphocyte leukemia (CLL) is a B-cell malignancy resisted to apoptosis. Recently, some studies indicated that cytokines such as interleukin 27 (IL-27) can reduce B-cell proliferation. The aim of this study is to evaluate the mechanism underlying the proapoptotic effect of IL-27 on B cells of patients with CLL in comparison with B cells of normal subjects. The effect of IL-27 on the antitumor activity of natural killer (NK) and T cells was also evaluated. Peripheral blood mononuclear cells (PBMCs) were isolated from 35 patients with CLL and 15 normal subjects. B cells and PBMCs were cocultured with IL-27 and B cells apoptosis to evaluate proliferation. Both messenger RNA and protein expression of IL-27 and IL-27 receptor were determined using flow cytometry and real-time polymerase chain reaction analysis. To evaluate the apoptotic effect of IL-27 on B cells of patients with CLL, Annexin V-FITC and 7-AAD (BioLegend) fluorescent dyes were used. In addition, the IL-27 effect on activation of T cell and NK cell was determined by determining CD96 molecule expression. IL-27 and IL-27 receptor expression in patients with CLL was significantly lower than that of normal subjects (p < .05). IL-27 enhanced apoptosis of B cells in patients with CLL (p < .05) but this effect was not significantly observed in B cells of normal subjects (p > .05). Consequently, IL-27 reduced the proliferation of B cells and enhanced NK cell activity (p < .05). IL-27, through inducing apoptosis, can exert an inhibitory effect on cancer B cells of CLL patients with minimal effect on normal B cells.
Collapse
Affiliation(s)
- Ehsan Manouchehri-Doulabi
- Faculty of Medicine, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Students Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Somaye Abbaspour
- Faculty of Medicine, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahrbano Rostami
- Hematology-Oncology and Stem Cell Transplantation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Iran University of Medical Sciences, Rasool Akram Complex Medical Center, MAHAK Hospital, Tehran, Iran
| | - Farahnaz Ghahramanfard
- Faculty of Medicine, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Pak
- Faculty of Medicine, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Barati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parviz Kokhaei
- Faculty of Medicine, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Oncology, Cancer Centre Karolinska, Karolinska University, Hospital Solna, Stockholm, Sweden
| | - Amir A Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Verstappen GM, Ice JA, Bootsma H, Pringle S, Haacke EA, de Lange K, van der Vries GB, Hickey P, Vissink A, Spijkervet FKL, Lessard CJ, Kroese FGM. Gene expression profiling of epithelium-associated FcRL4 + B cells in primary Sjögren's syndrome reveals a pathogenic signature. J Autoimmun 2020; 109:102439. [PMID: 32201227 PMCID: PMC7337041 DOI: 10.1016/j.jaut.2020.102439] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 10/31/2022]
Abstract
In primary Sjögren's syndrome (pSS), FcRL4+ B cells are present in inflamed salivary gland tissue, within or in close proximity to ductal epithelium. FcRL4 is also expressed by nearly all pSS-related mucosa-associated lymphoid tissue (MALT) B cell lymphomas, linking FcRL4 expression to lymphomagenesis. Whether glandular FcRL4+ B cells are pathogenic, how these cells originate, and how they functionally differ from FcRL4- B cells in pSS is unclear. This study aimed to investigate the phenotype and function of FcRL4+ B cells in the periphery and parotid gland tissue of patients with pSS. First, circulating FcRL4+ B cells from 44 pSS and 54 non-SS-sicca patients were analyzed by flow cytometry. Additionally, RNA sequencing of FcRL4+ B cells sorted from parotid gland cell suspensions of 6 pSS patients was performed. B cells were sorted from cell suspensions as mini bulk (5 cells/well) based on the following definitions: CD19+CD27-FcRL4- ('naive'), CD19+CD27+FcRL4- ('memory'), and CD19+FcRL4+ B cells. We found that, although FcRL4+ B cells were not enriched in blood in pSS compared with non-SS sicca patients, these cells generally exhibited a pro-inflammatory phenotype. Genes coding for CD11c (ITGAX), T-bet (TBX21), TACI (TNFRSF13B), Src tyrosine kinases and NF-κB pathway-related genes were, among others, significantly upregulated in glandular FcRL4+ B cells versus FcRL4- B cells. Pathway analysis showed upregulation of B cell activation, cell cycle and metabolic pathways. Thus, FcRL4+ B cells in pSS exhibit many characteristics of chronically activated, pro-inflammatory B cells and their gene expression profile suggests increased risk of lymphomagenesis. We postulate that these cells contribute significantly to the epithelial damage seen in the glandular tissue and that FcRL4+ B cells are an important treatment target in pSS.
Collapse
Affiliation(s)
- Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands.
| | - John A Ice
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Erlin A Haacke
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Kim de Lange
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerben B van der Vries
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Frederik K L Spijkervet
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
17
|
Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: A Cytokine Triumvirate in Cancer. Front Oncol 2019; 9:969. [PMID: 31681561 PMCID: PMC6797860 DOI: 10.3389/fonc.2019.00969] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
The role of the immune system in anti-tumor immunity cannot be overstated, as it holds the potential to promote tumor eradication or prevent tumor cell escape. Cytokines are critical to influencing the immune responses and interactions with non-immune cells. Recently, the IL-12 and IL-6 family of cytokines have accumulated newly defined members each with specific immune functions related to various cancers and tumorigenesis. There is a need to better understand how cytokines like IL-27, IL-30, and IL-35 interact with one another, and how a developing tumor can exploit these interactions to enhance immune suppression. Current cytokine-based immunotherapies are associated with cytotoxic side effects which limits the success of treatment. In addition to this toxicity, understanding the complex interactions between immune and cancer cells may be one of the greatest challenges to developing a successful immunotherapy. In this review, we bring forth IL-27, IL-30, and IL-35, “sister cytokines,” along with more recent additions to the IL-12 family, which serve distinct purposes despite sharing structural similarities. We highlight how these cytokines function in the tumor microenvironment by examining their direct effects on cancer cells as well their indirect actions via regulatory functions of immune cells that act to either instigate or inhibit tumor progression. Understanding the context dependent immunomodulatory outcomes of these sister cytokines, as well as their regulation within the tumor microenvironment, may shed light onto novel cancer therapeutic treatments or targets.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
18
|
Scherger AK, Al-Maarri M, Maurer HC, Schick M, Maurer S, Öllinger R, Gonzalez-Menendez I, Martella M, Thaler M, Pechloff K, Steiger K, Sander S, Ruland J, Rad R, Quintanilla-Martinez L, Wunderlich FT, Rose-John S, Keller U. Activated gp130 signaling selectively targets B cell differentiation to induce mature lymphoma and plasmacytoma. JCI Insight 2019; 4:128435. [PMID: 31391340 DOI: 10.1172/jci.insight.128435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Aberrant activity of the glycoprotein 130 130/JAK/STAT3 (gp130/JAK/STAT3) signaling axis is a recurrent event in inflammation and cancer. In particular, it is associated with a wide range of hematological malignancies, including multiple myeloma and leukemia. Novel targeted therapies have only been successful for some subtypes of these malignancies, underlining the need for developing robust mouse models to better dissect the role of this pathway in specific tumorigenic processes. Here, we investigated the role of selective gp130/JAK/STAT3 activation by generating a conditional mouse model. This model targeted constitutively active, cell-autonomous gp130 activity to B cells, as well as to the entire hematopoietic system. We found that regardless of the timing of activation in B cells, constitutively active gp130 signaling resulted in the formation specifically of mature B cell lymphomas and plasma cell disorders with full penetrance, only with different latencies, where infiltrating CD138+ cells were a dominant feature in every tumor. Furthermore, constitutively active gp130 signaling in all adult hematopoietic cells also led to the development specifically of largely mature, aggressive B cell cancers, again with a high penetrance of CD138+ tumors. Importantly, gp130 activity abrogated the differentiation block induced by a B cell-targeted Myc transgene and resulted in a complete penetrance of the gp130-associated, CD138+, mature B cell lymphoma phenotype. Thus, gp130 signaling selectively provides a strong growth and differentiation advantage for mature B cells and directs lymphomagenesis specifically toward terminally differentiated B cell cancers.
Collapse
Affiliation(s)
- Anna K Scherger
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Preventive Medicine and Diabetes, Cologne, Germany
| | | | - Markus Schick
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Sabine Maurer
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Rupert Öllinger
- Internal Medicine II.,Center for Translational Cancer Research, and.,Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | | | - Manuela Martella
- Institute of Pathology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Markus Thaler
- Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany
| | - Konstanze Pechloff
- Center for Translational Cancer Research, and.,Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sandrine Sander
- Adaptive Immunity and Lymphoma, German Cancer Research Center/National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Jürgen Ruland
- Center for Translational Cancer Research, and.,Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Rad
- Internal Medicine II.,Center for Translational Cancer Research, and.,Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | | | - Frank T Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Preventive Medicine and Diabetes, Cologne, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulrich Keller
- Internal Medicine III, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
19
|
Mateen S, Saeed H, Moin S, Khan AQ, Owais M. T helper cell subpopulations repertoire in peripheral blood and its correlation with sex of newly diagnosed arthritis patients: A gender based study. Int Immunopharmacol 2019; 74:105675. [PMID: 31177017 DOI: 10.1016/j.intimp.2019.105675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder. Autoreactive T cells play a very significant role in the pathogenesis of RA. However, the exact mechanisms of disease severity and pathogenesis are poorly understood. We attempted to correlate T-helper cell activities with sexes of newly diagnosed patients with RA. The patients were divided based on their sex and disease severity. Examination of the expression of various factors using quantitative real-time PCR and FACS analysis of peripheral blood mononuclear cells revealed that T-bet, ROR-γt, Foxp3, and the level of cytokines associated with Th1 cells were almost identical among male and female patients with RA. Interestingly, there was a high correlation between Th17 expression and disease severity in female patients with RA. In general, there was no significant correlation between Th1 cell population and the disease severity in newly diagnosed patients with RA. In contrast, the frequency of both Th17 and Treg cells was higher in patients with more severe disease. The results suggested that, in patients with RA, the T-helper cell balance within peripheral blood was skewed towards the Th17 and Treg phenotypes. Besides Th17- and Treg-associated cytokines, elevated expression of IL-27/IL-23 cytokines might also be responsible for increased disease severity in female patients with RA.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Haris Saeed
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Abdul Qayyum Khan
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
20
|
Ayasoufi K, Zwick DB, Fan R, Hasgur S, Nicosia M, Gorbacheva V, Keslar KS, Min B, Fairchild RL, Valujskikh A. Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation. JCI Insight 2019; 4:125489. [PMID: 30944247 DOI: 10.1172/jci.insight.125489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Antibody-mediated lymphoablation is used in solid organ and stem cell transplantation and autoimmunity. Using murine anti-thymocyte globulin (mATG) in a mouse model of heart transplantation, we previously reported that the homeostatic recovery of CD8+ T cells requires help from depletion-resistant memory CD4+ T cells delivered through CD40-expressing B cells. This study investigated the mechanisms by which B cells mediate CD8+ T cell proliferation in lymphopenic hosts. While CD8+ T cell recovery required MHC class I expression in the host, the reconstitution occurred independently of MHC class I, MHC class II, or CD80/CD86 expression on B cells. mATG lymphoablation upregulated the B cell expression of several cytokine genes, including IL-15 and IL-27, in a CD4-dependent manner. Neither treatment with anti-CD122 mAb nor the use of IL-15Rα-/- recipients altered CD8+ T cell recovery after mATG treatment, indicating that IL-15 may be dispensable for T cell proliferation in our model. Instead, IL-27 neutralization or the use of IL-27Rα-/- CD8+ T cells inhibited CD8+ T cell proliferation and altered the phenotype and cytokine profile of reconstituted CD8+ T cells. Our findings uncover what we believe is a novel role of IL-27 in lymphopenia-induced CD8+ T cell proliferation and suggest that targeting B cell-derived cytokines may increase the efficacy of lymphoablation and improve transplant outcomes.
Collapse
|
21
|
Ma N, Fang Y, Xu R, Zhai B, Hou C, Wang X, Jiang Z, Wang L, Liu Q, Han G, Wang R. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol 2019; 107:61-70. [PMID: 30660991 DOI: 10.1016/j.molimm.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
Although sharing the same subunit Ebi3, IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3) have different biological functions, suggesting that Ebi3 subunit may functions as a carrier. Our data demonstrated that activated T cells and B cells effectively up-regulated Ebi3 expression. In addition, Ebi3 effectively promoted T-cell activation and the differentiation of helper T 1 (Th1), Th17, and Foxp3+ regulatory T (Treg) cells induced by Th1, Th17, and Treg polarizing condition, respectively. Naturally, Ebi3 could promote B-cell activation and the production of CD138+ plasma cells (PC) induced by LPS. Conversely, neutralizing anti-Ebi3 antibody could significantly suppress T/B-cell activation and production of Th1, Th17, Tregs, and PC induced by Th1, Th17, Treg polarizing condition, and LPS, respectively. Furthermore, we found that Ebi3 time-dependently induced STAT3 activation in CD4+T cells and B cells. Conversely, STAT3-/- effectively reduced Ebi3 expression and the production of Th1, Th17, Tregs, and plasma cells. Finally, we showed that gp130 but not IL-27Rα mediates Ebi3-induced STAT3 activation. These results suggest that Ebi3 promotes Th- and B-cell differentiation via gp130-STAT3 signaling pathway. Thus, autocrine Ebi3 may play an important role in the differentiation of Th and B cells and thus in infection, inflammation, and autoimmune disorders.
Collapse
Affiliation(s)
- Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Ying Fang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China; Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruonan Xu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Bing Zhai
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing 100176, China
| | - Zhenyu Jiang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
22
|
Yi J, Chen Z, Xu F, Wang Z, Zhang A, Liu T, Zhao N, Xiong Y, Jiang G, Ma J, Luan X. IL-27 Promotes Human Placenta-Derived Mesenchymal Stromal Cell Ability To Induce the Generation of CD4 +IL-10 +IFN-γ + T Cells via the JAK/STAT Pathway in the Treatment of Experimental Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:1124-1136. [PMID: 30651340 DOI: 10.4049/jimmunol.1800963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stromal cells (MSCs) harbor immunomodulatory properties to induce the generation of suppressive T cells. MSCs have been successfully used in treating graft-versus-host disease (GVHD) accompanied by abundant inflammatory cytokines such as IL-27. This study investigated the effects of IL-27 on the human placenta-derived MSCs (hPMSCs) to induce generation of CD4+IL-10+IFN-γ+ T cells in vitro and in the humanized xenogenic GVHD NOD/SCID model. The results showed that the percentages of CD4+IL-10+IFN-γ+ T cells were significantly increased in activated human PBMC from both healthy donors and GVHD patients with hPMSCs and in the liver and spleen of hPMSC-treated GVHD mice, and the level of CD4+IL-10+IFN-γ+ T cells in the liver was greater than that in the spleen in hPMSC-treated GVHD mice. The serum level of IL-27 decreased and the symptoms abated in hPMSC-treated GVHD. Further, in vitro results showed that IL-27 promoted the regulatory effects of hPMSCs by enhancing the generation of CD4+IL-10+IFN-γ+ T cells from activated PBMC. Activation occurred through increases in the expression of programmed death ligand 2 (PDL2) in hPMSCs via the JAK/STAT signaling pathway. These findings indicated that hPMSCs could alleviate GVHD mice symptoms by upregulating the production of CD4+IL-10+IFN-γ+ T cells in the spleen and liver and downregulating serum levels of IL-27. In turn, the ability of hPMSCs to induce the generation of CD4+IL-10+IFN-γ+ T cells could be promoted by IL-27 through increases in PDL2 expression in hPMSCs. The results of this study will be of benefit for the application of hPMSCs in clinical trials.
Collapse
Affiliation(s)
- Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Zhenghua Chen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China
| | - Fenghuang Xu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570102, China
| | - ZhuoYa Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Aiping Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Tongshen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Nannan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, China; and
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China; .,Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, Shandong Province 264003, China
| |
Collapse
|
23
|
Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol 2018; 92:JVI.02196-17. [PMID: 29593047 PMCID: PMC5974502 DOI: 10.1128/jvi.02196-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that il27p28 transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells. In particular, plasmacytoid DCs (pDCs), the most potent type 1 interferon (IFN-I)-producing cells, significantly increased il27p28 in a Toll-like receptor 7 (TLR7)-dependent fashion. Notably, mice deficient in an IL-27-specific receptor, WSX-1, exhibited a pleiotropy of innate and adaptive immune alterations after chronic lymphocytic choriomeningitis virus (LCMV) infection, including compromised NK cell cytotoxicity and antibody responses. While, the majority of these immune alterations appeared to be cell extrinsic, cell-intrinsic IL-27R was necessary to maintain early pDC numbers, which, alongside lower IFN-I transcription in CD11b+ DCs and myeloid cells, may explain the compromised IFN-I elevation that we observed early after LCMV Cl13 infection in IL-27R-deficient mice. Together, these data highlight the critical role of IL-27 in enabling optimal antiviral immunity early and late after infection with a systemic persistent virus and suggest that a previously unrecognized positive-feedback loop mediated by IL-27 in pDCs might be involved in this process. IMPORTANCE Persistently replicating pathogens, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, represent major health problems worldwide. These infections impose a long-term challenge on the host immune system, which must be heavily and continuously regulated to keep pathogen replication in check without causing fatal immunopathology. Using a persistently replicating rodent pathogen, LCMV, in its natural host, we identified the cellular sources and effects of one important regulatory pathway, interleukin-27 receptor WSX-1 signaling, that is required for both very early and late restriction of chronic (but not acute) infection. We found that WSX-1 was necessary to promote innate immunity and the development of aberrant adaptive immune responses. This not only highlights the role of IL-27 receptor signaling in regulating distinct host responses that are known to be necessary to control chronic infections, but also positions IL-27 as a potential therapeutic target for their modulation.
Collapse
|
24
|
IL-21 drives expansion and plasma cell differentiation of autoreactive CD11c hiT-bet + B cells in SLE. Nat Commun 2018; 9:1758. [PMID: 29717110 PMCID: PMC5931508 DOI: 10.1038/s41467-018-03750-7] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/08/2018] [Indexed: 01/06/2023] Open
Abstract
Although the aetiology of systemic lupus erythematosus (SLE) is unclear, dysregulated B cell responses have been implicated. Here we show that an unusual CD11chiT-bet+ B cell subset, with a unique expression profile including chemokine receptors consistent with migration to target tissues, is expanded in SLE patients, present in nephrotic kidney, enriched for autoreactive specificities and correlates with defined clinical manifestations. IL-21 can potently induce CD11chiT-bet+ B cells and promote the differentiation of these cells into Ig-secreting autoreactive plasma cells. While murine studies have identified a role for T-bet-expressing B cells in autoimmunity, this study describes and exemplifies the importance of CD11chiT-bet+ B cells in human SLE. Systemic lupus erythematosus (SLE) is associated with altered B cell responses but the underlying aetiology is still unclear. Here the authors show that a CD11chiT-bet+ B cell subset with a unique phenotype and transcriptome is increased in patients with SLE, can be expanded by IL-21, and may contribute to autoimmune responses in SLE.
Collapse
|
25
|
Inflammatory and Anti-Inflammatory Equilibrium, Proliferative and Antiproliferative Balance: The Role of Cytokines in Multiple Myeloma. Mediators Inflamm 2017; 2017:1852517. [PMID: 29089667 PMCID: PMC5635476 DOI: 10.1155/2017/1852517] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is typically exemplified by a desynchronized cytokine system with increased levels of inflammatory cytokines. We focused on the contrast between inflammatory and anti-inflammatory systems by assessing the role of cytokines and their influence on MM. The aim of this review is to summarize the available information to date concerning this equilibrium to provide an overview of the research exploring the roles of serum cytokines in MM. However, the association between MM and inflammatory cytokines appears to be inadequate, and other functions, such as pro-proliferative or antiproliferative effects, can assume the role of cytokines in the genesis and progression of MM. It is possible that inflammation, when guided by cancer-specific Th1 cells, may inhibit tumour onset and progression. In a Th1 microenvironment, proinflammatory cytokines (e.g., IL-6 and IL-1) may contribute to tumour eradication by attracting leucocytes from the circulation and by increasing CD4 + T cell activity. Hence, caution should be used when considering therapies that target factors with pro- or anti-inflammatory activity. Drugs that may reduce the tumour-suppressive Th1-driven inflammatory immune response should be avoided. A better understanding of the relationship between inflammation and myeloma will ensure more effective therapeutic interventions.
Collapse
|
26
|
Chang LY, Li Y, Kaplan DE. Hepatitis C viraemia reversibly maintains subset of antigen-specific T-bet+ tissue-like memory B cells. J Viral Hepat 2017; 24:389-396. [PMID: 27925349 PMCID: PMC5637374 DOI: 10.1111/jvh.12659] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic antigen exposure and/or ageing increases the frequency of T-box expressed in T cells (T-bet)-expressing B-lymphocytes in mice. The frequency and significance of B-cell T-bet expression during chronic hepatitis C (HCV) infection in human subjects has never been described. METHODS Healthy controls, cirrhotic and noncirrhotic HCV-infected patients, and non-HCV patients with cirrhosis were recruited. Peripheral blood mononuclear cells were phenotyped for expression of T-bet and related markers by flow cytometry. In a subset of patients who underwent antiviral therapy and were cured of HCV infection (sustained virological response), the dynamics of T-bet expression in B cells was monitored. After cure, convalescent B cells were tested for T-bet expression after re-exposure to infected plasma or recombinant HCV proteins. RESULTS Forty-nine patients including 11 healthy donors, 30 hepatitis C-infected individuals (nine with liver cancer, 13 with cirrhosis, eight without cirrhosis) and eight patients with cirrhosis due to non-HCV-related cause were recruited. We found that B cells in patients with chronic HCV exhibited increased frequency of T-bet+ B cells relative to noninfected individuals (median 11.5% v. 2.2%, P<.0001) but that there were no significant differences between noncirrhotic, cirrhotic and cancer-bearing infected individuals. T-Bet+ B cells expressed higher levels of CD95, CXCR3, CD11c, CD267 and FcRL5 compared to T-bet- B cells and predominantly exhibit a tissue-like memory CD27- CD21- phenotype independent of HCV infection. T-bet+ B cells in HCV-infected patients were more frequently class-switched IgD- IgG+ (40.4% vs. 26.4%, P=.012). Resolution of HCV infection with direct-acting antiviral (DAA) therapy leads to a marked reduction in the frequency of T-bet+ B cells (median 14.1% pretreatment v. 6.7% end of treatment v. 6.1% SVR12, P≤.01). Re-exposure of convalescent (cured) B cells to viremic plasma and recombinant HCV E2 protein led to re-expression of T-bet. CONCLUSION Chronic antigenemia in chronic HCV infection induces and maintains an antigen-specific T-bet+ B cell. These B cells share markers with tissue-like memory B cells. Antigen-driven T-bet expression may be a critical suppressor of B-cell activation in chronic HCV infection.
Collapse
Affiliation(s)
- L.-Y. Chang
- Medicine and Research Services, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y. Li
- Medicine and Research Services, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D. E. Kaplan
- Medicine and Research Services, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Kallies A, Good-Jacobson KL. Transcription Factor T-bet Orchestrates Lineage Development and Function in the Immune System. Trends Immunol 2017; 38:287-297. [PMID: 28279590 DOI: 10.1016/j.it.2017.02.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
T-bet was originally described as the key transcription factor defining type 1 T helper (Th) cells. However, it is now clear that it drives the orchestrated generation of effector and memory cells in multiple different lymphocyte lineages. In addition to Th1 cells, CD8 T cells, B cells and some innate lymphocyte populations require T-bet for their development or differentiation in response to antigen. Furthermore, other Th cell populations, including T follicular helper and Th17, as well as regulatory T cells can co-opt T-bet expression to promote functional diversification and colocalization. Thus, T-bet broadly regulates transcriptional programs in response to type 1 inflammatory signals and mediates the coordinated differentiation, function, migration and survival of effector and memory lymphocyte subsets in the affected tissue. Therefore, T-bet expression is essential for effective clearance of pathogens and maintenance of immunity.
Collapse
Affiliation(s)
- Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Kim L Good-Jacobson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
28
|
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069. [PMID: 28255204 PMCID: PMC5309407 DOI: 10.1155/2017/3958069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
IL-27 is a pleiotropic two-chain cytokine, composed of EBI3 and IL-27p28 subunits, which is structurally related to both IL-12 and IL-6 cytokine families. IL-27 acts through a heterodimer receptor consisting of IL-27Rα (WSX1) and gp130 chains, which mediate signaling predominantly through STAT1 and STAT3. IL-27 was initially reported as an immune-enhancing cytokine that supports CD4+ T cell proliferation, T helper (Th)1 cell differentiation, and IFN-γ production, acting in concert with IL-12. However, subsequent studies demonstrated that IL-27 displays complex immune-regulatory functions, which may result in either proinflammatory or anti-inflammatory effects in relationship to the biological context and experimental models considered. Several pieces of evidence, obtained in preclinical tumor models, indicated that IL-27 has a potent antitumor activity, related not only to the induction of tumor-specific Th1 and cytotoxic T lymphocyte (CTL) responses but also to direct inhibitory effects on tumor cell proliferation, survival, invasiveness, and angiogenic potential. Nonetheless, given its immune-regulatory functions, the effects of IL-27 on cancer may be dual and protumor effects may also occur. Here, we will summarize IL-27 biological activities and its functional overlaps with the IFNs and discuss its dual role in tumors in the light of potential applications to cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Fabbi
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Grazia Carbotti
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
29
|
Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med 2017; 14:254-270. [PMID: 28884042 PMCID: PMC5570602 DOI: 10.20892/j.issn.2095-3941.2017.0029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- The First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens 11527, Greece
| |
Collapse
|
30
|
Circulating IL-27 Is Elevated in Rheumatoid Arthritis Patients. Molecules 2016; 21:molecules21111565. [PMID: 27869736 PMCID: PMC6273926 DOI: 10.3390/molecules21111565] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 02/04/2023] Open
Abstract
Cytokines are key immunoregulatory molecules that regulate T lymphocyte-mediated immune responses and inflammatory reactions. We determined whether there is aberrant expression of interleukin-27 (IL-27) in rheumatoid arthritis (RA) patients and investigated the clinical significance of these changes. IL-27 is a key cellular factor that regulates the differentiation of CD4+ T cells, which can secrete interleukin-10 (IL-10) and interleukin-17 (IL-17) in vivo. Concentrations of serum IL-27 in 67 RA patients, and 36 sex- and age-matched control subjects were measured by enzyme-linked immunosorbent assay (ELISA). Results showed that concentrations of serum IL-27 in all RA patients were significantly higher than in healthy control subjects, and there was a significant and positive correlation between serum IL-27 levels and disease activity in all RA patients. Levels of serum IL-27 in RA patients were significantly correlated with disease activity score in 28 joints (DAS28). Moreover, immunosuppressive treatment with leflunomide downregulated the levels of IL-27 in active RA patients. Therefore, the elevated production of circulating T cell inflammatory factors contributes to the pathogenesis of RA, and serum IL-27 could potentially serve as a new biomarker of RA disease activity.
Collapse
|
31
|
Vijayan D, Mohd Redzwan N, Avery DT, Wirasinha RC, Brink R, Walters G, Adelstein S, Kobayashi M, Gray P, Elliott M, Wong M, King C, Vinuesa CG, Ghilardi N, Ma CS, Tangye SG, Batten M. IL-27 Directly Enhances Germinal Center B Cell Activity and Potentiates Lupus in Sanroque Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3008-3017. [PMID: 27619997 DOI: 10.4049/jimmunol.1600652] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022]
Abstract
Germinal centers (GC) give rise to high-affinity and long-lived Abs and are critical in immunity and autoimmunity. IL-27 supports GCs by promoting survival and function of T follicular helper cells. We demonstrate that IL-27 also directly enhances GC B cell function. Exposure of naive human B cells to rIL-27 during in vitro activation enhanced their differentiation into CD20+CD38+CD27lowCD95+CD10+ cells, consistent with the surface marker phenotype of GC B cells. This effect was inhibited by loss-of-function mutations in STAT1 but not STAT3 To extend these findings, we studied the in vivo effects of IL-27 signals to B cells in the GC-driven Roquinsan/san lupus mouse model. Il27ra-/-Roquinsan/san mice exhibited significantly reduced GCs, IgG2a(c)+ autoantibodies, and nephritis. Mixed bone marrow chimeras confirmed that IL-27 acts through B cell- and CD4+ T cell-intrinsic mechanisms to support GCs and alter the production of pathogenic Ig isotypes. To our knowledge, our data provide the first evidence that IL-27 signals directly to B cells promote GCs and support the role of IL-27 in lupus.
Collapse
Affiliation(s)
- Dipti Vijayan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Norhanani Mohd Redzwan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Rushika C Wirasinha
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giles Walters
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Department of Renal Medicine, Canberra Hospital, Canberra, Australian Capital Territory 2605, Australia.,Australian National University Medical School, Canberra, Australian Capital Territory 2601, Australia
| | - Stephen Adelstein
- Clinical Immunology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan
| | - Paul Gray
- University of New South Wales School of Women's and Children's Health, Sydney, New South Wales 2031, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Melanie Wong
- Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; and
| | - Cecile King
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marcel Batten
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
32
|
Tang H, Zhang J, Sun X, Qian X, Zhang Y, Jin R. Thymic DCs derived IL-27 regulates the final maturation of CD4(+) SP thymocytes. Sci Rep 2016; 6:30448. [PMID: 27469302 PMCID: PMC5387111 DOI: 10.1038/srep30448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022] Open
Abstract
IL-27, as a pleiotropic cytokine, promotes the differentiation of naïve T cells to Th1, while suppressing Th2 and Th17 differentiation in the periphery. However, the role of IL-27 in the thymocyte development remains unknown. Here we showed that IL-27 was highly expressed in thymic plasmacytoid dendritic cells (pDCs) while its receptor expression was mainly detected in CD4+ single-positive (SP) thymocytes. Deletion of the p28 subunit in DCs resulted in a reduction of the most mature Qa-2+ subsets of CD4+ SP T cells. This defect was rescued by intrathymic administration of exogenous IL-27. In vitro differentiation assay further demonstrated that IL-27 alone was able to drive the maturation of the newly generated 6C10+CD69+CD4+ SP cells into Qa-2+ cells. Collectively, this study has revealed an important role of thymic DCs-derived IL-27 in the regulation of the phenotypic maturation of CD4+ SP thymocytes.
Collapse
Affiliation(s)
- Hui Tang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Jie Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Xiaoping Qian
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| | - Rong Jin
- Key Laboratory of Medical Immunology, Department of Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing, China
| |
Collapse
|
33
|
Wang X, Wei Y, Xiao H, Liu X, Zhang Y, Han G, Chen G, Hou C, Ma N, Shen B, Li Y, Egwuagu CE, Wang R. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. Eur J Immunol 2016; 46:1343-50. [PMID: 27019190 PMCID: PMC11334612 DOI: 10.1002/eji.201546095] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 08/22/2024]
Abstract
Interleukin-12 family cytokines have emerged as critical regulators of immunity with some members (IL-12, IL-23) associated with disease pathogenesis while others (IL-27, IL-35) mitigate autoimmune diseases. Each IL-12 family member is comprised of an α and a β chain, and chain-sharing is a key feature. Although four bona fide members have thus far been described, promiscuous chain-pairing between alpha (IL-23p19, IL-27p28, IL-12/IL-35p35) and beta (IL-12/IL-23p40, IL-27/IL-35Ebi3) subunits, predicts six possible heterodimeric IL-12 family cytokines. Here, we describe a new IL-12 member composed of IL-23p19 and Ebi3 heterodimer (IL-39) that is secreted by LPS-stimulated B cells and GL7(+) activated B cells of lupus-like mice. We further show that IL-39 mediates inflammatory responses through activation of STAT1/STAT3 in lupus-like mice. Taken together, our results show that IL-39 might contribute to immunopathogenic mechanisms of systemic lupus erythematosus, and could be used as a possible target for its treatment.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yinxiang Wei
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
- Department of Nephrology, The 307 Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Yu Zhang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Regulation and Immune Function of IL-27. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:191-211. [DOI: 10.1007/978-94-024-0921-5_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Zhu H, Lou C, Liu P. Interleukin-27 ameliorates coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Virol J 2015; 12:189. [PMID: 26578236 PMCID: PMC4650905 DOI: 10.1186/s12985-015-0418-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Background Interleukin (IL)-27, which has both pro and anti- inflammatory properties, is a new discovered heterodimeric cytokine that belongs to IL-12 family. However, the expression pattern and functional role of IL-27 in viral myocarditis (VMC) has not been investigated. Methods BALB/c mice were intraperitoneally (i.p) infected with Coxsackie virus B3 (CVB3) for establishing VMC models. Mice were then injected i.p. with Anti-Mouse IL-27 p28Ab or recombinant IL-27 for neutralization and overexpression of IL-27. The survival rates of mice were recorded and the kinetics of IL-27 expression, the frequencies of Th17 cells and the expression of inflammatory cytokine in CVB3-infected mice were determined by ELISA, real-time PCR and flow cytometry. Results The IL-27 expression in heart tissues and serum in coxsackievirus B3 (CVB3)-induced myocarditis mice peaked on day 4 but then rapidly decreased during the late infectious stage of CVB3, high IL-27 levels were negatively correlated with bodyweight loss (r = −0.71, P = 0.021) and myocardial pathological score (r = −0.85, P = 0.0018). Additionally, neutralization of IL-27 with Anti-IL-27 Ab accelerated, whereas systemic administration of recombinant mouse IL-27 ameliorated CVB3-induced myocarditis. The protective role of IL-27 in VMC was reflected by an improved survival rate, increased bodyweights, and reduced pathological scores in Anti-IL-27 group compared with IgG control group. Mechanistic investigations showed that IL-27 inhibited Th17 cells frequencies and IL-17 production, as well as the Th17-related proinflammatory cytokines in heart tissues. Conclusions Our results demonstrate that that IL-27 effectively protects the myocardium from the pathogenesis of CVB3 induced myocarditis, which may be attributable to reduced Th17 production. IL-27 might serve as a novel therapeutic treatment for VMC. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0418-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hengshan Zhu
- Department of Cardiovascular Surgery, Xianyang Hospital of Yan'an University, Xianyang, 712000, Shaanxi, China.
| | - Chuang Lou
- Department of Cardiology, AnKang Hospital of Traditional Chinese Medicine, Ankang, 725000, Shaanxi, China.
| | - Ping Liu
- Department of Cardiology, Xianyang Hospital of Yan'an University, No 38 Wenlin Raod, Xianyang, 712000, Shaanxi, China.
| |
Collapse
|
36
|
Molecular modeling, mutational analysis and conformational switching in IL27: An in silico structural insight towards AIDS research. Gene 2015; 576:72-8. [PMID: 26432006 DOI: 10.1016/j.gene.2015.09.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/09/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
Abstract
The advancement in proteomics and bioinformatics provokes to discern the molecular-level probe for HIV inhibitor; human interleukin-27 (IL27). Documentation documents that tyrosine residues in IL27 play a pivotal role for interacting with HIV, causing apoptosis of the HIV+ cells. Primarily, 3D structure of human wild-type (WT) IL27 was built through manifold molecular modeling techniques after the satisfaction of stereo-chemical properties. Its essential tyrosine residues were identified. Two mutant models for IL27 were prepared following the similar protocol by first substituting the tyrosine residues with glycine (MT_G) and then with alanine (MT_A) in the WT protein. Molecular dynamics (MD) simulation was performed to obtain a stable conformation. Conformational alterations in WT, MT_G and MT_A (before and after MD simulation) disclosed that MT_A was the steadiest one with the best secondary structure conformation supported by statistical significances. Though huge RMSD variations were observed on superimposing the MT structures on WT individually, the MTs were examined to share similar SCOP/CATH fold with TM-score=0.8, indicating that they retained their functionality even after mutation. Electrostatic surface potential again unveiled MT_A to be the most stable one. MT_A was thereby revealed to be the potent peptide inhibitor for HIV. This probe presents a pathway to investigate and compare the bio-molecular interaction of WT IL27 and MT_A IL27 (strongest model) with HIV in the future. This is the first report regarding the structural biology of IL27 accompanied by alteration at its genetic level and delving into the unknown residue-level and functional biochemistry for bringing about an annihilation towards AIDS.
Collapse
|
37
|
Jung JY, Roberts LL, Robinson CM. The presence of interleukin-27 during monocyte-derived dendritic cell differentiation promotes improved antigen processing and stimulation of T cells. Immunology 2015; 144:649-60. [PMID: 25346485 DOI: 10.1111/imm.12417] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells necessary to establish effective adaptive immune responses. The cytokine environment that exists at the time of DC differentiation may be an important but often ignored determinant in the phenotypic and functional properties of DCs. Interleukin-27 (IL-27) is a unique cytokine that has both inflammatory and immune suppressive activities. Although it can both promote and oppose activity of different T-cell subsets, mostly anti-inflammatory activity has been described toward macrophages and DCs. However, the specific effect of IL-27 during DC differentiation and how that may change the nature of the antigen-presenting cell has not been investigated. In this report, we show that IL-27 treatment during monocyte-derived DC differentiation enhanced the ability to process antigens and stimulate T-cell activity. DCs differentiated in the presence of IL-27 showed enhanced acidification of latex bead-containing phagosomes that was consistent with elevated expression of vacuolar-ATPases. This resulted in inhibition of intracellular growth of Staphylococcus aureus. In addition, the levels of MHC class II surface expression were higher in DCs differentiated in the presence of IL-27. Production of IL-12 was also significantly increased during S. aureus infection of IL-27-differentiated DCs. The net effect of these activities was enhanced CD4(+) T-cell proliferation and T helper type 1 cytokine production. These findings are important to a wide number of immunological contexts and should be considered in the development of future vaccines.
Collapse
Affiliation(s)
- Joo-Yong Jung
- Department of Biology, Briar Cliff University, Sioux City, IA, USA
| | | | | |
Collapse
|
38
|
Affiliation(s)
- Hiroki Yoshida
- Department of Biomolecular Sciences, Division of Molecular and Cellular Immunoscience, Saga University Faculty of Medicine, Saga 849-8501, Japan;
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4539;
| |
Collapse
|
39
|
Immunization associated with erectile dysfunction based on cross-sectional and genetic analyses. PLoS One 2014; 9:e111269. [PMID: 25343742 PMCID: PMC4208848 DOI: 10.1371/journal.pone.0111269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/21/2014] [Indexed: 02/06/2023] Open
Abstract
Erectile dysfunction (ED) is a global disease affecting a large number of people. Some studies have found a relationship between low-grade inflammation and ED. We hypothesized that the immune system might play a key role in the outcome of ED. Five immune agents (C3, C4, IgA, IgM, and IgG) were collected based on the Fangchenggang Area Male Health and Examination Survey (FAMHES), using methods of a traditional cross-sectional analysis. Our results repeated the significant association between ED and metabolic syndrome, obesity, and so forth. However, there seemed to be no positive relation between the tested indexes and ED risk in the baseline analysis (C3: P = 0.737; C4: P = 0.274; IgA: P = 0.943; IgG: P = 0.069; IgM: P = 0.985). Then, after adjusting for age and multivariate covariates, a potentially significant association between ED and IgG was discovered (P = 0.025 and P = 0.034, respectively). Meanwhile, in order to describe the development of ED on a gene level, SNP-set kernel-machine association test (SKAT) was applied with the known humoral immune genes involved. The outcomes suggested that PTAFR (binary P value: 0.0096; continuous P value: 0.00869), IL27 (0.0029; 0.1954), CD37 (0.0248; 0.5196), CD40 (0.7146; 0.0413), IL7R (0.1223; 0.0222), PSMB9 (0.1237; 0.0212), and CXCR3 (0.0849; 0.0478) might be key genes in ED, especially IL27, when we restricted the family-wise error rate (FWER) to 0.5. Our study shows that IgG and seven genes (PTAFR, CD37, CD40, IL7R, PSMB9, CXCR3, and especially IL27) might be key factors in the pathogenesis of ED, which could pave the way for future gene and immune therapies.
Collapse
|
40
|
Dietrich C, Candon S, Ruemmele FM, Devergne O. A soluble form of IL-27Rα is a natural IL-27 antagonist. THE JOURNAL OF IMMUNOLOGY 2014; 192:5382-9. [PMID: 24771852 DOI: 10.4049/jimmunol.1303435] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-27 is a cytokine of the IL-12 family that plays a key role in the regulation of inflammatory and T cell responses. Its receptor is composed of IL-27Rα and gp130 and activates the STAT pathway. We show in this study, using an ELISA that we developed, that a naturally occurring soluble form of IL-27Rα (sIL-27Rα) is produced by human activated CD4(+) and CD8(+) T cells, B cells, myeloid cells, and various cell lines. sIL-27Rα is present at a mean concentration of 10,344 ± 1,274 pg/ml in the sera from healthy individuals. Biochemical studies showed that sIL-27Rα is released as two N-glycosylated variants of ∼ 90 and ∼ 70 kDa. In IL-27Rα-transfected COS7 cells, primary cells, and cell lines, production of sIL-27Rα is inhibited by the metalloprotease inhibitors GM6001 and TAPI-0. Importantly, natural sIL-27Rα binds rIL-27, inhibits IL-27 binding to its cell surface receptor, and is a potent inhibitor of IL-27 signaling, as shown by its ability to specifically block IL-27-mediated STAT activation, at low molar excess over IL-27. Also, we found that serum levels of sIL-27Rα were elevated in patients with Crohn's disease, a Th1-mediated disease. These findings suggest that sIL-27Rα may play important immunoregulatory functions under normal and pathological conditions.
Collapse
Affiliation(s)
- Céline Dietrich
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France
| | - Sophie Candon
- Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France; INSERM U1013, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; and
| | - Frank M Ruemmele
- Service de Gastroentérologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, 75 015 Paris, France
| | - Odile Devergne
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France;
| |
Collapse
|
41
|
Li MF, Sun BG, Xiao ZZ, Sun L. First characterization of a teleost Epstein-Barr virus-induced gene 3 (EBI3) reveals a regulatory effect of EBI3 on the innate immune response of peripheral blood leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:514-522. [PMID: 23932982 DOI: 10.1016/j.dci.2013.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 05/29/2023]
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) encodes a protein that in mammals is known to be a subunit of interleukin (IL)-27 and IL-35, both which regulate cytokine production and inflammatory response. To date, no studies on fish EBI3 have been documented. In this work, we report the identification of an EBI3 homologue, CsEBI3, from tongue sole (Cynoglossus semilaevis) and analysis of its expression and biological effect. CsEBI3 is composed of 245 amino acid residues and possesses a Fibronectin type 3 (FN3) domain that is preserved in lower and higher vertebrates. Expression of CsEBI3 was detected in a wide range of tissues, in particular those of immune relevant organs, and upregulated in a time-dependent manner by experimental challenge with bacterial and viral pathogens. Bacterial infection of peripheral blood leukocytes (PBL) enhanced CsEBI3 expression and caused extracellular secretion of CsEBI3. Purified recombinant CsEBI3 (rCsEBI3) stimulated the respiratory burst activity of PBL and upregulated the expression of IL-1β, IL-8, Myd88, interferon-induced gene 15, CD28, and chemokines. In contrast, rCsEBI3M, a mutant CsEBI3 that lacks the FN3 domain failed to activate PBL and induced much weaker expression of the immune genes. Treatment of PBL with rCsEBI3, but not with the mutant rCsEBI3M, enhanced cellular resistance against bacterial invasion, whereas antibody blocking of CsEBI3 on PBL significantly reduced cellular resistance against bacterial infection. Taken together, these results indicate for the first time that a teleost EBI3 possesses immunoregulatory property in a manner that is dependent on the conserved FN3 domain, and that CsEBI3 is involved in the innate immune defense of PBL against microbial pathogens.
Collapse
Affiliation(s)
- Mo-fei Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
42
|
Swaminathan S, Dai L, Lane HC, Imamichi T. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection. Cytokine Growth Factor Rev 2013; 24:571-7. [PMID: 23962745 PMCID: PMC3851681 DOI: 10.1016/j.cytogfr.2013.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
Abstract
Interleukin 27 (IL-27) is an immunomodulatory cytokine with important roles in both the innate and adaptive immune systems. In the last five years, the addition of exogenous IL-27 to primary cell cultures has been demonstrated to decrease HIV-1 replication in a number of cell types including peripheral blood mononuclear cells (PBMCs), CD4+ T cells, macrophages and dendritic cells. These in vitro findings suggest that IL-27 may have therapeutic value in the setting of HIV-1 infection. In this review, we describe the current knowledge of the biology of IL-27, its effects primarily on HIV-1 replication but also in other viral infections and explore its potential role as a therapeutic cytokine for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Lue Dai
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomozumi Imamichi
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| |
Collapse
|
43
|
Chong WP, Horai R, Mattapallil MJ, Silver PB, Chen J, Zhou R, Sergeev Y, Villasmil R, Chan CC, Caspi RR. IL-27p28 inhibits central nervous system autoimmunity by concurrently antagonizing Th1 and Th17 responses. J Autoimmun 2013; 50:12-22. [PMID: 24021664 DOI: 10.1016/j.jaut.2013.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/26/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Central nervous system (CNS) autoimmunity such as uveitis and multiple sclerosis is accompanied by Th1 and Th17 responses. In their corresponding animal models, experimental autoimmune uveitis (EAU) and experimental autoimmune encephalomyelitis (EAE), both responses are induced and can drive disease independently. Because immune responses have inherent plasticity, therapeutic targeting of only one pathway could promote the other, without reducing pathology. IL-27p28 antagonizes gp130, required for signaling by IL-27 and IL-6, which respectively promote Th1 and Th17 responses. We therefore examined its ability to protect the CNS by concurrently targeting both effector responses. Overexpression of IL-27p28 in vivo ameliorated EAU as well as EAE pathology and reduced tissue infiltration by Th1 and Th17 cells in a disease prevention, as well as in a disease reversal protocol. Mechanistic studies revealed inhibition of Th1 and Th17 commitment in vitro and decreased lineage stability of pre-formed effectors in vivo, with reduction in expression of gp130-dependent transcription factors and cytokines. Importantly, IL-27p28 inhibited polarization of human T cells to the Th1 and Th17 effector pathways. The ability of IL-27p28 to inhibit generation as well as function of pathogenic Th1 and Th17 effector cells has therapeutic implications for controlling immunologically complex autoimmune diseases.
Collapse
Affiliation(s)
- Wai Po Chong
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Phyllis B Silver
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Jun Chen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Ru Zhou
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Yuri Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| |
Collapse
|
44
|
Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect Immun 2013; 81:3803-13. [PMID: 23897614 DOI: 10.1128/iai.00660-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection is the leading cause for peptic ulcer disease and gastric adenocarcinoma. Mucosal T cell responses play an important role in mediating H. pylori-related gastric immunopathology. While induced regulatory T (iTreg) cells are required for chronic colonization without disease, T helper 1 (Th1) effector responses are associated with lower bacterial loads at the expense of gastric pathology. Pigs were inoculated with either H. pylori strain SS1 or J99. Phenotypic and functional changes in peripheral blood mononuclear cell (PBMC) populations were monitored weekly, and mucosal immune responses and bacterial loads were assessed up to 2 months postinfection. Both H. pylori strains elicited a Th1 response characterized by increased percentages of CD4(+)Tbet(+) cells and elevated gamma interferon (IFN-γ) mRNA in PBMCs. A subset of CD8(+) T cells expressing Tbet and CD16 increased following infection. Moreover, a significant increase in perforin and granzyme mRNA expression was observed in PBMCs of infected pigs, indicating a predominant cytotoxic immune response. Infiltration of B cells, myeloid cells, T cells expressing Treg- and Th17-associated transcription factors, and cytotoxic T cells was found in the gastric lamina propria of both infected groups. Interestingly, based on bacterial reisolation data, strain SS1 showed greater capacity to colonize and/or persist in the gastric mucosa than did strain J99. This novel pig model of infection closely mimics human gastric pathology and presents a suitable avenue for studying effector and regulatory responses toward H. pylori described in humans.
Collapse
|
45
|
Tormo AJ, Meliani Y, Beaupré LA, Sharma M, Fritz JH, Elson G, Crabé S, Gauchat JF. The Composite Cytokine p28/Cytokine-Like Factor 1 Sustains B Cell Proliferation and Promotes Plasma Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1657-65. [DOI: 10.4049/jimmunol.1201595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Abstract
It has been more than 15 years since the identification of individual interleukin-27 (IL-27) and IL-27 receptor components. The last decade has seen the description of the signaling pathways engaged by IL-27, and an appreciation has emerged that this cytokine can modulate the intensity and duration of many classes of T cell responses. Here we provide an overview of the immunobiology of IL-27 and review advances in understanding the functions of individual IL-27 and IL-27 receptor subunits and the role of IL-27 in dictating the balance between protective and pathological immunity. Additionally, this cytokine has been proposed as a therapy to modify inflammatory conditions or to promote antitumor responses, and situations where experimental and clinical data sets implicate IL-27 in the outcome of disease are highlighted.
Collapse
|
47
|
Hernando H, Shannon-Lowe C, Islam AB, Al-Shahrour F, Rodríguez-Ubreva J, Rodríguez-Cortez VC, Javierre BM, Mangas C, Fernández AF, Parra M, Delecluse HJ, Esteller M, López-Granados E, Fraga MF, López-Bigas N, Ballestar E. The B cell transcription program mediates hypomethylation and overexpression of key genes in Epstein-Barr virus-associated proliferative conversion. Genome Biol 2013; 14:R3. [PMID: 23320978 PMCID: PMC3663113 DOI: 10.1186/gb-2013-14-1-r3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection is a well characterized etiopathogenic factor for a variety of immune-related conditions, including lymphomas, lymphoproliferative disorders and autoimmune diseases. EBV-mediated transformation of resting B cells to proliferating lymphoblastoid cells occurs in early stages of infection and is an excellent model for investigating the mechanisms associated with acquisition of unlimited growth. RESULTS We investigated the effects of experimental EBV infection of B cells on DNA methylation profiles by using high-throughput analysis. Remarkably, we observed hypomethylation of around 250 genes, but no hypermethylation. Hypomethylation did not occur at repetitive sequences, consistent with the absence of genomic instability in lymphoproliferative cells. Changes in methylation only occurred after cell divisions started, without the participation of the active demethylation machinery, and were concomitant with acquisition by B cells of the ability to proliferate. Gene Ontology analysis, expression profiling, and high-throughput analysis of the presence of transcription factor binding motifs and occupancy revealed that most genes undergoing hypomethylation are active and display the presence of NF-κB p65 and other B cell-specific transcription factors. Promoter hypomethylation was associated with upregulation of genes relevant for the phenotype of proliferating lymphoblasts. Interestingly, pharmacologically induced demethylation increased the efficiency of transformation of resting B cells to lymphoblastoid cells, consistent with productive cooperation between hypomethylation and lymphocyte proliferation. CONCLUSIONS Our data provide novel clues on the role of the B cell transcription program leading to DNA methylation changes, which we find to be key to the EBV-associated conversion of resting B cells to proliferating lymphoblasts.
Collapse
|
48
|
Guzzo C, Jung M, Graveline A, Banfield BW, Gee K. IL-27 increases BST-2 expression in human monocytes and T cells independently of type I IFN. Sci Rep 2012; 2:974. [PMID: 23240078 PMCID: PMC3521153 DOI: 10.1038/srep00974] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/16/2022] Open
Abstract
IL-27 modulates inflammatory responses by influencing cytokine secretion and CD4 T cell differentiation. Recently, IL-27 was demonstrated to inhibit HIV replication by inducing type I interferon (IFN) expression and subsequent IFN-dependent expression of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-3 family members, a group of antiviral cytidine deaminases. To characterize other anti-viral genes modulated by IL-27, we examined another IFN-responsive gene: tetherin/bone marrow stromal cell antigen 2 (BST-2). Our study shows that IL-27 can directly induce BST-2 expression, independently of an intermediary type I IFN response. Quantitative RT-PCR analysis demonstrated IL-27-induced BST-2 mRNA expression as early as 2h after exposure of cells to IL-27. In the presence of the type I IFN-neutralizing protein, B18R, IL-27-induced BST-2 expression was maintained, demonstrating that IFN is not an intermediary in IL-27-induced BST-2. Taken together, our findings identify a novel function of IL-27 as a direct stimulator of BST-2 expression.
Collapse
Affiliation(s)
- Christina Guzzo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston ON, Canada, K7L 3N6
| | - Masany Jung
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston ON, Canada, K7L 3N6
| | - Ashley Graveline
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston ON, Canada, K7L 3N6
| | - Bruce W. Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston ON, Canada, K7L 3N6
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston ON, Canada, K7L 3N6
| |
Collapse
|
49
|
The emerging role of Interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev 2012; 24:115-21. [PMID: 23165310 DOI: 10.1016/j.cytogfr.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
Although the causes of inflammatory arthritis elude us, aberrant cytokine expression has been linked to joint pathology. Consequently, several approaches in the clinic and/or in clinical trials are targeting cytokines, e.g. tumor necrosis factor (TNF), Interleukin 23 (IL-23) and Interleukin 17 (IL-17), with the goal of antagonizing their respective biologic activity through therapeutic neutralizing antibodies. Such, cytokine signaling-dependent molecular networks orchestrate synovial inflammation on multiple levels including differentiation of myeloid cells to osteoclasts, the central cellular players in arthritis-associated pathologic bone resorption. Hence, understanding of the cellular and molecular mechanisms elicited by synovial cytokine networks that dictate recruitment, differentiation and activation of osteoclast precursors and osteoclasts, respectively, is central to shaping novel therapeutic options for inflammatory arthritis patients. In this article we are discussing the complex signaling interactions involved in the regulation of inflammatory arthritis and it's associated bone loss with a focus on Interleukin 27 (IL-27). The present review will discuss the primary bone-degrading cell, the osteoclast, and on how IL-27, directly or indirectly, modulates osteoclast activity in autoimmune-driven inflammatory joint diseases.
Collapse
|
50
|
Guzzo C, Hopman WM, Che Mat NF, Wobeser W, Gee K. IL-27-induced gene expression is downregulated in HIV-infected subjects. PLoS One 2012; 7:e45706. [PMID: 23049843 PMCID: PMC3458084 DOI: 10.1371/journal.pone.0045706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/22/2012] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To characterize the effect of HIV infection on IL-27-induced gene expression. DESIGN During HIV infection, cytokine expression and function become deregulated. IL-27 is an important modulator of inflammatory responses. Interestingly, IL-27 can inhibit HIV replication in T cells and monocytes, implicating IL-27 as a potential adjunct to anti-viral treatment. Our previous work demonstrated that circulating HIV may suppress IL-27 expression, therefore, this study, in continuation of our previous work, aimed to understand how HIV affects expression levels of the IL-27 receptor and downstream functions of IL-27. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from whole blood of HIV negative and HIV positive (viremic) individuals to assess IL-27-induced gene expression by flow cytometry and ELISA. PBMC were also processed for monocyte enrichment to assess IL-27 receptor expression by flow cytometry and real-time PCR. RESULTS Expression of the IL-27 receptor subunit, gp130, was upregulated in response to IL-27 in HIV negative individuals, however, in HIV positive individuals, this IL-27 response was diminished. Furthermore, we observed downregulation of IL-27-induced IL-6, TNF-α, and IL-10 expression in HIV positive subjects. CONCLUSION In HIV infection, IL-27-induced gene expression was impaired, indicating HIV-mediated dysregulation of IL-27 functions occurs during HIV infection. This study provides evidence for new viral pathogenic mechanisms contributing to the widespread impairment of immune responses observed in HIV pathogenesis.
Collapse
Affiliation(s)
- Christina Guzzo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Wilma M. Hopman
- Department of Community Health and Epidemiology, Queen’s University, Kingston, Ontario, Canada
| | - Nor Fazila Che Mat
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Wendy Wobeser
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|